
Journal of Mathematics and Statistics 7 (4): 319-325, 2011 
ISSN 1549-3644 
© 2011 Science Publications 

Corresponding Author: S.A.A. El-Marouf, Department of Mathematics, Faculty of Science, Taibah University, 
 Madinahmonwarah, Kingdom of Saudi Arabia 

319 

 
Global Analysis of an Epidemic Model with 

Non-Linear Incidence Rate 
 

1,2S.A.A. El-Marouf and 1S.M. Alihaby 
1Department of Mathematics, Faculty of Science, Taibah University, 

Madinahmonwarah, Kingdom of Saudi Arabia 
2Depertment of Mathematics, Faculty of Science, Menoufia University, Egypt 

 
Abstract: Problem statement: In this study the equilibrium points and their local stability are found 
for SIQ and SIQR epidemic models with three forms of the incidence rates. Also, we study the global 
stability of the equilibrium by constructing the new forms of Liapounov functions. 
Conclusion/Recommendations: We explored the existence of Hopf bifurcation for some parameters 
in the given model. 
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INTRODUCTION 
 
 One intervention procedure to control the spread of 
infectious diseases is to isolate some infective, in order 
to reduce transmissions of the infection to susceptible. 
Isolation may have been the first infection control 
method, since biblical passages refer to the ostracism of 
lepers and plague sufferers were often isolated. The 
word quarantine originally corresponded to a period of 
forty days, which is the length of time that arriving 
ships suspected of plague infection were constrained 
from intercourse with the shore inMediterranean ports 
in the 15-19th centuries (McNeill, 1998). The word 
quarantine has evolved to mean forced isolation or 
stoppage of interactions with others .Over the centuries 
quarantine has been used to reduce the transmission of 
human diseases such as leprosy, plague, cholera, 
typhus, yellow fever, smallpox, diphtheria, tuberculosis, 
measles, mumps, Ebola and Lassa fever, Rubella, 
Herpes simplex, Hepatitis B, Chagas and the most 
notorious AIDS (Hassard et al., 1981; Hethcote, 2000, 
Castillo-Chavez et al., 1989). For human and animal 
diseases, horizontal transmission typically occurs 
through direct or indirect physical contact with hosts, or 
through a disease vector such as mosquitoes, ticks, or 
other biting disease agents. An epidemic is an outbreak 
of disease over short time pe- 1 riod; disease is said to 
be endemic if it persists in a population over a long 
period of time. In order to study the effects of 
quarantine on endemic infectious diseases, the endemic 
models that include a new class Q of quarantined 
individuals, who have been removed and isolated either 

voluntarily or coercively from the infectious class. For 
some milder disease, quarantined people could be 
people who choose to stay home from school or work 
because they are sick. For other more severe disease, 
quarantined people could be those who are forced into 
isolation. It is assumed that these quarantined 
individuals do not mix with others, so that they do not 
infect susceptible. In these models susceptible in the S 
class become infected and move to the infectious class I 
In the three SIQ models for infectious that do not confer 
immunity, susceptible become infected and then some 
infected individuals remain in the I class for their entire 
infectious period before they return to the susceptible 
class, while other infected individuals are transferred 
into a quarantined class Q and remain there until they 
are no longer infectious, at which time they return to the 
susceptible class. In the SIQR models for infectious that 
confer permanent immunity, susceptible become infected 
and then some infected individuals stay in the I class 
while they are infectious and then move to the removed 
class R upon recovery. Other infected individuals are 
transferred into the quarantined class Q while they are 
infectious and then move into the removed class R. The 
models here have a variable total population size, 
because they have recruitment into the susceptible class 
by births or immigration and they have both natural and 
disease-related deaths (Dreismann, 1996). In these 
models we identify the basic reproduction numbers that 
are the thresholds, find the disease-free and endemic 
equilibrium and determine their stability. The incidence 
is the infection rate of susceptible individuals through 
their contacts with infective. Let S (t) be the number of 
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susceptible at time t, I (t) be the number of infective, Q(t) 
be the number quarantined individuals, R(t) be the 
number of removed people and N(t) be the total 
population size. If β is the average number of adequate 
contacts of person per unit time, then I/N is the infectious 
fraction, βI/N is the average number of contacts with 
infective per unit time of one susceptible and βIH (S, 
I,Q) is the number of new cases with per unit time due to 
the S susceptible. This form is called the general 
incidence (Hethcote, 1976; Dreismann, 1996; EL-
Owaidy and EL-Sheikh, 1990). This study is organized 
as follows. We study the local and global stability of the 
reduced three dimension SIQ epidemic model by using 
the Routh-Hurwth criterion and we study the existence of 
periodic solutions. We also discuss the local and global 
stability of the four dimensional epidemic model SIQR 
with general nonlinear incidence rate. We introduce the 
sufficient condition for existence of Hopf bifurcation for 
some parameters. The study end with a brief discussion. 
 
Three-dimensional reduced epidemic model: The 
total population N(t) is divided into three compartments 
with N(t) = S(t)+  I(t) + Q(t), where S is the number of 
individuals in the susceptible class, I is the number of 
individuals who are infectious but not quarantined and 
Q is the number of individuals who are quarantined. 
The latten period, in which the person is infected but 
not yet infectious, is neglected and it is assumed that an 
infection does not confer immunity (Li et al., 1999; 
2001; Li and Wang, 2002). The following Eq. 1a three-
dimensional system: 
 
S ′(t) = A-βIH(S, I,Q)-dS + γI + εQ, 
I ′(t) = βIH(S, I,Q)-(γ + δ + d + α)I 
Q ′(t) = δI-(ε + d + α)Q,   (1a) 
 
Where: 
A, d and β = Positive constants  
γ, δ, ε and α = Non-negative constants 
 
 The constant A is the recruitment rate of 
susceptibles corresponding to births and immigration, d 
is the per capita natural mortality rate, βIH (S, I, Q) is 
general nonlinear incidence, δ is the rate constant for 
individuals leaving the infective compartment I for the 
quarantine compartment Q, α is the disease-related 
death rate constant in compartments I and Q and γ and ε 
are the rates at which individuals recover and return to 
susceptible compartment S for compartments I and Q, 
respectively. The total population size N(t) is variable 
with N′(t) = A- dN-α(I + Q). In the absence of disease, 
the population size N approaches carrying capacity A/d. 
the differential equation for N implies that solutions of 
(1a) starting in the positive outhunt R3+ defined by Eq. 2a:  

3  {(S,  I,  Q) R :  S  I  Q  A / d}+Γ = ∈ + + ≤  (1b) 

 
 The linear zed problem corresponding to (1a) is 
Eq. 1c and 1d: 



1
3

2 1 2 3

3

x

X MX, where X x ,(x ,  x ,  x ) R

x
+

 
 

′ = = ∈ 
 
 

 (1c)  

 

H H H
I d I H I

S I Q

M H H H
I I H ( d ) I

S I Q

0 ( d )

∂ ∂ ∂ −β − −β −β + γ −β + ε ∂ ∂ ∂ 
 = ∂ ∂ ∂β β + β − γ + δ + + α β ∂ ∂ ∂ 
 δ − ε + + α 

 (1d) 

 
 It is clear that (2a) has 0P = (A/d, 0, 0) as a trivial 

equilibrium (a disease-free equilibrium). The Jacobean 
matrix of (1d) at 0P is Eq. 1e: 

 

 
0P

d H

M 0 H ( D ) 0

0 ( d )

− −β + γ ε 
 = β − γ + δ + + α 
 δ − ε + + α 

  (1e) 

 
 The eigenvalues are λ1 = -d < 0, λ2 = -(ε + d + α) < 
0 and λ3 = βH-(γ + δ + d + α) ≤ 0. Set Rq = 

H

( d )

β
γ + δ + + α

. If Rq≤1, then the disease-free 

equilibrium 0P = (A / d, 0, 0) is locally asymptotically 

stable. If Rq >1, then the equilibrium 0P is unstable. 

 Now we consider the nontrivial equilibrium 0P  = 

(S°, I°, Q°) of system (1a) Eq. 1f, 
 
Where: 



0IS A-(  + d + ) + ,Q I
d d d° ° °

εδ δ = δ α = ε + + α ε + + α 
 (1f) 

 
 The Jacobean matrix of at 0P  is Eq. 1g: 

  

( )

0 0 0

0 0 0

°

0 S 0 I Q

0 S 0 I Q

MP

I H d I H H I H

I H I H H ( d ) I H

0 d

° °

° °

=

 −β − −β −β + γ −β +ε
 

β β +β − γ +δ+ +α β 
  δ − ε+ +α 

  (1g) 

 
Where: 
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S S S I I I Q

Q Q

H H
H , H , H

S S
H

,H H(S , I ,Q )
Q

° ° ° ° °

°

= =

° ° ° °=

∂ ∂= =
∂ ∂

∂= =
∂

  

 
We assume that 

0SH , 
0I

H , 
0QH and H◦ are positive. Set 

k1 = γ + δ + d + α, k2 = ε + d + α, k3 = βI◦HS◦, k4 = I◦HI◦ 
and k5 = βI◦ HQ◦ . When βH◦ = k1 we have Eq. 1h: 
  

0

3 4 1 5

P 3 4 5

2

-k -d -k -k + -k  +

M k k k

0 k

 γ ε
 =  
 δ − 

  (1h) 

 
 The characteristic equation of  

0PM at P◦ is Eq. 1i 

and 1j: 
 

3 2
1 2 3  0λ + α λ + α λ + α =  (1i) 

 
Where: 


1 2 3 4

2 1 2 4 3 2 4 2 5

3 1 4 2 3 2 4 5

d k k k ,

(k k 2k )k (d k )k dk k ,

 ((k 2k )k )k d(k k k ).

α = + + −

α = + − γ − − + + − δ

α = − γ − − δε − + δ

  (1j) 

 
 Since the Routh-Hurwitz criterion (Lizana and 
Rivero, 1996; Nani and Freedman, 2000; Thieme, 
1992; 1993, Anderson and May, 1991) and says that 
P◦ = (S◦, I◦, Q◦) is locally asymptotically stable if α1> 
0, α3 > 0 and α1α2-α3 > 0, then we have the 
following theorem. 
 
Theorem 2.1: Assume that the following conditions are 
satisfied: 
 

0 01 1 S I 1
0

2d
(A ) L H  H ,  where L   ,

I

+ ε+ > =
β

 

0 0

0

0 0

Q I
2 2 3 4 I 5

S S

H H
(A ) L  L +L H L 1,

H H
+ + <  

 
Where: 
 

0 2
2 3 4 5

1 2 1 1 1 2

2 Id d k
L  ,L ,L ,L  

k k k k k k

βδ δε + γ= = = =  

0 0 0 I0

0 0 0 0 0 0

2 2
3 S 1 S 2 3 S  

I 4 S Q 5 Q 6 S I

(A ) H H H H

H H H H H H

+ σ + σ + σ >

+ σ + σ + σ
 

 
Where: 
 

1 2
°

(d d 2d )( 2d )
,

( I ) (2 2d)

δ + α + δε + ε + + α ε + + ασ =
β α + δ + ε +

 

2 2

2 2
°

°
3 1

°
4 52 2

°
6 2

d ( d ) d( d )
 

( I ) (2 2d)

2 I ( 2d )
( 2d )  ,

( 2d )(2 2d)

I ( d ) 
 ,   

( 2d ) ( 2d )

I (2 6d 3 2)
and

( 2d )

ε + + α + ε + + ασ =
β α + δ + ε +

β ε + + ασ = σ ε + + α +
ε + + α α + δ + ε +

δβ δ ε + + ασ = σ =
ε + + α ε + + α

β ε + + α +σ =
ε + + α

 

 

 Then the equilibrium point P◦ = (S◦, I◦, Q◦) is locally 
asymptotically stable.  
 Now we choose α as a bifurcation parameter for 
system (1a). Let αc be the value of α at which the 
characteristic Eq. 1i has two pure imaginary roots 
λ1,2. Thus we have the following result. 
 
Theorem 2.2: If the assumption (1q) holds, then at α = 
αc ,there exists one parameter family of periodic 
solutions bifurcating from the critical point P◦ = (S◦, I◦, 
Q◦) with period T, where T → T◦ as α → αc and where 

0 2T  2 / 2 /° = π ω = π α  and α2 is given in (1j). 

 
Proof: Since there exists at least one real root of the 
cubic Eq. 1i λ3 say, we have the following Eq. 1k and 1l 
factorization: 
 

2 2
3 3 1 3 1 3 2( )[  ( )  ( )] 0λ − λ λ + λ + α λ + λ + α λ + α =   (1k) 

 
 Since, by (1j): 


1 2 3 1λ + λ + λ = −α   (1l) 

 
 Also at α = αc, we obtain Eq. 1m: 



{ }
3 1 1 2

2 2
1,2 3 1 3 1 3 1 3 2

,  ,

1 
( a ) ( ) 4( )

2

λ = −α λ = −λ

λ = − λ + ± λ + α − λ + α λ + α
 (1m)

 
 Thus, at α = αc, (1j) can be written in the following 
form Eq. 1n: 


1 1 2 3D ( ) α α = α α − α   (1n) 

 
 Hence, since α2 > 0 and α3 > 0, at α = αc, we 
should have λ3 = −α1 < 0. Also, the critical value α = αc 

> 0 is the solution of (2n) which can be seen by (2k) to 
be the quadratic equation in α as follows Eq. 1o and 1p: 
 

2
1 2 3c c c  0− α − α + =   (2o) 
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Where: 
 

° °

0 0

0 0 0

0 0

0 0 0 ° °

1 ° S I

2 ° S I

2 2 2 2
0 S S° I ° S ° Q

2
3 ° S° Q°

2
° S I

2 2 2 2 2 2 2
0 S I 0 S S I

c d I (H -H )

1
c  2 I (  2d)(H H )  2d  2d  

2

I (H 3H H H ) I H

c  ( d)( I (H H )  2d d ) 

I (  2d) (H H ) (  2d)

( I (H H ) ) I ( H  2H H

= + β

 = β ε + − + ε + + 
 

+β − + − δβ

= ε + β δ + + + ε

+β ε + − + ε +

β + + β δ +

+δ
0 0 0 0 0 0I Q S Q S QH H (2d  2)H H H H )+ + + δ

 (1p) 

 
 Conversely, knowing that α1 > 0, α3 > 0 and α > 0, 
then we can solve (2o) for αc > 0 and we then know that 
α 2 > 0, λ3 = − α 1 < 0 and λ1, 2 are conjugate imaginary. 
Now, choosing both d and 

0SH to be sufficiently small 

and 
0I

H sufficiently large, then we get Eq. 1q: 



0 00 S ° Id I H  I H+ β > β  (1q) 

 
 But since by (1o) and (1q) c1 > 0, c2 > 0 and c3 > 
0 Eq. 1r: 
 

° 1 3 1D ( ) c 0,  lim D ( ) αα = > α = ∞ (1r) 

 
 Thus αc is uniquely determined. Now, since by (1i), 
λ3 = −α1 < 0 and Eq. 1s: 
 

1 1 2 3 1 3 1 2 1 1

1 1 3

D ( )  ( )( )

sgnD ( ) sgn( )

α

α

α = α α − α = α + λ λ λ − α λ

α = α + λ
  (1s) 

 
 Consequently we have Eq. 1t and 1u: 


1,2 1 3 c

1
Re   ( ) 0 for   

2
λ = α + λ < α > α   (1t) 



1,2 cRe 0 for  λ > α < α   (1u) 
 
 By the above discussion, we see that as α is increased 
though αc, there exists a pair of complex conjugate 
imaginary eigenvalues λ1, 2 of the Jacobian matrix

0PM . 

Since at c 3 1 1,2 2,  ,  i i ,°α = α λ = −α λ = ± α = ± ω  where it is 

clear that ω◦ > 0. Now, since for λ1 = − λ2 Eq. 1v: 
 

2 2 2 c

1
Re  ( )  0 at

2
λ = λ + −λ = α = α   (1v) 

 
and by above discussion we see that Re λ2 > 0 for α < αc 
and Re λ2 = < 0 for α > αc thus Eq. 1w: 

c c

c

2 1 3

e 2

d 1 d
 (Re ) |  ( ) |

d 2 d
d

R ( ) | 0
d

α=α α=α

α=α

−λ = α + λ
α α

= λ <
α

 (1w) 

 
 This completes the proof. 

 
Fourth-dimensional reduced epidemic model: 
Assume that infection confers permanent immunity, so 
that individuals can move from theI and Q classes to the 
R class, where R(t) is the number of individuals with 
permanent immunity and N(t) = S(t) + I(t) + Q(t)+R(t). 
In this model, the flow is from the S class to the I class 
and then either directly to the R class or to the Q class 
and then to the R class. This model is given by Eq. 1x: 
 

1

2

S (t) A IH(S,  I,  R) dS,

I (t) IH(S,  I,  R) ( d )I,

Q (t) I ( d )Q, 

R (t) I Q dR

′ = − β −
′ = β − γ + δ + + α
′ = δ − ε + + α
′ = γ + ε −

 (1x) 

 
where δ and ε are the removal rate constants from group 
I and Q respectively. Also α1 and α2 represent the extra 
disease-related death rate constants in classes I and Q, 
respectively. The general nonlinear incidence rate is 
βIH(S, I,R) and the other parameters are the same as in 
the first model. The total population size N (t) satisfies 
N′(t) = A-dN-α1I-α2Q, so that the population size N 
approaches the carrying capacity A/d when there is no 
disease. The differential equation for N implies that 
solutions of (1a) starting in the positive orthant 4R+  

defined by Eq. 1y: 

 
4 {(S,  I,Q,R)

 : S I Q R A / d}
+Γ = ∈

+ + + + ≤
ℝ

  (1y) 

 
 We discuss the existence and global stability of the 
equilibrium of (1a). The equilibrium points of Eq. 2b is 
obtained by the system of isoclines Eq. 1z: 



1

2

A IH(S,  I,  R) dS  0,

IH(S,  I,R) ( d )I  0,  

I ( d )Q  0,

I Q dR  0

− β − =
β − γ + δ + + α =
δ − ε + + α =
γ + ε − =

 (1z) 

 
 The possible equilibrium of (1x) are P◦ = (A/d, 0, 0, 
0) and P* = (S*, I*, Q*, R*). The Jacobean matrix due 
to linearization of (1x) at the equilibrium point P◦ = 
(A/d, 0, 0, 0) is Eq. 2a: 
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°P

1

2

J  =

d H 0 0

0 H (  +  + d + ) 0 0

0 ( d ) 0

0 d

°

°

 − −β
 

β − γ δ α 
 δ − ε + + α
  γ ε − 

  (2a) 

 
 The eigenvalues of JP◦ at P◦ = (A/d, 0, 0, 0) are 
given by λ1 = λ4 = −d < 0, λ3 = -(ε+d+α2) < o and λ2= 

βH◦−(γ+δ+d+α1) ≤ 0. Set q
1

H
R

( d )
°β=

γ + δ + + α
 the above 

discussion leads to the following results. 

 
Theorem 3.1: If Rq≤1, then P◦ = (A/d, 0, 0, 0) is locally 
asymptotically stable. If Rq>1, then the equilibrium P◦ 
is unstable. 
 Now we consider the endemic equilibrium point P* 
= (S*, I*, Q*, R*) of system (1x).  

 
Where: 

 

1

2

2

I
S  (A ( d )) ,

d

Q  I ,
d

I
R  ( ( d ))

d

∗

∗

∗

∗ = − γ + δ + + α

δ∗ =
ε + + α

∗ = γ + εδ ε + + α

  (2b)

 
 The Jacobean matrix at P* = (S*, I*, Q*, R*) is 
Eq. 2c: 

 

*

* * *
S* I* R*

* * *
I* 1 R*

P
2

- I H - d - I H - H * 0 - I H

0 I H + H L 0 I H
J  =

0 L 0

0 d

 β β β β
 

β β − β 
 δ −
  γ ε − 

 (2c) 

 
Where: 
 

* * * * * *
*

*

I I I Q Q Q R R RS S

* * * *
1 1 2 2

H H H H
HS ,H | ,H | ,H | ,

S S Q Q

H H(S ,I ,R ),L ( d ) and L ( d )

= = ==

∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂

= = γ + δ + + α = ε + + α

 

 The characteristic equation at the endemic 
equilibrium point is Eq. 2d and 2e:  
 

4 3 2
1 2 3 4  0λ + σ λ + σ λ + σ λ + σ =   (2d) 

 
Where: 

1 2 S* I*

2 S* 1 2

* * 2
I* 2 R* 2

* *
3 S* 1 2 1 2 I*

* 2
2 R* 2 2

*
4 1 S* I* 2 2 R*

 3d I* (H -H ),

I*H (d L L )

I H (2d L ) I H  2dL d ,

I H (dL dL L L ) d I H

(2L d) I H ( d L ) d L ,

d I ((L H dH )L ( L )H )

σ = ε + + α + β
σ = β + +

−β + −γβ + +

σ = β + + − β

+ − β δε + γ + γ +

σ = β − − γ + δε

  (3e) 

 
 The Routh-Hurwitz criterion (Lancaster, 1969; 
Nani and Freedman, 2000) that are necessary and 
sufficient for the local asymptotic stability of the 
endemic equilibrium point is that the coefficients are 
positive Eq. 2f: 
 
( ) ( ) 2 2

i 1 2 3 1 4 3i 0,  i  1,2,3,4, ii   σ > = σ σ σ > σ σ + σ  (2f) 

 
Lemma 3.2: Assume that the following conditions are 
satisfied Eq. 2g: 
 
( ) ( ) ( ) 2 2

i 2 3 4 1 2 3 1 4 3i 0,  i  1, 2,3,4, ii 0, iiiσ > = σ σ − σ > σ σ σ ≤ σ σ + σ  (2g) 

 
 Then the characteristic Eq. 2d can be factorized 
into the form Eq. 2h: 
 

2
1 2 3 i( n )( n )( n ) 0,  n 0,  i  1,2,3,λ + λ + λ + = > =   (2h) 

 
where, σ1 = n2 +n3, σ2 = n1 +n2n3, σ3 = n1(n2 +n3) and σ4 

= n1n2n3, which implies that n1 = 3

1

σ
σ

and n2, n3 are 

satisfied by the quadratic Eq. 2i: 
 

2 3
1 1

1

x x  (  )  0
σ− σ + σ − =
σ

  (2i) 

 
 The eigenvalues of (2c) are given by 

1 1 2 3{i n , i n ,  n , n }− − . Thus, under the conditions of the 

above Lemma, the eigenvalues of the Jacobian matrix 
JP* have two pure imaginary roots for some value of α, 
say α = α*. For α∈(α*−∈,α*+∈), the characteristic Eq. 
2c cannot have real positive roots. But for α∈ (α* -
∈,α*+∈), the roots are in the general form Eq. 2j: 
 

1

2

3 2

4 3

( ) ( ) i ( ),  

( ) ( ) i ( ),

( ) n 0, 

( ) n  0

λ α = θ α + φ α
λ α = θ α − φ α
λ α = − ≠
λ α = − ≠

                             (2j) 

 
 We now apply Hopf  transversality criterion to (2d) 
in order to obtain the required condition for 
Hopfbifurcation to occur for this system. Hoofs 
transversality criterion is given by: 
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jd
Re  0,  j  1,2

d α=α∗

 λ
≠ = 

α  
    

 
 Substituting j ( ) ( ) i ( )λ α = θ α + φ α  into (2d),we obtain: 

 
3 3

1

2 2
1 2

2 3

3 4

4( ( ) i ( )) ( ( ) i ( ))  ( ( ) i ( ))  

3 ( ( ) i ( )) ( ( ) i ( )) ( ( ) i ( ))

 2 ( ( ) i ( ))( ( ) i ( ))  8  ( ( ) 

i ( )) ( ( ) i ( ))  0

′

θ α + φ α θ′ α + φ′ α + σ′ θ α + φ α +

σ θ α + φ α θ′ α + φ′ α + σ′ θ α + φ α

+ σ θ α + φ α θ′ α + φ′ α + σ θ α +
φ α + σ θ′ α + φ′ α + σ′ =

 

 
 By comparing the real and imaginary parts in both 
sides of the above equation, we get Eq. 2k and 2l: 
 
A( ) ( ) B( ) ( ) C( )  0,

B( ) ( ) A( ) ( ) D( )  0

α θ′ α − α φ′ α + α =
α θ′ α + α φ′ α + α =

 (2k) 

 
Where: 
 

2 2 2 2
1 2 3

2 2
1 2

A( )  4 ( 3 )  3  ( )  2 ,

B( )  4 (3 )  2 (3 ),

α = θ θ − φ + σ θ − ϕ + σ θ + σ

α = φ θ − φ + φ σ + σ
 

2 2 2 2
1 2 2 4

2
1 2 3

C( ) ( 3 ) ( ) ,

D( ) (3 )  2

α = σ′ θ θ − φ + σ′ θ − ϕ + σ′ θ + σ′

α = σ′ φ θ − φ + σ′ θφ + σ′ φ
 (2l) 

 
 Thus, from (3j), we have Eq. 2m: 
 

j

2 2

C( ) B( )
det

d D( ) A( ) (AC BD)
Re   

A( ) B( )d A  B
det

B( ) A( )

α=α∗

− α − α 
  λ − α α + = = −  α − αα +   
 α α 

  (2m) 

 

 Since (AC + BD) = 0, then j

*

d
Re =0

d α=α

λ
α

. The 

above discussion proves the following result. 
 
Theorem 3.3: Suppose the equilibrium point P* = (S*, 
I*,Q*,R*) exists, σi > 0, i = 1, 2, 3, 4 and 

2 2
1 2 3 1 4 3;σ σ σ ≤ σ σ + σ then the system (2b) exhibits an 

Hopf- Andronov-Poincare bifurcation in the first 
orthant, leading to a family of periodic solutions that 
bifurcate from P* for suitable values of α in the 
neighborhood of α = α*. 
 

CONCLUSION 
 
 In this study, we studied a general SIQR model for 
the dynamics of an infectious disease. The incidence 
rate βIH (S, I, R) is of nonlinear form. We established 
the local asymptotic stability of the disease-free 

equilibrium points OP (A / d,0,0)= , P° = (A/d, 0, 0, 0) for 

systems (1a) and (2.1), respectively. Our results are 
consistent with those obtained by Li et al. (2001); Jing 
and Lin (1993); Wu and Feng (2000) and Greenhalgh 
(1992). The disease-free equilibrium point 

P  (A / d,0,0)° =  is locally asymptotically stable in the 
interior of the feasible region and the disease always 
dies out. Also we showed that the endemic equilibrium 
point P° = (S◦, I◦, Q◦) exists and is locally 
asymptotically stable in the interior of the feasible 
region. The global stability ofP (A / d,0,0)° =  and P° = 

(S◦, I◦, Q◦) was established using Lyapunov functions 
similar to those discussed by Li and Wang (2002) and 
Nani and Freedman (2000), respectively. We employed 
the mathematical tools of differential analysis, 
persistence theory Hopf-Andronnov-poincare 
bifurcation and 9 linear system theory to deduce the 
existence of a family of periodic solutions that bifurcate 
from P* = (S*, I*, Q*, R*).Our results obtained here 
improve and partially generalize those obtained in (Li  et 
al., 1999; 2001; Li and Wang, 2002; Guckenheimer and 
Holmes, 1983; Anderson et al., 1982). 
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