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Abstract: Problem statement: We used the Homotopy Analysis Method (HAM) to numerically 
compute the value function of the dividend payment in the basic insurance process. Approach: The 
process is a constant income stream from premiums which is subtracted a claim process of the Poisson 
type. Further, an allowance for payment of dividends to share holders was incorporated. Results: The 
case when the claims are exponential has an analytical solution. The HAM was then applied to the 
resulting Hamilton-Jacobi-Bellman equation and the numerical results obtained were compared to the 
theoretical results in order to check the validity of the method. Conclusion: The HAM was then applied 
to the model to check for other claim size distributions. The results obtained are very encouraging. 
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INTRODUCTION 
 
 The introduction of the classical collective risk 
model in by Lundberg (1903) to represent the surplus 
process of an insurance company sparked off lots of 
research on the probability of ruin of such a company 
for a long time and this approach was used to assess the 
stability of the company. It took not less than 50 years 
for De Finetti (1957) to criticize this approach and 
thereby laying the ground work for the study of 
dividend payouts since it was evident that a trajectory 
of the surplus process that did not lead to ruin in this 
model exceeded every finite level, which was typically 
unrealistic in practice. 
 De Finetti (1957) modeled the surplus of the 
insurance company using a discrete time surplus 
process with increments of ±1. He also assumed that the 
premium income per unit time was 1. He suggested that 
it was possible for a company to maximize the expected 
present value of all dividend payouts before ruin. He 
found an explicit solution for the value function and the 
optimal dividend strategy. He showed that the optimal 
strategy for his model was a barrier strategy. 
 The idea of dividend maximization later attracted 
much attention among researchers e.g., Gerber (1969; 
1974; 1979). However the problem of dividend 
maximization in a classical continuous time model 
(Cramer-Lundberg model) was first studied by 
Buhlmann (1996). In section 6.4 of this text book, he 

discussed this problem for exponential claims and 
obtained explicit results. He showed that the optimal 
strategy was a barrier strategy. 
 Since then many research groups have tried to 
address this optimality question under more general and 
more realistic model assumptions and until nowadays 
this turns out to be a rich and challenging field of 
research that needs the combination of tools from 
analysis, probability, stochastic control and numerical 
methods. However, not many of these address the 
dividend optimization problem using numerical 
methods. 
 Kasozi and Paulsen (2005a) used the block-by-
block numerical method to study the flow of dividends 
under a constant force of interest. Their study 
culminated into a linear Volterra integro equation of the 
second kind. The block-by-block numerical method is 
fully developed in Paulsen et al. (2005). More pertinent 
literature is available in e.g., Paulsen (2003) and 
Paulsen and Gjessing (1997). Kasozi and Paulsen 
(2005b) also solved the problem of ultimate ruin 
probabilities in the classical model. They used an order 
four Block-by-block method in conjunction with 
Simpson’s rule to solve the resulting integral equation.  
 A very candid review of the history and studies 
about dividend payouts was documented by Avanzi 
(2009).  
 In this study, we apply a numerical method called 
Homotopy Analysis Method to maximize dividend 
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payouts prior to ruin. The method was proposed by 
Liao (1995) for his Ph.D dissertation. The method 
appears in his later works e.g., Liao (Liao, 1995; 2004; 
2009). 
 In this method, the solution is considered as the 
summation of an infinite series, which usually 
converges rapidly to the exact solution. The HAM is 
based on homotopy, a fundamental concept in topology 
and differential geometry. The method relies on 
constructing a continuous mapping of an initial guess 
approximation to the exact solution of considered 
equations. 
 An auxiliary linear operator is chosen to construct 
such kind of continuous mapping and an auxiliary 
parameter is used to ensure the convergence of the 
series. The method enjoys great freedom in choosing 
initial approximations and auxiliary linear operators. 
The approximations obtained by the HAM are 
uniformly valid not only for small parameters, but also 
for very large parameters. Until recently, the 
application of the homotopy analysis method in 
nonlinear problems has attracted the attention of 
scientists and engineers. 
 The method has also been used to solve Integro 
Differential Equations that arise in scientific research, 
e.g., Bataineh et al. (2008a; 2008b; 2009); Golbabai 
and Javidi (2007) and Rawashdeh et al. (2009).  
 This method provides a series solution of the linear 
integro differential equation. By use of an initial 
approximation, it is possible to construct a series 
solution of the exact solution of the IDE in question. 
This is achieved by choosing “well” an auxiliary 
parameter, an auxiliary function and an auxiliary Linear 
operator. This method can be used to solve both linear 
and non linear problems in science. It has been used by 
very many researchers to solve differential equations, 
partial differential equations, Integro differential 
equations and other types of equations that arise in 
scientific research. 
 This method was used by Adawi et al. (2009) to 
numerically solve linear Volterra integral equations of 
the first and second kind and the results were very 
encouraging. In their study, they proposed theorems to 
show existence of the solution. They used MATLAB 7 
to carry out the computations. 
 El-Nahhas (2007) used the HAM to numerically 
solve Volterra population equations. The results in that 
study were also highly acceptable. Like Adawi et al. 
(2009) and Lundberg (1903), he also stated a theorem 
for existence of the series solution and he provided a 
detailed proof for it. The work in this study is well 
detailed and even shows how to get the auxiliary 
parameter. 

 Jaradat et al. (2008), used the same method to 
provide a general way of numerically solving first order 
linear integro-differential equations. The validity of the 
method was checked using some examples in that study 
and the results were found to be very satisfactory.  
 A careful comparison of HAM with homotopy 
peturbation method was done by He (2004). 
 Most of the papers on HAM are handling first 
order Integro Differential Equations (IDEs) whose 
initial value is assumed to be known. However, in 
dividend maximization problems, the initial value of 
the resulting IDEs in the classical model is unknown. 
This poses a great challenge and it is another concern 
of this study. 
 
The model: To give a mathematical formulation of the 
model, we assume that all the random variables and 
processes are defined on the stochastic basis 
(Ω,F,{ℱ}t∈R+, P) here, Ω is a sample space. It is the set 
of all possible scenarios that can occur. The elements of 
this sample space will be denoted by ω, F is a σ-algebra 
on Ω. It is the collection of all events A⊆Ω{ℱ}t∈R+ is 
a filtration. That is an increasing and right continuous 
family of sub σ algebras of F The probability measure 
defined on F is P. 
 In risk theory, the Cramer-Lundberg model or the 
classical risk model is: 
 

 
tN

t i
i 1

Y y pt X , t 0
=

= + − ≥∑  (1) 

 
Where: 
Yt = The surplus of the insurance company at 

time t 
y =Y0 = The initial surplus (capital) 
p = The rate of premium income 
{N}t∈R+ = A Poisson process with rate  
 

 λ (which is the counting process for the claims), 
the {Xi}i∈R+

∈N are independent and identically 
distributed (iid) random variables representing the 
claim sizes, with distribution function F. F has finite 
expectation and finite variance. N and X are 
independent. 
 Using Itˆo’s formula, the infinitesimal generator for 
Y is given by the following integro-differential 
operator: 
 

0

Ag(y) pg '(y) (g(y x) g(y))dF(x)
∞

= + λ − −∫  (2) 

 
 A natural generalization of (1) is to incorporate de 
Finetti’s ideas by allowing payment of dividends to the 
share holders. We predetermine a surplus level b in 
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such a way that when the surplus level hits b, premium 
income is paid to shareholders as dividends. If the 
surplus is b and a claim occurs, the claim is paid and no 
dividends are paid until the surplus hits b again. 
Eventually and with certainty, ruin will occur at some 
stage in the future. When ruin occurs, the process stops. 
Question at hand is what b ensures that the insurer pays 
maximum dividends to shareholders before ruin? When 
dividends D(t) are distributed according to such a 
strategy and if D(t) is a non-decreasing process that 
represents the sum of dividends over a time interval 
(0,t], then (1) becomes: 
 

tN
b b
t i t

i 1
y pt X D , t 0

=

Υ = + − − ≥∑  (3) 

 
 The dividend value function, which is the Expected 
Present Value (EPP) of the dividend payouts before 
time of ruin, is given by: 
 

b
yT

b y t
y t

0

V E [ e dD ]−δ= ∫  (4) 

 
Where: 
δ = The discount factor  

b
yT  = Time of ruin given by: 

 
b b
y tT inf{t; 0}= Υ <  (5) 

 
 The dividend value function then satisfies the so 
called Hamilton-Jacobi-Bellman (HJB) equation below: 
 

b b bb A

y

b
0

max{1 V '(y), pV' (y) ( )V (y)

V (y s)dF(s)} 0

∈
− − δ + λ + λ

− =∫
 (6) 

 
 It should be noted that HJB equations are in 
general somehow hard to solve analytically. However 
attempts have been made to solve the above HJB 
equation when claims are exponential. That is F(s) = 1-
e-αs. 
 The IDE thus becomes: 
 

y
s

b b b
0

'
b

pV '(y) ( )V (y) V (y s)e ds 0

with V (b) 1

−α− δ + λ + αλ − =

=

∫  (7) 

 
 Converting the above IDE into a differential 
equation gives: 

b b bpV ''(y) ( p )V '(y) V (y) 0+ α − λδ − αδ =  (8) 
 
 Solving the above equation with the condition 

bV '(b) 1= gives: 
 

1 2

1 2

m y m y
1 2

b m b m b
1 1 2 2

(m )e (m )eV (y)
(m )m e (m )m e

+ α − + α
=

+ α − + α
 (9) 

 
where, m1<0 and m2>0 are the roots of the equation 
below: 
 

2pm ( p )m 0+ α − λδ − αδ =  (10) 
 
 We now sort for a solution that n general works for 
all claim size distributions. This will be compared 
against results given by Eq. 9 to test its validity and 
there after applied for other claim size distributions.  
 

MATERIALS AND METHOD 
 
 Homotopy involves defining a path by mapping 
points in the interval from 0-1 to points in the region in 
a continuous pattern; that is, so that the neighboring 
points on the interval correspond to neighboring points 
on the path.  
 Let us consider the problem of solving a general 
first order IDE below: 
 

x

0

K(y, t)h(t)dt 0
h '(y) p(y)h(y) g(y) b(y)

with h(0) a
=

+ + +
=∫  (11) 

 
Where: 
a = A constant; p(y), g(y) and K(y, t) and are given 

functions 
h(y) = The function to be determined 
 
 We shall let N be an operator such that N[h(y)] = 0, 
h0(y) denote an initial approximation of the exact 
solution h(y); h ≠ 0 be an auxiliary parameter; H(y) ≠ 0 
be an auxiliary function; and L be an auxiliary Linear 
operator such that L[h(y)] = 0 when h(x) = 0. 
 If we use q ∈  [0, 1] as an embedding parameter, 
we can construct that homotopy as; 
 

0

0

H[ (y;q);h (y),H(y),h,q] (1 q)
L[ (y,q) h (y)] qhH(y)N[ (y;q)]

∧

ϕ = −
ϕ − − ϕ

 (12) 

 
 If we make the homotopy (12 ) equal to zero, we 
get the zero-order deformation: 
 

0(1 q)L[ (y,q) h (y)] qhH(y)N[ (y;q)]− ϕ − = ϕ  (13) 
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when, q = 0, the zero-order deformation becomes: 
 

0L[ (y,0) h (y)] 0ϕ − =  (14) 
 
when, q = 1, we have: 
 
hH(y)N[ (y;1)] 0ϕ =  (15) 
 
 Since N[h(y)] = 0 and h ≠ 0, H(y) ≠ 0, we have: 
 

(y,1) h(y) (y,1) h(y)φ = φ =  (16)  
 
 Notice that as q increases from 0-1, φ(y,q) varies 
continuously from the initial approximation h0(y) to the 
exact solution h(y). This is called deformation in 
homotopy. Using Taylor’s theorem: 
 

m
0 m

m 1

m

m m

(y;q) h (y) h (y)q

(y;q)where h (y) q 0
m! q

∞

=

ϕ = +

∂ ϕ
= =

∂

∑
 (17) 

 
when, q = 1, the Taylor series (17) becomes: 
 

0 m
m 1

h(y) (y;1) h (y) h (y)
∞

=

= ϕ = +∑  (18) 

 
 To obtain the mth-order deformation equation, we 
differentiate the zero-order deformation (13) m times 
with respect to q and then divide by m! and then set q = 
0. We make use of Leibnitz’s rule for derivatives of 
products to get: 
 

m 1

m m m 1 m 1

N[ (y;q)]L[h (y) h (y)] hH(y) q 0
(m 1)! q

−

− −

∂ ϕ
− χ = =

− ∂
 (19) 

 
Where: 
 

m

0 if m 1
1 if m 1

≤⎧
χ = ⎨ >⎩

 (20) 

 
 From equation: 
 

x

0

N[h(y)] h '(y) p(y)h(y) g(y) b(y) K(y, t)h(t)dt= + + + ∫  (21) 

 
 And so: 
 

m 1

m 1 m 1m 1
q 0

x

m m 1
0

N[ (y;q)] h ' (y) p(y)h (y)
(m 1)! q

(1 )g(y) b(y) K(y, t)h (t)dt

−

− −−
=

−

∂ ϕ
= + +

− ∂

− χ + ∫
 (22) 

 Thus the mth-order deformation (19) becomes: 
 

m m m 1 m 1
x

m 1 m m 1
0

L[h (y) h (y)] hH(y)[h ' (y) p(y)

h (y) (1 )g(y) b(y) K(y, t)h (t)dt]

− −

− −

− χ = +

+ − χ + ∫
 (23) 

 
and the homotopy series solution is given by (18). To 
complete the iterative formula, we need to choose the 
Linear operator L, the auxiliary parameter h, the 
auxiliary function H(y) and the initial approximation 
h0(y). 
 To implement HAM to the IDE (11), we suppose 
the solution to Eq. 6 is of the form: 
 

bV ' (y) Ch(y)=  (24) 
 
 Then substituting '

bV (b) 1= into the above equation 

implies that 1C
h '(b)

= . Thus, the solution to (6) is: 

  

b
h(y)V (y)
h '(b)

=  (25) 

 
RESULTS 

 
Exponential claims: Consider Eq. 7 with Exp(α) 
claims and using (25), we get: 
 

y
s

0

ph '(y) ( )h(y) h(y s)e ds 0−α− δ + λ + αλ − =∫  (26) 

 
 Change of the integral sign leads to: 
 

y
(y s)

0

ph '(y) ( )h(y) h(s)e ds 0−α −− δ + λ + αλ =∫  (27) 

 
 Now (27) and (11) give: 
 

(y s)

( )p(y) , g(y) 0, b(y)
p

, and K(y,s) e
p

−α −

λ + δ
= =

αλ
= − =

 (28) 

 
 Substituting (28) into (23) gives the following 
iterative scheme: 
 
 

0

t
( t s)

1
0

h (y) a (note that a is unknown)

( )L[h (y)] ahH(y) e ds
p p

−α −

=

⎡ ⎤λ + δ αλ
= −⎢ ⎥

⎣ ⎦
∫

 (29) 
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Table 1: Value functions for exponential claims with λ = 2, α = 0.5, p = 6, δ = 0.1, h = -1.0 

Y VN VA 
A N

6
A

V VE 100 10
V
−

= × ×  

0   5.2916916284504482225       5.2916916569775340804       0.53909198999311822475 
1   7.0349589701451734209      7.0349590080700739323        0.53909198998735995256 
2   8.5898805261957479052      8.5898805725031060226        0.53909199000546704843 
3   9.9947323935433021897     9.9947324474241042348         0.53909198999105221412 
4   11.281297001601843380     11.281297062418411890         0.53909198714923774275 
5   12.476013745734151800     12.476013812991324764         0.53909184433544653282 
6   13.600927971173006613     13.600928044494065528         0.53908864656248120970 
7   14.674473744322128506     14.674473823424548999         0.53904774675280347316 
8   15.712119625168454872     15.712119709809724483         0.53870051383426619264 
9   16.726901524402952093     16.726901614150049118        0.53654346211421986587 
10         17.729862499798583231    17.729862593068722008 0.52606238930166806038 
11   18.730415860168232371    18.730415950876770156       0.48428469513382021996 
12   19.736645071356350220    19.736645139010132209       0.34278258291871530493 
 

 
 
Fig. 1: The h-curve for y(10) for 8 iterations using 

exponential claims H(y) = 1 
 

m m 1

m 1 m 1

t
( t s)

m 1
0

L[h (y) h (y)] hH(y)
( )h ' (y) h

p
for m 2

(t) h (s)e ds
p

−

− −

−α −
−

− =

λ + δ⎡ ⎤+⎢ ⎥
⎢ ⎥ ≥
⎢ ⎥αλ

−⎢ ⎥
⎢ ⎥⎣ ⎦

∫

 

m
m 0

with h(y) h (y)
∞

=

= ∑  

 
 On solving the scheme (29) up to the third iterate 

with dL
dy

= , H(y) = 1 we get: 

 
0

y

1

2 y
2

2 y 2 y 2 2 2

h (y) a

( y e )h (y) ha
p

1h (y) ha( 2p e y 2p
2
2hp e y 2hp 2h he y

−α

α

α α

=

λ + α δ − λ
= −

α

= − α δ + αλ

− α δ + αλ − λ + α δ

 

y 2 y

y y 2 y y 2 2

0 1 2

4h 4he y 2h y 2e hp
2p e 2e h 4e h )e / (p )

h(y) h (y) h (y) h (y) ...

α α

α α α −α

+ δλ + δλ α − λ α − λ α

− α λ + λ − λ δ α
= + + +

 (30) 

 
 To find the value function, we use: 
 

b
h(y)V (y)
h '(b)

=  

 
 The optimal barrier level b*, we solve the equation 
h”(b*) = 0. 
 All calculations were done on a Pentium M 
computer using Maple 7. It should be noted that 
MATLAB or Mathematica could as well do the job 
very well. 
 The numerical solution for exponential claims are 
compared to the analytical solution in order to test the 
effectiveness of HAM. 
 Figure 1 shows the h-curve for the problem and 
clearly the range of the auxiliary parameter h is (-2,-1). 
Let bN be the numerical optimal barrier level and bA be 
the exact optimal barrier.  
 For twenty iterations; bN = 
10.270110761128871629 and bA = 
10.270109848973047166. 
 Table 1 shows the numerically computed dividend 
value function: 
 

N N

h(y)V
h '(b )

=   

 
Where: 
VA = The analytical solution 
E = The relative percentage error 
 
Pareto claims: For Pareto calims: 
 

kF(s) 1 with ,k 0 and s 0
k s

α
⎛ ⎞= − α > ≥⎜ ⎟+⎝ ⎠

 (31) 
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Fig. 2: The h-curve for y(10) for 3 iterations using 

Pareto claims H(y) = 1 
 
Table 2: Value functions for Pareto claims with λ = 2, k = 0.5, α = 

1.5, p = 6, δ = 0.1 
y VN 
0     21.64588797 
2     26.89921874 
4     29.61213274 
6     31.83177968 
8     33.89094615 
10    35.89861418 
12    37.90169528 
14    39.92383481 
 
Then: 
 

y
( 1)

b b b
0

pV' (y) ( )V (y) V (y s) k (k s) ds 0α − α+− λ + δ + λ − α + =∫  (32) 

 
 And equivalently: 
 

y
( 1)

0

ph '(y) ( )h(y) h(y s) k (k s) ds 0α − α+− λ + δ + λ − α + =∫  (33) 

 
 Change of variable results into: 
 

y
( 1)

0

ph '(y) ( )h(y) h(s) k (k (y s)) ds 0α − α+− λ + δ + λ α + − =∫  (34) 

 
 The iterative scheme (23) thus becomes: 
 

0

( 1)
1

0

m 1 m 1

m m 1 ( 1)

m 10

m
m 0

h (y) a (a is unknown)

( )L[h (y)] a k (k ( s) ds
p p

( )h ' ( ) h ( )
p

L[h (y) h (y)] for m 2
k (k ( s))

p h (s)ds

with h(y) h (y)

τ
α − α+

− −

− τ α − α+

−

∞

=

=

⎡ ⎤λ + δ λ
= − α + τ −⎢ ⎥

⎣ ⎦
λ + δ⎛ ⎞τ + τ −⎜ ⎟

⎜ ⎟− = ≥⎜ ⎟α + τ −λ
⎜ ⎟⎜ ⎟
⎝ ⎠

=

∫

∫

∑

 (35) 

Solving the iterative scheme (35) up to the third 

iterate with dL
dy

= and H(y) = 1, we get (k = 0.5, α = 

1.5): 
 

( )
0

1

2

2 3 2

3

2 2 2

2 2

2

2

h (y) a

y 2 4y 2 2 4y
h (y) ah

p 2 4y

4h yp 2 4y 20h y

2 4y 4 2py 4h y p 2 4y

2h y 2 4y 9h y

2 4y h y 2 4y

4 2 4yhpy 4 2 4yhp 4 yp

2 4y 2 hy 2 4y 2 hy

2 4y 2h y 2 4y1h (y) ha
4 4 2 4ypy 4 2py

4 y p 2 4y

=

δ + − λ + λ +
=

+

δ + − λδ

+ − λ + δ +

− δ + − δλ

+ + δλ + +

λ + + λ + + δ

+ − λ + + λ

+ − δ + +
= −

λ + − λ +

δ +

2 2 2

2 2

2

2

0 1 2

10 2 4yh

4 2 4yp 30 h 2 y

20 h 2 y 4 h 2y

4 2 4yh 6 h 2y 4

2p 4h 2p 4 h 2

10 h 2

p 2 4y(1 y)
h(y) h (y) h (y) h (y) ...

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− λ + δ +
⎜ ⎟
⎜ ⎟λ + + λ δ
⎜ ⎟
⎜ ⎟+ λ δ − λ
⎜ ⎟
− λ + + λ − λ⎜ ⎟
⎜ ⎟

− λ + λ⎜ ⎟
⎜ ⎟
+ λ δ⎝ ⎠

+ +

= + + +

 (36) 

 
 On working further to the more iterations, we 
notice that on solving for b there is convergence 
realized both in the numerically computed barrier bN 
and the value function VN. At the fourth iteration, the 
barrier approximates to 10.19323790. The value 
functions are shown in Table 2 and Fig. 2. 
 

DISCUSSION 
 
 The HAM has been used to calculate for both the 
value function and the corresponding optimal barrier 
level for general claim size distributions. The method 
provides a series solution which converges to the exact 
solution after a few iterations. The method also requires 
less computational time. We have also labored to 
discuss the results as they fell by. We do recommend 
that this method can still be extended to second order 
IDE problems that arise when the basic insurance 
process is compounded by investments of the Black and 
Scholes type and general stochastic return on 
investments process. 
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CONCLUSION 
 
 We have derived value functions for both light 
tailed and heavy tailed distributions representing small 
and large claims using the HAM. This method can be 
used to find value functions for the diffusion model. 
The method gives results that are encouraging and it 
assures quick convergence to the exact solution. 
However, it should be noted that this method involves 
repeated analytical integration and thus only works with 
symbolic software.  
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