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Abstract: Problem statement: High-dimensional repeated measures data are Bioga
encountered in various areas of modern science silassical multivariate statistics, e.g,. Hotgjlin

T2, are not well defined in the case of high-dimenalalataApproach: In this study, the test statistics
with no specific form of covariance matrix for aymhg high-dimensional two-sample repeated
measures designs with common equal covariance rappged. The asymptotic distributions of the
proposed test statistics also were deriVehults: A simulation study exposes the approximated Type |
errors in the null case very well even though thenber of subjects of each sample as small as 10.
Numerical simulations study indicates that the psagl test have good power. Application of the new
tests is demonstrated using data from the bodyhweaifymale Wistar rats exampl€onclusion: The
proposed test statistics have an asymptoticalltridisted as standard normal distributions, under
the null hypothesis. Simulation studies show tihaise test statistics still accurately control Type
| error and have quite good power for any the ciarere matrix pattern considered.

Key words: Hypothesis test, repeated measures design, higardional data, type | error, two
sample, covariance matrix, simulation study, aswytiqally distributed, asymptotic
distributions

INTRODUCTION Let x = (Xlkly X1k2y vy Xlkp)T and % = (X2|1, X212,
) e xz.p)T be multivariate random vectors each of p
Repeated measurements across time (occasioppeated observations measured (times) on kth aubje
drug or treatment) on the same subject (e.g., Matie jy sample 1 and Ith subject in sample 2, respdgtive
animal, cell culture, block) are frequently obseVe  \yhere the samples are drawn independently from two
several scientific fields, for example in medicine, populations (groups) and k = 1, 2, .., h=1, 2, ...,

pharmaceutical, agriculture, industrial and social _ _ _
sciences (Zangiabadi and Ahrari, 2005; Shagffial, (}zér?)(uppfge E%&) - “1 E(t)r(12|) ~ K lV?r(xlk) =2 andt
2008; Arbabi et al, 2009;Tu and Koh, 2010; 2) =2z, wherel is the population mean vector
Mosallanejackt al, 2011). This type of data commonly andZ; is the population covariance matrix of group i for
called univariate repeated measures data (Davi®2)20 i = 1, 2. Then x:(xfk,x;,)T is the vector of all
A design contain such a data is called repeateflyqorations from kth subject in sample 1 and Ith
measures design. A main advantage of this design is ) ] T
that test results are more powerful since subjsetge  Subject in sample 2, with E(x) =(u. 1)) and
as their own controls and then variability among th var(x) = 5,05,. The corresponding sample estimators
subjects due to individual differences is eliminht€he o
simplest repeated measures design is when data Hex =
collected as a sequence of equally spaced points in ;
time. There exist several methods of analyzing atuk g
measurement data. For an overview see Everitt (199%f ith sample with E(%.) =, Var(x.)=(¥n)%, and
and Keselmaret al (2001). However, these studies - n = T .

pertain only to the case when the dimension of atgue % :T-lzm(xii _Xi-)(‘i —>g,) is the sample
measurements is not exceeds the number of subjects. covariance matrix in group i forj=1, 2, ..;, h=1, 2.

(x1,%.)" and £, 0%,, respectively, where,

— — _ T .
Y% = (X Xz X,) s the vector of means
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The notationO is the direct sum and a sample from In this study, we introduce test statistics fatiteg

each population with sample sizes denoteditana . interaction and time effects which follow a multiize
Traditionally, if data with fixed dimension are approach to repeated measures for analyzing high-

normally distributed, people would use the famousdimensional two-sample repeated measures designs.

classical Hotelling’s T test for two-sample which is The test statistics asymptotically follows a stadda

defined asT? = (%, ‘72.)T i_l(il. -X,), where %, normz_zll dlstr_lbunon and is not affected by everaaé

. . : o the dimension of repeated measurements, p. The test

is the ith sample mean vector as defined abovei, for  statistics are derived with no specific form of

1, 2 and the pooled sample covariance malixbe covariance matrix but under equal population

defined byx = mz;zjﬂq(x” _ii-)(xij —Z,)T ‘Itis  covariance assumption.

well known that under the null hypothesi&g=T* has

MmNy
N +n,

The modified ANOVA-type statistic: Here and in the
a central F-distribution (Davis, 2002; Anderson02p  following, for any natural number p, ienotes the pxp
with p and n-p+1 degrees of freedom where m=* n jgentity matrix of dimension p, 1= (1,...,1)pq @ p-
np-2. Nowadays, however, modern society demandgjimensional column vector of ones, =11 a square
that the use of subjects (e.g., animals, patieints) i . ) )
scientific experiments must be adequately contdolle Matrix of ones and = I,-p~ J, is the centering matrix.
and reduced. This position is enforced by ethicafNote that B is a projection matrix. Usually, the null
committees who authorize or deny permission forlyPothesis to be tested ig:HHp = 0. The matrix H can
these kind of experiments. As a consequence thB€ formulated in distinctive settings dependingtoa
statistician sometimes has to work with very smallobjectives of the experimental research. As sinmilaif
subjects, but the large dimension of repeatedyPothesis given in Brunnest al (1999) and Ahmad
measurements on each subject. Unfortunately, if, n<p2008), we can also write HGp = 0 where G = H
called high-dimensional data, the Hotelling'tgst is (HH')™ H is the general hypothesis matrix whereas
not well defined because the sample covarianceixnatr (HH")™ denoting a generalized inverse of Hahd G is
becomes singular. a projection matrix. We note thatuG= 0 if and only if
Recently, there has been some interest irHu = 0. For the two-sample repeated measures designs
investigating the behavior of high dimensionalitgpn (Davis, 2002), the situation when repeated
that can be found in the literature. A non-exast fer ~ measurements at p time points are obtained from two
two sample case when n<p was first proposed byndependent groups of subjects is considered. X;et
Dempster (1958). Many works have been published of¥it, Xiz..., Xjp) denote the vector of observations from
hypothesis testing for means when both p and rogo tthe jth subjectin group iforj=1, 2, ..;,n=1, 2. The
infinity with the ratio p/n must remain bounded,iBa Matrix G can be formulated to test any appropyatel
and Saranadasa (1996), Fujikoset al (2004); hypotheses as & = PROP, (interaction effect
Srivastava and Fujikoshi (2006); Srivastava (2007hypothesis), G* =R 0+J, (group effect hypothesis)
2009); Schott (2007) and Srivastava and Du (2008). and G®=13,0 R (time effect hypothesis).
addition, when sample covariance matrix does neé ha It is clear from the hypotheses above that thé hig

an inverse, Chongcharoen (2011) proposed one way {§mensionality influences only interaction effect
modify a sample covariance matrix. Yamgteal (2011)  pypothesis and time effect hypothesis whereas group
proposed approach for feature selection in higheffect hypothesis is a univariate hypothesis of the
dimensional data. For analysis of the one-sam@é-hi eans of two independently samples from normal
dimensional repeated measures designs, see Chdopragopulations and does not depend on p. Group effect
and Chongcharoen (2011). However, the mainstreamypothesis, therefore, is not of our main interest
attempt in this study interests in the analysisveé-  because it can be tested using the usual t-testwior
sample repeated measures designs for high-dimetsionindependent samples (Rencher, 2002; Johnson and
data. In an influential work, Ahmad (2008) proposedyichern, 2002). When n<pg is singular. Any test
the modified version of the ANOVA-type statisticrfo gtatistic involved the inversion of will not exist.
analysis of two-sample repeated measures desiges Whahmad (2008) proposed the modified ANOVA-type
the data are multivariate normal and the dimens&m  statistic under covariance matrices of two groups a
be large compared to the sample size using a reddifi the same, using quadratic and symmetric bilinear
Box’s approximation (Box, 1954) based on quadraticforms based on Box’s approximation (Box, 1954) as
and bilinear forms. followed.
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The interaction effect: The hypothesis of no
interaction  effecttd;®:(P,0P)u=0, can also be
H5® 1P, (1, —p,) =0. the
generating matrix without any loss of generality thoe

interaction effect is G = P Let xx and x, defined
above with x,, ~ N, (1,Z,) and x, ~ N, (n,.Z,) where

the samples are drawn
populations. Define the differenceg x x,, for all k =
1,2, ....,n 1=1,2, ..., B, where E(X - Xo) = M1-Mo
and Var(y - Xa) = Z3+2,. Under Hy® :G(p, —p,) =0,

E[G(xw - X2)] = E[G(T& —72.)] =0, Var[G(xx - X2)] =
G(E+2)G and VaG(X, -%,)]=G(&x,+213,)G.
QGB = (Xlk ~ Xy )T
Q:;B = (Xlr - Xzs)T G(Xlr_ X,

Qi =Xy — X)) G(%,, = X, is the symmetric bilinear

written as Therefore,

Denote and

G(Xlk - le)

independently from two"

) are the quadratic forms,

He :P,(1, +1,) =0. As similar in the interaction effect,

therefore, the generating matrix without any lo$s o
generality for the time effect is G 5,.ALet x and %,
defined above withx,, ~ N_(p,,Z,) and x, ~ N, (i,,Z,)

where the samples are drawn independently from two
populations. Define the sumsgx Xy, for all k = 1, 2,
LM 1=1,2, ..., 8 where E(x + %) = p, +p, and

Var(xy + X2|) = %, +%,. Under HZ:G(u,+u,)=0,
E[G(xk + %2)] = E[G(%, + xz,)] = 0, Var[G(% + %]
= G(x,+3,)Gand Var| G(%, +%,)]= G(n—llzﬁn—ﬁzz)G _

Denote Qe and

= (X + X)) G + %)
Q2 =(x, + X, G(x,+x,) are the quadratic forms,
QB =Xy + X») G(X, + X,5) is the symmetric bilinear

form. For assuming that the two groups have common
covariance matrix, that isx, =¥, =%, the estimators:

form. For assuming that the two groups have common

covariance matriZ, that is>; = >,= %, the estimators:

LN n BN

nlnzzz Kl nn2n13)n2 ;2 ZiquQAsB

k=1 1=1 k=11=1r=1 =1
k#r, I£s

n N

”1”2 - il) = JZZZZ Irs

k=11=1r=1 s=1
k#r, IZs

are unbiased and consistent estimators of Z@®G
4[tr(GZG))* and 4tr(&G)?, respectively. For testing
H®, the modified ANOVA-type statistic,T,5., is

MATS
given by:

2nZnZfre

N YQu

k=1 1=1

AB —
TMATS -

(% - %,.) G (X, - X,)

where, N = p+ n,. Under H,® the modified ANOVA-
type statistic Tjs,s has asymptotically a centraf’..

distribution with f® degree of freedom which is
estimated by:

n Ny

=333 Soras

k#r, I#s

HHPer

klElrls1
k#r, I£s

The time effect: The hypothesis of no time effect

Ho:(43,0R)u=0, can also be written as

334

" A proposed test: When n<p,

L)

EE3) Yo FRERIS 3).3) 3) X £

k=1 1=1 k=11=1r=1s1

M N M M

(= 1) - ;ZZZZ (zrs )

k=11=1r=1s1
-
k#r, 1#s

are unbiased and consistent estimators of ZIBG

4[tr(GZG))* and 4tr(&G)?, respectively. For testing
HZ, the modified ANOVA-type statistic,T., ., iS

given by:

20008 vt o
TSATS =%(XL +X2-) G(Xl- +X2)
N> D Qi
k=1 I=1
where N = p+ n,. Under H} the modified ANOVA-

type statistic T, has asymptotically a centra{’,

distribution with P degree of freedom which is
estimated by:

S D NP IeHes

k=11=1r=1 1

IHHPAA

kl1ElFrls1

k#r, 1#s k#r, I#s

METERIALSAND METHODS

only the first n
eigenvalues ofS will be non-zero and the smallest
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eigenvalues will tend to zero pretty quickly as thewhere, & =Q"v,, i =1, 2, ..., p, which are independent

dimensionality grows. Consequently, many of the d haveE(s )= 0 and V. =X >0.Si ;
classical techniques, e.g., the Hotelling'’s Test, and we haveg(,) =0 and var(§,) =A, > ince Qs

encounter a mathematical barrier and become8 normal random vector, we ha¥g/\/A, iid ~ N(0,1)

inapplicable since in the case is degenerate. Hence, fori=1, 2, ..., p.
we look for tests which do not require the Due to the orthonormality of the eigenvectas i
nonsingularity ofs . =1, 2, ..., p, then we have:
We will derive the asymptotic distributions of the
test statistics for two-sample repeated measursigme QTQ:Zp:Eiz

when data are high dimension (n<p) under general
conditions only thak is a positive definite covariance
matrix (denoted aZ>0). The test statistics considered ~ Since & /|/A, iid ~ N(0,1), theng?/x, ~x7. Hence
under covariance matrices of two groups are equél a
both p and n go to infinity. We should note that th
limiting ratio p/n is allowed to be greater thaneon independent. It follows thaZEz = Z;\C as desired.
Consequently, these tests can be used when n<m Fro

hypotheses presented as before the formulatiomiseof Since the quantities tr@), tr(GZG)? and Amax =
test statistics for interaction effect involvesfeliences Maxsisphi vary with p. To derive the asymptotic null
of the vector x and %, but those for time effect distribution in the following theorem, we imposeeth
involves sumsof the vector x and x. Finally, the following regular assumptions:

asymptotic distributions of these test statistios the
interaction effect and time effect are same since

d
§2=\C, where C ~x>, i = 1, 2, ..., p, are

(A) tr (GEG)Z/p - q(0m) asp- »

covariance of differences and sums remains the same (B) Ao/ \/P — 0@SP- 0 ;

Hence, the details in the following section will be (C)n/N- c,0(03.

shown only for the interaction effect while for thime

effect follows the same pattern. These assumptions are similar to those imposed by

Bai and Saranadasa (1996) and Srivastava and Du
(2008) for the study of their two-sample testing
procedures and for the study of their testing mean
vector in one- and two-sample cases, respectively.

The following theorem establishes the asymptotic
normality of our test statistic for testing the byipesis:

The interaction effect: Fortesting the null hypothesis
of no interaction effect as above we first consiter
following result.

Theorem 1: For assuming, =%,=%, let %,;{Ny(0.%),
>0, where j =1, 2, ...n,, h=1,2 and let G be a H® :G(ny—n,) =0

matrix defined the same as above. Then )
Theorem 2: For n,,n,,p- o and assuming;=>,=%,

i let x;INp(W;,2), Z>0, where j = 1, 2, ...,ini = 1, 2.

%(K‘Yz.) G(%, - % ) Z)\C where N = p+ n,

A are the eigen values @ andC, ~?,i=1, 2, ..., Under H¢®:G(n,—u,)=0 and the assumption (A)-(C)
p, are independent. are satisfied, then:
Proof. Under H{® :G(u,-u,)=0, for assuming
: nn, - - 2n1n2 X, —X G 7( o QA
X, =x,=X, notice thaty%:6(x, ~X,) ~N,(0.&6). o _ (% -%.)"6( - Xa)~ Z“Z; F N
We set 76(x, -%,) =Q- N,(0.86).. Let w, v, SR )Y
ey Vp and Ay, Ay ..., A, are the corresponding “k';’ljfl
orthonormal eigenvectors and eigenvalues@Gxf. It e
follows that: in distribution.
o Proof: For assuming  2;=2,=2, then
Q=>%v, Yl.—fz.'“Np(ul—uz,ﬁZ). Under the null hypothesis
i=1 N2
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HE G (1,

obviously, E[Z“‘"Z(x1 -%,.) G(%, -

Using cumulant generating function of quadratic and
bilinear forms (Searle, 1997) and moment-cumulant

relationships

O,
2N+

k=1 I=1
i,

(Rao, 2001)

mn;

2

2 <
— 2Ny
Rn TN

(7(1- _YZ-)T 6(7 )

Ny,

} 2t &G) and Va{
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u,)=0 and G is a projection matrix, assumption

%,)|= 2t(@e).

obtained

}_

we

Ny
HIeis
nn, ki

k=1 1=1

tr(GZG) . Consider the statistic:

Ny

2 2Qk

k=1 1=1

Therefore, clearly undeH:® we have E(R = 0.

Ahmad
Var[ S

(2008) [Theorem

Covf (%, - %) 6(%, -

It follows that Var(R )= 8tr( @:G)2
One

-

we
2 ”1 2

ca

mn,
need

(% -%.)'G

[Znﬁ:nz (%. -% )

in distribution.

only

3.5]
(. =)' G(%, ~%,) | = 81 @6)’

_ non, 5
SESMEIE

that
and

shown

— _4N
MmN,

t{ &G)’.

for large n, .
that

2tr (EG 8tr GZG - 0. Therefore,
330 }/J

show that

/ \8tr(G=G)” - N(0,3)
x1 =X,

Recall Theorem 1 since,C i)\. 72,z iid~N(0,)

and note that tr(GZG)=tr(Gz)=>" A

rewrite:

2 (X, = X,) G(%, - %, ) - 2t( GZG)
J8tr(GzG)

i Zipzl)\i (Zi2 _1)

Now we show that (A.1)

distributed as N (0, 1) by using Lyapounov’s matrix
theorem. We usually note thefGsG)’

s=XLA(7

2tr(GEGY-.

-1. Then E(S) =

Therefore, asn,,n,,p

A we may

(A1)

is asymptotically

=" A7, Let
0 and Var(S) =

- o and under
336

(A)-(C) are satisfied, it then follows

that:

’ NEZ

|1'

NG D>

i=1

-f
( 2tr(GZG)2)3 ( 2tr(GZG)2)3

_ (ol p)EE-F
) 23“\/tr GG /p

And Lyapounov's condition is satisfied. By
Lyapounov's Central Limit Theorem, the expression
(A.1) tends to N(0,1) in distribution.

To complete the construction of our test statistic
we need only find a ratio-consistent estimator of 4

(GZGY. A natural estimator of 4tr(G=G)* s

4tr(GiG)2. However, 4tr(GiG)2 is generally neither
unbiased nor ratio-consistent. It is usual to yetifat

M

A ;ZZZZQQS is an unbiased and ratio-

k=11=1r=1 s=1
k#r, I#£s

consistent estimator of 4tr &&)°. Hence the theorem
is proved.

Due to Theorem 2 the test with an level of
significance will rejectsH® if T*®>z_  wherez,_,
is the 100(1-a) % quantile of N(0,1). Note that,

the approximating asymptotic null distribution of
T/® is similarly to the test obtained in Bai and
Saranadasa (1996); Srivastava and Du (2008) and

Zhang and Xu (2009) when both p and n go to
infinity.

The time effect: We consider testing the null
hypothesis of no time effect as above. As mentioned
above, the proof of the following theorem can be
obtained similar that of Theorem 1, thus we present
without proof.

Theorem 3: For assuming>;=2,=2, let X,
>>0, where j = 1, 2,
defined

[N,(0,%),
..n,, h=1 2and let G be a
the same as above. Then

n.n,

N 2%, +X,) G(X, +x) Z)\, ., Where N = p+ n,

A; are the eigenvalues @x andC ~x?,i=1, 2, ...,
p, are independent.
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The following theorem establishes the asymptotic  For the empirical power computations, we chose G
normality of our test statistic for testing the byjpesis as an appropriated testing matrix defined above,

HE :G(u, +1,)=0. 1, =(0,0,..,0’ and for  the nonzero

P

T . .
. n, =N (u,u,,..,u) whereu =j/p,j=1,2, ..., pand
Theorem 4: For n,,n,,p—~ o and assuming;=%,=%, ) ) P
n; is the ith element of the vector of constanis-

let XiJ'[Nngi'z)’ 2>0, _Where j=1,2 ...ini =1 2. 502)14. The Table 2 and 3 give empirical povers
Under Hg:G(u, +1,)=0 and the assumption (A)-(C) the proposed test® (interaction effect) and of the

are satisfied, then: proposed tesT® (time effect) for 5,000 iterations of

simulations study with setting a nominal significan
2 (% 47 V6% +%.) -1 S S8 level of a =0.05, p = 50, 70, 100 and for sample
o (5 re) 006 +%e) i 2,29 _N(oj  Sizes B =10, n =20 and p = 20, n = 30

h N m N

, respectively.
WM;;;EQE‘G Here, the four different covariance patterns are
— considered: (a) simple (SIM) pattern, (b) compound
symmetry (CS) pattern, (¢) unstructured (UN) patter
and (d) heterogeneous compound symmetry (CSH)
pattern. A simple covariance pattern is defined
asz =¢’l, where | denotes the pxp dimensional identity
matrix witha®>0. A compound symmetry covariance
. pattern is defined &= 0% +«J, where J = 11denotes
the 100(1-a) % quantile of N(0,1). the pxp dimensional matrix of 1s arfd is appropriate
constant. The unstructured covariance patternsdter
Simulation study: We assess the effectiveness of thethe SAS PROC MIXED unstructured pattern (UN).
proposed two-sample tests for high dimensional dgta And a heterogeneous compound symmetry covariance
means of a Monte Carlo simulation study. Simulationpattern is defined ag;(c__)" , whereo, =a?>0 (i =
results were obtained so as to assess the acovfréioy Vi b
asymptotic  standard  normal  distributon  inJ) @nd o; =ggp (i), p is the correlation parameter
approximating the actual null distributions of satisfying | <1. We seto?=1 for SIM, o?=k =1 for
AB H H H H H
T andT. If the d|str|_bu.t|on is derived correctly for CS, o, iid~ Unif (1.2) (if i = j) and p, =(j-1)/p* (if
the proposed test statistics, then we would explett = -~ ) R
the estimated Type | errors should be close to the <1)for UN ando; iid ~ Unif (23 (ifi=j),p=0.5 for
nominal significance level setting. We also estenat CSH, where i, j = 1, 2, ..., p. The multivariate nafm
empirical powers of our proposed test statistice W random vectors were generated using IMSL subroutine
begin with the description of the parameter sebector ~RNMVN of FORTRAN.
our simulation.

in distribution

The proof of Theorem 4 is similar to that of
Theorem 2. Due to Theorem 4 the test withcarlevel
of significance will rejectsHif 7.2 >z, wherez_, is

) . . RESULTSAND DOSCUSSION
Parameter selection: For Type | error simulation study

which were designed to evaluate the performandheof
proposed two-sample test for repeated measuregdesi

with high-dimensional data, we used Monte Carlo” " . 5
technique for 5,000 iterations with setting a naain setting at = 0.05. As can be seen from the Table 1, the

significance level ofi = 0.05. We then took 1) n, = 10, estimated Type | errors of the test statisti¢® for
15, 20, 30 and p = 30, 50, 70, 100. The upper awel  interaction effect and the test statistic.® for time
limits were calculated according to effect are close to the nominal significance lessiting
0.05+ 3/ 0.0% 0.95/500 = (0.041, 0.059), i.e., three at a = 0.05 reasonably well in all cases considered
standard errors around the nominal significancelle¥  including small sample size as 10. This is shovat th
0.05. Thus, any estimated Type | error rate fallingthe proposed tests are reasonable tests. Moreaeer,
within these limits is not significantly differefrom the  note that the accuracy of Type | error control & n
nominal significance level of 0.05he estimated type | affected by changing the covariance pattern anthby
error rates are given as in Table 1. increasing the dimension p.
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Table 1: Simulated Type | error of® and T® under the null hypothesis for four different camace matrix pattern applied at nominal
significance levetr = 0.05

Interaction effect Time effect
ny n, p SIM CS UN CSH SIM CS UN CSH
10 10 30 0.047 0.048 0.045 0.046 0.044 0.044 0.044 0.044
50 0.046 0.045 0.046 0.045 0.047 0.046 0.049 80.04
70 0.044 0.044 0.046 0.044 0.045 0.045 0.042 20.04
100 0.043 0.041 0.041 0.041 0.046 0.043 0.046 .047
10 20 30 0.047 0.046 0.050 0.050 0.051 0.052 0.052 0.052
50 0.048 0.047 0.048 0.049 0.049 0.047 0.045 60.04
70 0.050 0.050 0.049 0.052 0.048 0.047 0.048 70.04
100 0.047 0.048 0.048 0.050 0.050 0.050 0.050 .0500
10 30 50 0.050 0.052 0.051 0.051 0.047 0.048 0.050 0.047
70 0.048 0.047 0.048 0.047 0.051 0.053 0.052 30.05
100 0.046 0.049 0.050 0.047 0.045 0.044 0.044 .0420
15 20 50 0.050 0.052 0.049 0.051 0.048 0.047 0.050 0.048
70 0.052 0.052 0.052 0.053 0.047 0.047 0.046 70.04
100 0.052 0.052 0.052 0.052 0.049 0.049 0.051 .0500
15 30 50 0.049 0.048 0.050 0.048 0.053 0.054 0.054 0.056
70 0.048 0.048 0.047 0.049 0.047 0.050 0.045 70.04
100 0.049 0.051 0.049 0.050 0.045 0.045 0.045 .04
20 20 50 0.052 0.054 0.056 0.055 0.055 0.057 0.057 0.057
70 0.050 0.050 0.053 0.052 0.048 0.047 0.049 90.04
100 0.052 0.052 0.053 0.052 0.054 0.055 0.051 .0540
20 30 50 0.053 0.054 0.056 0.055 0.052 0.051 0.053 0.052
70 0.052 0.050 0.052 0.050 0.052 0.052 0.050 30.05
100 0.049 0.049 0.050 0.051 0.052 0.050 0.051 .05

Table 2: Empirical powers off*® (interaction effect) under the alternative hypstheor four different covariance matrix patterrpbgd at

nominal significance levet = 0.05

m=10,n=20 n=20,n=30
cov n p =50 p=70 p =100 p =50 p=70 p =100
SIM 0.0 0.048 0.050 0.047 0.053 0.052 0.049
0.2 0.076 0.092 0.095 0.125 0.150 0.163
0.4 0.232 0.282 0.372 0.508 0.617 0.732
0.6 0.603 0.713 0.843 0.933 0.978 0.997
0.8 0.917 0.973 0.996 0.999 1.000 1.000
1.0 0.995 1.000 1.000 1.000 1.000 1.000
1.2 1.000 1.000 1.000 1.000 1.000 1.000
1.4 1.000 1.000 1.000 1.000 1.000 1.000
(O] 0.0 0.047 0.050 0.048 0.054 0.050 0.049
0.2 0.079 0.089 0.094 0.127 0.147 0.156
0.4 0.228 0.288 0.362 0.500 0.605 0.724
0.6 0.595 0.721 0.833 0.936 0.978 0.996
0.8 0.916 0.978 0.994 0.999 1.000 1.000
1.0 0.996 1.000 1.000 1.000 1.000 1.000
1.2 1.000 1.000 1.000 1.000 1.000 1.000
1.4 1.000 1.000 1.000 1.000 1.000 1.000
UN 0.0 0.048 0.049 0.048 0.056 0.052 0.050
0.2 0.067 0.073 0.074 0.098 0.108 0.117
0.4 0.148 0.179 0.221 0.311 0.388 0.467
0.6 0.368 0.461 0.582 0.751 0.860 0.944
0.8 0.708 0.830 0.925 0.975 0.997 1.000
1.0 0.938 0.987 0.998 1.000 1.000 1.000
1.2 0.995 1.000 1.000 1.000 1.000 1.000
1.4 1.000 1.000 1.000 1.000 1.000 1.000
CSH 0.0 0.049 0.052 0.050 0.055 0.050 0.051
0.2 0.070 0.079 0.082 0.111 0.125 0.130
0.4 0.175 0.218 0.272 0.383 0.468 0.574
0.6 0.453 0.565 0.694 0.836 0.927 0.980
0.8 0.804 0.906 0.971 0.993 1.000 1.000
1.0 0.973 0.997 1.000 1.000 1.000 1.000
1.2 0.999 1.000 1.000 1.000 1.000 1.000
1.4 1.000 1.000 1.000 1.000 1.000 1.000
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Table 3:Empirical powers of*® (time effect) under the alternative hypothesisfér different covariance matrix pattern appligchaminal
significance levetr = 0.05

n=10,n=20 n=20,n=30
CoVv n p =50 p=70 p =100 p =50 p=70 p =100
SIM 0.0 0.049 0.048 0.050 0.052 0.052 0.052
0.2 0.077 0.086 0.093 0.124 0.135 0.159
0.4 0.249 0.286 0.351 0.497 0.598 0.715
0.6 0.604 0.725 0.832 0.935 0.977 0.997
0.8 0.918 0.972 0.995 0.999 1.000 1.000
1.0 0.995 0.999 1.000 1.000 1.000 1.000
1.2 1.000 1.000 1.000 1.000 1.000 1.000
1.4 1.000 1.000 1.000 1.000 1.000 1.000
CSs 0.0 0.047 0.047 0.050 0.051 0.052 0.050
0.2 0.080 0.085 0.095 0.121 0.137 0.160
0.4 0.241 0.285 0.355 0.498 0.603 0.722
0.6 0.609 0.714 0.826 0.932 0.975 0.996
0.8 0.921 0.972 0.996 0.999 1.000 1.000
1.0 0.996 1.000 1.000 1.000 1.000 1.000
1.2 1.000 1.000 1.000 1.000 1.000 1.000
1.4 1.000 1.000 1.000 1.000 1.000 1.000
UN 0.0 0.045 0.048 0.050 0.053 0.050 0.051
0.2 0.069 0.069 0.076 0.094 0.098 0.112
0.4 0.156 0.176 0.217 0.304 0.380 0.467
0.6 0.377 0.464 0.571 0.742 0.846 0.936
0.8 0.717 0.833 0.921 0.979 0.997 1.000
1.0 0.937 0.984 0.998 1.000 1.000 1.000
1.2 0.996 0.999 1.000 1.000 1.000 1.000
1.4 1.000 1.000 1.000 1.000 1.000 1.000
CSH 0.0 0.046 0.047 0.050 0.052 0.053 0.050
0.2 0.074 0.076 0.081 0.106 0.111 0.130
0.4 0.183 0.218 0.269 0.375 0.460 0.574
0.6 0.463 0.558 0.678 0.835 0.918 0.977
0.8 0.809 0.906 0.967 0.992 0.999 1.000
1.0 0.972 0.994 1.000 1.000 1.000 1.000
1.2 0.999 1.000 1.000 1.000 1.000 1.000
1.4 1.000 1.000 1.000 1.000 1.000 1.000

The corresponding empirical power curves of thethe results obtained similar as interaction effgbich
test statistic T*® for the interaction effect with the reported above.
aforementioned four different covariance patterns a _ ) )
summarized in Table 2 and Fig. 1. To make it clése, Analyss of the body-weight of male Wistar rats
four covariance patterns are listed separately. Wwéata: The data and the experimental description for a
observe that the empirical power functionsTdf have Mmotivating example to deal with the high-dimensiona
a steep ascending slope and is very high for eacﬂ""t_ahIS rfeporlted n Brunnest al (b2002).dThe body-_
sample size groups and all covariance patterng"e'g t of male Wistar rats was observed over aopleri
considered. The corresponding empirical powerT 5t of 22 weeks to assess the toxicity of a drug. Aigraf ten

] animals was given a placebo, while a second grétgno

test give good power whar=0.6 for n = 10 and p=

h - animals was given a high dose of the drug. The main
20 anay20.4 for n = 20 and p= 30. As expected, the ,eqtion to be addressed is whether the body-veeight
power of T*® test increases for increasing both p gnd

the two test groups differ in their evolution otene. For
when fixed the sample sizes for all cases considase this data, we haven10,i=1, 2 and p = 22.

well. In addition, the power ofi”® test also increases We get test values ofT/®=-0.6272 with a

for increasing the sample sizes when both prrEte  corresponding p-value is 0.7348 améi=6.2078 with a

Exed.hMor_eoverH the empirical power is also uneféel . re5nonding p-value < 0.0001. We conclude that a
y changing the covariance pattern. In a separatfajue highly significant for time effect but a p-
simulation where the test statistic® were considered \5j,e accepting the null hypothesis of no interacti

for the time effect as displayed in Table 3 and. Rig effect.
339
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Fig. 1: Empirical power curves for*® (interaction effect) with n= 10, n = 20 and p= 20, n = 30
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Fig. 2: Empirical power curves for® (time effect) with a= 10, n = 20 and n= 20, n. = 30

CONCLUSION standard normal distributions, under the null
] o hypothesis, with common covariané& One of the
In this study, we developed test statistics formain advantages of these statistics is that theybea
analyzing high-dimensional  two-sample repeatedseq for both unstructured and factorially struetur
measures designs when_th(_e data are mult!vanatpepeated measures designs when the underlying
normal. We began by highlighting the previous wark  phypothesis matrix G is appropriately defined. Monte
the literature describing test for the hypothedisio  cario simulation studies in this study show that th
interaction and no time effects. We proposed tesheneral behavior of these test statistics with asgtic
statistics T*® for no interaction effect and® for no  standard normal distribution still accurately cohtr
time effect which have an asymptotically distriiliess ~ Type | error and have quite good power for any the
340
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covariance matrix pattern considered with a moeeratDavis, C.S, 2002. Statistical Methods for the Asay
sample size and any large dimension p. The strong of Repeated Measurements. 1st Edn., Springer,
support is provided in the simulation results. lar o New York, ISBN: 9780387953700, pp: 415.

study, the power simulation results suggest thatdy  Dempster, A.P., 1958. A high dimensional two sample
be assumed that the quality of the proposed test sjgnificance test. Ann. Math. Stat., 29: 995-1010.
statistics, T** and T°, are maintained even if the Everitt, B.S., 1995. The analysis of repeated messu
dimension is in the thousands and it may also be A practical review with examples. Statistician, 44:

applied for the microarray data analysis. 113-135.
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