Complete Convergence of Exchangeable Sequences

George Stoica
Department of Mathematical Sciences, University of New Brunswick, Saint John NB, Canada

Abstract

We prove that exchangeable sequences converge completely in the Baum-Katz sense under the same conditions as i.i.d. sequences do. Problem statement: The research was needed as the rate of convergence in the law of large numbers for exchangeable sequences was previously obtained under restricted hypotheses. Approach: We applied powerful techniques involving inequalities for independent sequences of random variables. Results: We obtained the maximal rate of convergence and provided an example to show that our findings are sharp. Conclusion/Recommendations: The technique used in the paper may be adapted in the similar study for identically distributed sequences.

Key words: Exchangeable sequences, rate of convergence, strong law of large numbers

INTRODUCTION

A sequence of random variables $\left\{X_{n}\right\}_{n \geq 1}$ on the probability space ($\Omega, \mathrm{F}, \mathrm{P}$) is called exchangeable if for every n :

$$
\mathrm{P}\left[\mathrm{X}_{1} \leq \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}} \leq \mathrm{X}_{\mathrm{n}}\right]=\mathrm{P}\left[\mathrm{X}_{\pi 1} \leq \mathrm{X}_{1}, \ldots, \mathrm{X}_{\pi n} \leq \mathrm{X}_{\mathrm{n}}\right]
$$

for any permutation π of $\{1,2, \ldots, n\}$ and any $x_{i} \in R, i=$ $1, \ldots, \mathrm{n}$. In particular, exchangeable sequences are identically distributed and one can say that future samples behave like earlier samples, or any order of a finite number of samples is equally likely. Sampling without replacement, weighted averages of i.i.d. sequences, $\left\{\mathrm{Y}+\varepsilon_{\mathrm{n}}\right\}_{\mathrm{n} \geq 1}$ and $\left\{\mathrm{Y} . \varepsilon_{\mathrm{n}}\right\}_{\mathrm{n} \geq 1}$ are examples of exchangeable sequences, where $\left\{\varepsilon_{n}\right\}_{n>1}$ are i.i.d. and independent of the random variable Y. By [Chow and Teicher, 2003, Theorem 7.3.3], called de Finetti's theorem, an exchangeable sequence $\left\{X_{n}\right\}_{n \geq 1}$ is conditionally i.i.d. given either the tail σ-field of $\left\{X_{n}\right\}_{n \geq 1}$ or the σ-field G of permutable events.

MATERIALS AND METHODS

Under appropriate moment conditions, strong laws of large numbers for exchangeable sequences have been obtained in (Taylor and Hu, 1987; Etemadi and Kaminski, 1996; Etemadi, 2006; Rosalsky and Stoica, 2010). The rate of convergence in the above strong laws has not been obtained in full generality; for instance, papers (Zhao, 2004) assume $\mathrm{p}=2, \mathrm{r}=1$ and exponential, fourth and third order
moments, respectively, for $\left\{X_{n}\right\}_{n \geq 1}$, whereas (Taylor and $\mathrm{Hu}, 1987$) requires symmetry of the $\mathrm{X}_{\mathrm{n}} \mathrm{s}$ and obtains estimate (1) provided $p=2 r, 2 \leq p<4$. Using appropriate inequalities for independent sequences, the purpose of this study is to prove that exchangeable sequences converge completely in the Baum-Katz sense under the same conditions as i.i.d. sequences do.

RESULTS AND DISCUSSION

Theorem 1: Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of exchangeable random variables with $\mathrm{E}\left(\mathrm{X}_{1}\right)=0$ and $\mathrm{E}\left|\mathrm{X}_{1}\right|^{\mathrm{p}}<\infty$ for some $\mathrm{p} \geq 1$. If $0<\mathrm{r}<2, \mathrm{p} \geq \max \{\mathrm{r}, 1\}$ and $\mathrm{S}_{\mathrm{n}}:=\mathrm{X}_{1}+\ldots$ $+X_{n}$, then Eq. 1 :

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{p / r-2} \mathrm{P}\left[\left|S_{n}\right| \geq n^{1 / r}\right]<\infty \tag{1}
\end{equation*}
$$

The following result (cf. (Petrov, 1995)) will be used in the proof of Theorem 1.

Lemma 2: Let $\left\{\xi_{n}\right\}_{n \geq 1}$ a sequence of independent random variables with $\mathrm{E}\left(\xi_{\mathrm{i}}\right)=0$ and $\mathrm{E}\left|\xi_{\mathrm{i}}\right|^{\mathrm{P}}<\infty$ for all $\mathrm{i} \geq$ 1 and some $\mathrm{p} \geq 1$. If $0<\mathrm{r}<2$ and $\mathrm{T}_{\mathrm{n}}:=\xi_{1}+\ldots+\xi_{\mathrm{n}}$, then:
$\mathrm{P}\left[\left|\mathrm{T}_{\mathrm{n}}\right| \geq \mathrm{n}^{1 / \mathrm{r}}\right] \leq \mathrm{C}_{\mathrm{n}}^{-\mathrm{p} / \mathrm{r}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{E}\left|\xi_{\mathrm{i}}\right|^{\mathrm{p}}$
if $1 \leq \mathrm{p} \leq 2($ von Bahr - Esseen)
$\mathrm{P}\left[\left|\mathrm{T}_{\mathrm{n}}\right| \geq \mathrm{n}^{1 / \mathrm{r}}\right] \leq \mathrm{C}_{\mathrm{n}}^{-\mathrm{p} / \mathrm{r}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{E}\left|\xi_{\mathrm{i}}\right|^{\mathrm{p}}+\mathrm{C} \exp \left(-\mathrm{Cn}^{2 / \mathrm{r}} \sigma^{-2}\right)$
if $\mathrm{p} \geq 2$ (Fuk - Nagaev)

Where:

$$
\sigma^{2}=\sum_{\mathrm{i}-1}^{\mathrm{n}} \mathrm{E}\left(\xi_{\mathrm{i}}^{2}\right)
$$

Proof of Theorem 1: By [(Chow and Teicher, 2003), Corollary 7.3.5] there exists a regular conditional distribution P^{ω} given the σ-field G such that for each $\omega \in \Omega$ the mixands $\left\{\xi_{n} \equiv \xi_{n}^{\omega}\right\} n \geq 1$, i.e., the coordinate random variables of the Borel probability space $\left(R^{\infty}, B\left(R^{\infty}\right), P^{\omega}\right)$ are i.i.d. Namely, for all $n \in N$, any Borel function $f: R^{n} \rightarrow R$ and Borel set B on R, one has Eq. 2:

$$
\begin{equation*}
\operatorname{P}\left[f\left(X_{1}, \ldots, X_{n}\right) \in B\right]=\int_{\Omega} P^{\omega}\left[f\left(\xi_{1}, \ldots, \xi_{n}\right) \in B\right] d P \tag{2}
\end{equation*}
$$

In what follows we shall use the following notations:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{n}}^{\omega}=\xi_{1}^{\omega}+\ldots+\xi_{n}^{\omega} ; \\
& \mathrm{T}_{1, \mathrm{n}}^{\omega}=\xi_{1}^{\omega} 1\left(\left|\xi_{1}^{\omega}\right| \geq \mathrm{n}^{1 / \mathrm{r}}\right)+\ldots+\xi_{\mathrm{n}}^{\omega} 1\left(\left|\xi_{n}^{\omega}\right| \geq \mathrm{n}^{1 / \mathrm{r}}\right) ; \\
& \xi_{2, \mathrm{n}}^{\omega}=\xi_{1}^{\omega} 1\left(\left|\xi_{1}^{\omega}\right|<n^{1 / \mathrm{r}}\right)+\ldots+\xi_{n}^{\omega} 1\left(\left|\xi_{n}^{\omega}\right|<n^{1 / r}\right) \text {, for } \mathrm{n} \geq 1
\end{aligned}
$$

According to (2) and the bounded convergence theorem, we have Eq. 3:

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{p / r-2} \mathrm{P}\left[\left|\mathrm{~S}_{\mathrm{n}}\right| \geq \mathrm{n}^{1 / \mathrm{r}}\right]=\int_{\Omega} \sum_{\mathrm{n}=1}^{\infty} \mathrm{n}^{\mathrm{p} / \mathrm{r}-2} \mathrm{P}^{\omega}\left[\left|\mathrm{T}_{\mathrm{n}}^{\omega}\right| \geq \mathrm{n}_{1 / \mathrm{r}}\right] \mathrm{dP} \tag{3}
\end{equation*}
$$

On one hand, using that $\sum_{\mathrm{n}=1}^{\infty} \mathrm{n}^{\mathrm{p} / \mathrm{r}-1} \leq \mathrm{Ck}^{\mathrm{p} / \mathrm{r}}$, we obtain:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n^{p / r-1} P^{\omega}\left[\left|\xi_{1}^{\omega}\right| \geq n^{1 / r}\right] \leq \sum_{k=1}^{\infty} P^{\omega}\left[k<\left|\xi_{1}^{\omega}\right|^{r} \leq k+1\right] \sum_{n=1}^{k} n^{p / r-1} \\
& \leq C \sum_{k=1}^{\infty} k^{p / r} P^{\omega}\left[k<\left|\xi_{1}^{\omega}\right|^{r} \leq k+1\right] \leq C E^{\omega}\left(\left|\xi_{1}^{\omega}\right|^{p}\right) a . s
\end{aligned}
$$

where, E^{ω} denotes expectation under P^{ω}.
Therefore:

$$
\begin{align*}
& \int_{\Omega} \sum_{\mathrm{n}=1}^{\infty} \mathrm{n}^{\mathrm{p} / \mathrm{r}-2} \mathrm{P}^{\omega}\left[\left|\mathrm{T}_{1, \mathrm{n}}^{\omega}\right| \geq \mathrm{n}^{1 / \mathrm{r}}\right] \mathrm{dP} \leq \tag{4}\\
& \int_{\Omega} \sum_{\mathrm{n}=1}^{\infty} \mathrm{n}^{\mathrm{p} / \mathrm{r}-1} \mathrm{P}^{\omega}\left[\left|\xi_{1}^{\omega}\right| \geq \mathrm{n}^{1 / \mathrm{r}}\right] \mathrm{dP} \leq \mathrm{CE}\left|\mathrm{X}_{1}\right| \mathrm{p}<\infty
\end{align*}
$$

On the other hand, by Lemma 2 we obtain:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n^{p / r-2} P^{\omega}\left[\left|T_{2, n}^{\omega}\right| \geq n^{1 / r}\right] \\
& \leq C \sum_{n=1}^{\infty} n^{-2} \sum_{k=1}^{n} E^{\omega}\left[\left(\left|\xi_{k}^{\omega}\right| \leq n^{1 / r}\right)\right]+C \sum_{n=1}^{\infty} n^{p / r-2} \\
& \exp \left\{-C \frac{n^{2 / r}}{n E^{\omega}\left[\left|\xi_{1}^{\omega}\right|^{p} 1\left(\left|\xi_{1}^{\omega}\right| \leq n^{1 / r}\right)\right]}\right\} \\
& \leq C \sum_{n=1}^{\infty} E^{\omega}\left[\left|\xi_{1}^{\omega}\right|^{p} 1\left(n-1<\left|\xi_{1}^{\omega}\right|^{\mid} \leq n\right)\right] \sum_{j=n}^{n} j^{-2} \\
& +C \sum_{n=1}^{\infty} n^{p / r-2} \exp \left\{-C \frac{n^{2 / r-1}}{E^{\omega}\left|\xi_{1}^{\omega}\right|^{p}}\right\} \\
& \leq C E^{\omega}\left(\left|\xi_{1}^{\omega}\right|^{p}\right)+C \sum_{n=1}^{\infty} n^{p / r-2} \exp \left\{-C n^{2 / r-1}\right\} a . s
\end{aligned}
$$

The latter series is convergent as $\mathrm{r}<2$. Therefore:

$$
\begin{equation*}
\int_{\Omega} \sum_{\mathrm{n}=1}^{\infty} \mathrm{n}^{\mathrm{p} / \mathrm{r}-2} \mathrm{P}^{\omega}\left[\left|\mathrm{T}_{2, \mathrm{n}}^{\omega}\right| \geq \mathrm{n}^{1 / \mathrm{r}}\right] \mathrm{dP} \leq \mathrm{C}\left(\mathrm{E}\left|\mathrm{X}_{1}\right|^{\mathrm{p}}+1\right)<\infty \tag{5}
\end{equation*}
$$

Conclusion (1) now follows from (4) and (5) via (3).

CONCLUSION

It is very well known that we cannot allow $\mathrm{p}<1$ in the Baum-Katz estimate (1) for i.i.d. sequences; the following example shows that the same is true for exchangeable sequences. Consider $\mathrm{X}_{\mathrm{n}}=\mathrm{Y} . \varepsilon_{\mathrm{n}}$, where $\left\{\varepsilon_{\mathrm{n}}\right\}_{\mathrm{n} \geq 1}$ are i.i.d. and independent of a Cauchy random variable Y , with $\mathrm{P}\left(\varepsilon_{1}=1\right)=\mathrm{P}\left(\varepsilon_{1}=-1\right)=1 / 2$. We have $E\left|X_{1}\right|^{\mathrm{p}}<\infty$ for all $0<\mathrm{p}<1$, but $E\left|X_{1}\right|=\infty$. As $X_{1} \sim-X_{1}$, we have:

$$
\frac{\mathrm{S}_{\mathrm{n}}}{\mathrm{n}}=\mathrm{Y} \cdot \frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \varepsilon_{\mathrm{i}} \rightarrow 0 \text { a.s }
$$

i.e., the strong law of large numbers holds for the exchangeable sequence $\left\{X_{n}\right\}_{n \geq 1}$. On the other hand:

$$
\begin{aligned}
& \sum_{\mathrm{n}=1}^{\infty} \mathrm{n}^{\mathrm{p} / \mathrm{r}-2} \mathrm{P}\left[\left|\mathrm{~S}_{\mathrm{n}}\right| \geq \mathrm{n}^{1 / \mathrm{r}}\right]=\sum_{\mathrm{n}=1}^{\infty} \mathrm{n}^{\mathrm{p} / \mathrm{r}-2} \\
& \mathrm{P}\left(\left|\varepsilon_{1}+\ldots+\varepsilon_{\mathrm{n}}\right| \geq \mathrm{n}\right) \cdot \mathrm{P}\left(|\mathrm{Y}| \geq \mathrm{n}^{1 / r-1}\right) \\
& \leq \mathrm{C} \sum_{\mathrm{n}=1}^{\infty} \mathrm{n}^{\mathrm{p} / \mathrm{r}-2} \int_{|\mathrm{x}| \geq \mathrm{n}^{1 /-1}} \frac{1}{1+\mathrm{x}^{2}} d x
\end{aligned}
$$

which diverges for all $\mathrm{p} \geq \mathrm{r}$ and $0<\mathrm{r}<2$.

REFERENCES

Chow, Y.S. and H. Teicher, 2003. Probability Theory: Independence, Interchangeability, Martingales. 3rd Edn., Springer, New York, ISBN-10: 0387406077, pp: 488.

Etemadi, N. and M. Kaminski, 1996. Strong law of large numbers for 2-exchangeable random variables. Stat. Probab. Lett., 28: 245-250. DOI: 10.1016/0167-7152(95)00131-X

Etemadi, N., 2006. Convergence of weighted averages of random variables revisited. Proc. Am. Math. Soc., 134: 2739-2744. DOI: 10.1090/S0002-9939-06-08296-7
Petrov, V.V., 1995. Limit Theorems of Probability Theory: Sequences of Independent Random Variables. 1st Edn., Oxford University Press, New York, ISBN-10: 019853499X, pp: 292.

Rosalsky, A. and G. Stoica, 2010. On the strong law of large numbers for identically distributed random variables irrespective of their joint distributions. Stat. Probab. Lett., 80: 1265-1270. DOI: 10.1016/J.SPL.2010.04.005

Taylor, R.L. and T.C. Hu, 1987. On laws of large numbers for exchangeable random variables. Stoch. Anal. Appl., 5: 323-334. DOI: 10.1080/07362998708809120

Zhao, Y., 2004. The complete convergence for partial sums of interchangeable random variables. Chinese J. Appl. Probab. Stat. http://en.cnki.com.cn/Article_en/CJFDTOTALYYGN200402007.htm

