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Abstract: Problem statement: A direct method, such as least squares technique is usually used to 
solve problems involving matching a curve or a surface to a set of data points. The solution obtained 
by this direct method is precise or very good in approximation, but computationally not very efficient. 
Thus, in this study, we propose an indirect approach using Particle Swarm Optimization (PSO) 
technique as an alternative. Approach: As a case study, we use conic curve which satisfy C0 
continuity to be fitted to a given set of data points. PSO, a soft computing method is employed to 
optimize the control points and weights which are then used in conic equations. Results: Best fitted 
conic curve that represents all the given data points is then obtained. Conclusion: We use an indirect 
technique of soft computing methods, i.e., PSO to fit a curve to a given data set. We believe that other 
types of soft computing based heuristic procedures may also be used to solve related problems or to 
find its effectiveness.  
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INTRODUCTION 

 
 Curve fitting is the process of constructing a curve, 
or mathematical function that has the best fit to a series 
of data points, possibly subject to certain constraints. 
Curve fitting can involve either interpolation, where an 
exact fit to the data is required, or smoothing, in which 
a ’smooth’ function is constructed that approximately 
fits the data. A related topic in statistics is regression 
analysis, which focuses more on questions of statistical 
inference such as how much uncertainty is present in a 
curve that is fitted to observed data with certain random 
errors. Fitted curves can also be used as an aid for data 
visualization, to infer values of a function where no 
data are available and to summarize relationships 
among two or more variables. Extrapolation refers to 
the use of a fitted curve beyond the range of observed 
data and is subject to a greater degree of uncertainty 
which may also reflect the chosen method used to 
construct the curve as much as reflecting the error 
involved in the construction of fitted curve using 
observed data.  
 Particle Swarm Optimization (PSO) is an 
optimization technique proposed by Kennedy and 
Eberhart by means of particle swarm (Weise, 2007). 
PSO incorporates swarming behaviors observed in 

flocks of birds, school of fish, swarm of bees and even 
social behavior, from where the idea is originally 
emerged. Thus, PSO is a population based optimization 
tool which could be implemented and applied easily to 
solve various function optimization problems, or 
problems that can be transformed into function 
optimization forms. As an algorithm, the main strength 
of PSO is its fast convergence, which compares 
favorably with many global optimization algorithms 
like Genetic Algorithm (Eiben and Smith, 2007), 
Simulated Annealing (Kirkpatrick et al., 1983) and 
other global optimization algorithms. To apply PSO 
successfully, one of the key issues is finding how to 
map the problem solution into the PSO article, which 
directly affects its feasibility and performance.  
 
Conic curve: A standard form of conics can be found 
in Yang (2004) and Farin (1989) Eq. 1: 
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Fig. 1: The shoulder point: A rational quadratic with 

shoulder point s and shoulder tangent through q0 
and q1 

 
and: 
 

ib (i 0,1,2)=  
 
are control points of the Bezier curve and w is the 
middle weight. Here we list some useful properties of 
conics: For w < 1, we obtain an ellipse; for w = 1 a 
parabola; and for w > 1 a hyperbola: 
 
• The straight line segments [b0, b1] and [b1, b2 are 

tangents to r at r(0) = b0 and r(1) = b2, respectively 
• Forw 0≥ , the curve segment (1) lies in the convex 

hull of the control polygon 
• The point s = r(1/2) of a conic segment in its 

standard form is called the shoulder point. It can be 
computed from: 
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are called the characteristic points. The shoulder 
tangent is spanned by q0 and q1. Note that the shoulder 
tangent is parallel to 0 2b ,b ; see Fig. 1. As a 

consequence: 
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where, m is the midpoint of b0 and b0. 
 
Particle Swarm Optimization: PSO starts by having a 
population of particles initialized with random positions 

marked by vector ix
���

 and random velocities iv
���

 (Das et 

al., 2008). The population of such particles is called a 
’swarm’ S. Each particle  P has two state variables viz., 

its current position ix (t)
���

and its current velocityiv (t)
���

. It 

is also equipped with a small memory which comprises 
of its previous best positionp(t)

�

, i.e., the personal best 

experience and the best p(t)
�

 of all P,g(t)
�

 i.e., the best 
position found so far in the neighborhood of the 
particle. The PSO scheme has the following algorithmic 
parameters: 
 

•  Vmax  or maximum velocity which restricts iV (t)
���

 

within the interval [-Vmax, Vmax] an inertia weight 
factor ω 

• TWO uniformly distributed random numbers, 

1 20 , 1≤ ϕ ϕ ≤  on the velocity update formula 

• two constant multiplier terms  C1 and  C2 known as 
’self-confidence’ and ’swarm confidence’, 
respectively 

 
 Initially the settings for p(t)

�

 and g(t)
�

 are  for all 
particles. Once the particles are all initialized, an 
iterative optimization process begins, where the 
positions and velocities of all the particles are altered 
by the following recursive equations.  
 The equations are presented for the dth dimension of 
the position and velocity of the ith particle Eq. 2 and 3: 
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id id idx (t 1) x (t) v (t 1)+ = + +   (3) 
 
 The first term in the velocity updating formula 
represents the inertial velocity of the particle. Since the 
coefficient  C1 has a contribution towards the self-
exploration (or experience) of a particle, we regard it as 
the particle’s self-confidence. On the other hand, the 
coefficient  C2 has a contribution towards motion of the 
particles in global direction, which takes into account 
the motion of all the particles in the preceding program 
iterations, naturally its definition ’as swarm confidence’ 
is apparent. After having calculated the velocities and 
position for the next time step t+1, the first iteration of 
the algorithm is completed. Typically, this process is 
iterated for a certain number of time steps, or until 
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some acceptable solution has been found by the 
algorithm or until an upper limit of CPU usage has been 
reached. The algorithm is summarized in the following 
pseudo code: 
 
The PSO Algorithm: 
Input: Randomly initialized position and velocity of 

the particles:  iX (0)
���

 and iV (0)
���

. 
 
Output: Position of the approx. global optima X *

����

 
Begin 
While terminating condition is not reached 
For i = 1 to number of particles 

Evaluate the fitness:= if (X )
����

 

Update ip
���

 and ig
���

; 

Adapt velocity of the particle using Eq. 3; 
Update the position of the particle; 
Increase i; 
end while 
end 
 
Proposed technique: In our proposed method, we 
estimate the control points by finding the intersection 
point between the point connecting two adjacent points 
at both ends of the curve (Fig. 2). Then we choose the 
size of the search area to find the best value for the 
control point. For example, we choose the search space 
size = 1 where the control point is identified in the 
search space (Fig. 3). To find the best weight, an initial 
value for the weight will be assigned at random in the 
range of [0, 1].   
 Our proposed algorithm starts by having an initial 
swarm position with swarm size =25  Fig. 4. PSO is 
used to find the best control point and weight, to enable 
us to generate the best fitted curve to the given data. To 
obtain the best solution, we use the sum squares error 
method proposed by Yahya et al. (2006). We set 
number of iterations = 50, inertia 1.0ω = and C1 = C2 = 
2.0. The pseudo code of our proposed technique is 
given below. Figure 5 displays the results. 
 
Curve fitting algorithm: 
 
Get data points; 
Approximate intermediate control point; 
Determine search space to find intermediate control 
points; 
 
Initialization: 
 
Initialize intermediate control point for each particle; 

Initialize weight (randomly chosen from [0, 1]) for each 
particle; 
Best Solution  = 1000; 
Best Control Point = (0,0); 
Best Weight  = 1; 
For  i =1  until last iteration 
For  j =1  until number of particle 
Update the control point of the particle; 
Update the weight of the particle; 
Evaluate solution (new Solution); 
If new Solution better than best Solution 
 

 
 
Fig. 2: Approximation of intermediate control point 
 

 
 
Fig. 3: Search space for finding intermediate control point 

 

 
 
Fig. 4: Initial swarm position of intermediate control point 
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(a) 

 

 
(b) 

 
Fig. 5: The swarm movements to find the best 

intermediate control point (a) After 10th iteration 
(b) Final iteration 

 
Best Solution = new Solution; 
Best Control Point = new Control Point; 
Best Weight = new Weight; 
End If 
Update velocity for control point and weight; 
increase j; 
end For 
increase i; 
end For; 
 

CONCLUSION 
 
 Instead of using one of the usual direct techniques, 
we use an indirect technique of soft computing 
methods, i.e., PSO to fit a curve to a given data set. In 
order to find the best solution, we map the curve fitting 
problem to the best PSO scheme. In the future, we 
intend to use a similar algorithm in order to solve 
surface fitting problem. The effects of changed 
parameters found in the PSO scheme will also be 
studied. 
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