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Abstract: Problem statement: In this study, we provide a simple method to determine the inventory 
policy of probabilistic single-item Economic Order Quantity (EOQ) model, that has varying order cost 
and zero lead time. The model is restricted to the expected holding cost and the expected available 
limited storage space. Approach: The annual expected total cost is composed of three components 
(expected purchase cost, expected ordering cost and expected holding cost. The problem is then solved 
using a modified Geometric Programming method (GP). Results: Using the annual expected total cost 
to determine the optimal solutions, number of periods, maximum inventory level and minimum 
expected total cost per period. A classical model is derived and numerical example is solved to confirm 
the model. Conclusion/Recommendations: The results indicated the total cost decreased with changes 
in optimal solutions. Possible future extension of this model was include continuous decreasing 
ordering function of the number of periods and introducing expected annual demand rate as a decision 
variable. 
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INTRODUCTION 

 
 The simple EOQ model is the most fundamental of 
all inventory models. It is assumed that the expected 
order cost and demand rate are constants. Fabrycky and 
Banks (1967) studied some probabilistic models of the 
case, where both demand and procurement lead time 
are identically and independently rodmen variables 
distributed. Discussed a simple method for determining 
order quantities in joint replenishment of deterministic 
demand. Unconstrained probabilistic inventory problem 
with constant cost units has been treated. Ben-Daya et 
al. (2006) presented integrated inventory control and 
inspection policies with deterministic demand. Also, 
Abou-El-Ata and Kotb (1997) developed a crisp 
inventory model under two restrictions. Teng and Yang 
(2007) studied deterministic inventory lot-size models 
with time-varying demand and cost under generalized 
holding costs. Other related studies are presented by 
Hadly and Whitin (1963); Cheng (1989); Jung and 
Klein (2001); Das et al. (2000) and Mandal et al. 
(2006). An optimal inventory policy for items having 

linear demand and variable deterioration rate with trade 
credit has been discussed by Sarbjit and Raj (2010). 
Recently, EL-Sodany (2011) presented periodic review 
probabilistic inventory system with zero lead time 
under constraint and varying holding cost. Also, Kotb 
and Fergany (2011) discussed multi-item EOQ model 
with varying holding cost: a geometric programming 
approach. 
 In this study, we have proposed constrained 
probabilistic single-item EOQ model with varying order 
cost and zero lead time. The varying order cost is 
continually increasing function of number of periods 
per inventory cycle. The constraints are proposed to be 
the expected holding cost and the expected available 
limited storage space. The optimal number of periods, 
the optimal maximum inventory level and the minimum 
expected total cost per period are obtained using a 
modified geometric programming method. Finally, a 
numerical example is used to confirm the results. 
 
Assumptions and notations: The following 
assumptions are made for developing the model: 
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• Demand rate is random variable having a known 
probability distribution 

• Lead time is zero 
• Shortages are not allowed 
• Review of the stock level is made every N period 

• Ordering cost 0C (N) N, 0, 0= α + β α > β ≥  i is 

continuous increasing function of the number of 
periods. Where α and β are real constants selected 
to provide the best fit of the estimated cost function 

• The minimization of the expected total cost is the 
objective 

 
 In addition, the following notation is adopted for 
developing the model: 
 
Ch = Holding cost. 
Cp = Purchase cost. 
Co = Ordering cost. 
Co (N) = Varying order cost per period. 
D  = Expected annual demand rate. 
K1 = Limitation on the expected holding cost. 
K2 = Limitation on the storage area. 
N = Number of periods. 
N* = Optimal number of periods. 
Qm = Maximum inventory level. 
Q*m = Optimal maximum inventory level. 
S = Available storage area. 
TC  = Expected total cost. 

 
Model formulation and analysis: The annual expected 
total cost is composed of three components (expected 
purchase cost, expected ordering cost and expected 
holding cost) according to the basic assumptions and 
notation of the EOQ model provided by Eq. 1 Fabrycky 
and Banks (1967): 
 

o h
p

C (N) C D[2v N]
TC C D

N 2

+= + +   (1) 

 
 The restrictions on the expected holding cost and 
the expected storage area are the following two 
conditions Eq. 2: 
 

h
1 2

C DN
K and SDN K

2
≤ ≤   (2) 

 
 In order to solve this primal function which is a 
convex programming problem, it can be rewritten in the 
following form Eq. 3 and 4: 

h
p h

C DN
min TC C D C Dv

N 2

α= + + β + +   (3) 

 
Subject to: 
 

h

1 2

C DN SDN
1 and 1

2K K
≤ ≤  (4) 

 

 The term p hC D C Dv+ β +  is constant and hence can 

be ignored. 
 Applying Duffin et al. (1967) results of geometric 
programming technique on (3) and (4), the enlarged 
predual function can be written in the form Eq. 5: 
 

2 31 4

2 31 4

1 2 3 4

W WW W

h h

1 2 1 3 2 4

W WW W

h h

1 2 1 3 2 4

w w w w

C DN C DN SDN
G(W)

NW 2W 2K W K W

C D C D SD

W 2W 2K W K W

N
− + + +

      α
      =

      
      

      α
      =

      
      

×

 (5) 

 

where, j jW W ,J 1,2,3,4(0 W 1,)= = < <  are the weights 

and could be easily deduced from Equation 5 through 
the use of the following normal and orthogonal 
conditions Eq. 6: 
 

1 2

1 2 3 4

W W 1

and

W W W W 0

+ =




− + + + = 

 (6) 

 
 These are two linear equations in four unknowns 
having an infinite number of solutions. However, the 
problem is to select the optimal solution of the 

weights
* *

j jW ,0 W 1,J 1,2,3,4< < = .  

 By solving Eq. 6, we have Eq. 7:  
 

3 4
1

3 4
2

1 W W
W

2
and

1 W W
W

2

+ +
=





− − = 

 (7) 

 
 Substituting W1 and W2 in Eq. 5, then the dual 
function is Eq. 8: 
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 (8) 

 
 In order to find the optimal W3 and W4 which 
maximize g(W3, W4), the logarithm of both side of Eq. 
8 and the partial derivatives were taken relative to W3 
and W4, respectively. Setting each of them to equal zero 
and simplifying, we get Eq. 9 and 10: 
 

2

3 4 h

h 3 4 1 3

2 1 W W C D
1

C D 1 W W 2eK W

    α − −
     =

     + +     

 (9) 

 
and: 
 

2

3 4

h 3 4 2 4

2 1 W W SD
1

C D 1 W W eK W

    α − −
     =
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 (10) 

 
 Multiplying relation (9) by the inverse of relation 
(10), we find Eq. 11: 
 

3 h 2

4 1

W C K

W 2SK
=  (11) 

 
 Substituting W3 and W4 into relations (9) and (10), 
respectively, we have Eq. 12: 
 

3 2

i j j i j i j i if (W ) W C W B W B C 0, j 3,4 , i 1,2= + + − = = =  (12) 

 
Where: 
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 It is clear that fi(0)<0 and fi(1)>0, i=1,2 , which 
means that there exists a root Wj ε(0,1), j = 3,4. The 
trial and error approach can be used to find these roots. 
However, we shall first verify any root W* j, j = 3,4 
calculated from Eq. 12 to maximize fi(Wj), I = 1,2, j = 
3,4, respectively. This was confirmed by the second 

derivative to ln g(W3, W4) with respect to W3 and W4), 
respectively, which is always negative. 
 Thus, the roots W*3 and W*

4 calculated from Eq. 12 
maximize the dual function g(W3, W4). Hence, the 
optimal solutions are W*3 and W*

4 of Eq. 12, 
respectively. W*

1 and W*
2 are evaluated by substituting 

the value of W*
3 and W*

4 in expression (7). 
 To find the optimal number of periods N* and the 
optimal maximum inventory level Qm

*, we applied the 
results of Duffin et al. (1967) for geometric 
programming as indicated blow: 
 

** * * * * *hDN
1 3 4 2 3 4*

C
W g(W ,W ) and W g(W ,W )

2N

α = =  

 

 By solving these relations, the optimal number of 
periods is given by Eq. 13: 
 

* * *
*

2 3 4
* * *

h 1 h 3 4

2 W 2 (1 W W )
N

C DW C D(1 W W )

α α − −= =
+ +

 (13) 

 
and the  optimal  maximum inventory level Q*

m is 
Eq. 14: 
 

* *
* * *

3 4
m * *

h 3 4

2 D(1 W W )
Q DN g(N ) Dv

C (1 W W )

α − −= = +
+ +

 (14) 

 
 By substituting the value of N* in relation (3), we 
get the minimum expected total cost as Eq. 15: 
 

h
p h * *

1 2

C D
min TC (C vC )D

2W W )

α= β + + +   (15) 

 
 As a special case, we assume β = 0 and ki → ∞ ⇒ 

Co(N), I = 1, 2. This is the probabilistic single-item 
inventory model with constant order cost and without 
any restrictions, which is consistent with the results of 
Fabrycky and Banks (1967). 
 
An illustrative example: The decision variables (the 
optimal number of periods N* and the optimal 
maximum inventory level Qm

*) should be computed to 
minimize the annual relevant expected total cost. 
Assume the parameters of the inventory model as: 

 

o

h p

C $11per procurement,

C $0.05 per unit per period ,C $25 per unit

=

= =
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Table 1: The optimal results of different values of α and β 

 Co(N*)      minTC    

β ------------------------------------------------------------------------ ------------------------------------------------------------------------- 
α 0 10 20 50 100 0 10 20 50 100 N* Qm

* 
1 1 27.347 53.694 132.737 264.473 50.811 60.811 70.811 100.811 150.811 2.6340 11.269 
2 2 34.095 66.190 162.477 322.954 51.083 61.083 71.083 101.083 151.083 3.2090 12.419 
5 5 44.613 84.227 203.068 401.135 51.760 61.760 71.760 101.760 151.760 3.9610 13.922 
8 8 51.066 94.133 223.332 438.665 52.372 62.372 72.372 102.372 152.372 4.3060 14.613 
10 10 54.546 99.093 232.733 455.466 52.767 62.767 72.767 102.768 152.768 4.4540 14.909 
15 15 61.925 108.851 249.629 484.257 53.731 63.731 73.731 103.731 153.731 4.6920 15.385 
30 30 80.009 130.020 280.049 530.098 56.548 66.548 76.548 106.549 156.549 5.0009 16.002 
50 50 101.546 153.092 307.731 565.462 60.258 70.257 80.257 110.258 160.258 5.1540 16.309 
100 100 152.862 205.724 364.310 628.621 69.481 79.481 89.481 119.481 169.481 5.2860 16.572 
200 200 253.585 307.171 467.927 735.853 87.891 97.891 107.892 137.892 187.892 5.3580 16.717 
500 500 554.044 608.087 770.218 1040.440 143.088 153.088 163.088 193.088 243.088 5.4040 16.808 

 

D 2 unit per period, S 50 cubicunit per item, v 3= = =  

 

1 2K $1000 per unit and K 200 cubicunits of space= =  

 
 The Optimal results of different values of α and β 
are shown in Table 1. 
 

CONCLUSION 
 

 This work investigated how ordering cost function, 
two constraints and geometric programming approach 
affect the probabilistic EOQ model. Ordering cost 
function was assumed to depend on number of periods. 
In addition, the constraints were expected holding cost 
and expected available limited storage space. A 
geometric programming approach was devised to 
determine the optimal solution for probabilistic EOQ, 
number of periods, maximum inventory level and 
minimum expected total cost per period instead of the 
traditional Lagrangian method. Finally, a classical 
model is derived and numerical example is solved to 
confirm the model. The results indicated that the total 
cost decreased with changes in α,β,N* and Qm

*. 
Possible future extension of this work was include 
continuous decreasing ordering function of the number 
of periods and introducing expected annual demand rate 
as a decision variable. 
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