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Global Analysis of an Epidemic Model with
Non-Linear Incidence Rate
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Abstract: Problem statement: In this study the equilibrium points and their Ibstability are found
for SIQ and SIQR epidemic models with three forrh¢he incidence rates. Also, we study the global
stability of the equilibrium by constructing the wme forms of Liapounov functions.
Conclusion/Recommendations. We explored the existence of Hopf bifurcation fome parameters
in the given model.
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INTRODUCTION voluntarily or coercively from the infectious clag%or
some milder disease, quarantined people could be
One intervention procedure to control the sprefad opeople who choose to stay home from school or work
infectious diseases is to isolate some infectivegrder  because they are sick. For other more severe diseas
to reduce transmissions of the infection to susiokpt quarantined people could be those who are forced in
Isolation may have been the first infection controlisolation. It is assumed that these quarantined
method, since biblical passages refer to the astraof  individuals do not mix with others, so that they miat
lepers and plague sufferers were often isolatece Thinfect susceptible. In these models susceptiblgénS
word quarantine originally corresponded to a pendd class become infected and move to the infecticassdl
forty days, which is the length of time that amigi In the three SIQ models for infectious that do cantfer
ships suspected of plague infection were constdaineimmunity, susceptible become infected and then some
from intercourse with the shore inMediterraneantgor infected individuals remain in the | class for themtire
in the 15-19th centuries (McNeill, 1998). The word infectious period before they return to the susbépt
guarantine has evolved to mean forced isolation oclass, while other infected individuals are transfe
stoppage of interactions with others .Over thewsed into a quarantined class Q and remain there umdy t
guarantine has been used to reduce the transmigkion are no longer infectious, at which time they retiarthe
human diseases such as leprosy, plague, cholerasysceptible class. In the SIQR models for infectithat
typhus, yellow fever, smallpox, diphtheria, tubdosis,  confer permanent immunity, susceptible become fafec
measles, mumps, Ebola and Lassa fever, Rubell@and then some infected individuals stay in thealssl
Herpes simplex, Hepatitis B, Chagas and the moswhile they are infectious and then move to the nesdo
notorious AIDS (Hassaret al., 1981; Hethcote, 2000, class R upon recovery. Other infected individuals a
Castillo-Chavezet al., 1989). For human and animal transferred into the quarantined class Q while taey
diseases, horizontal transmission typically occurdnfectious and then move into the removed clas$Hg.
through direct or indirect physical contact wittstgy or models here have a variable total population size,
through a disease vector such as mosquitoes, tictks, because they have recruitment into the susceptibfes
other biting disease agents. An epidemic is anreatb by births or immigration and they have both nataadi
of disease over short time pe- 1 riod; diseasaist®  disease-related deaths (Dreismann, 1996). In these
be endemic if it persists in a population over aglo models we identify the basic reproduction numbbeg t
period of time. In order to study the effects ofare the thresholds, find the disease-free and endem
guarantine on endemic infectious diseases, thensiade equilibrium and determine their stability. The thence
models that include a new class Q of quarantineds the infection rate of susceptible individualsotigh
individuals, who have been removed and isolatdteeit their contacts with infective. Let S (t) be the rhen of
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susceptible at time t, | () be the number of itifex; Q(t) Fr=4{S 1,QOR, :S+ I+ Qs A/d (1b)
be the number quarantined individuals, R(t) be the

number of removed people and N(t) be the total
population size. I} is the average number of adequate
contacts of person per unit time, then I/N is tifedtious
fraction, BI/N is the average number of contacts with

The linear zed problem corresponding to (1a) is
Eq. 1c and 1d:

infective per unit time of one susceptible gl (S, X,

1,Q) is the number of new cases with per unit tdne to v — \vix where x=| x (%, %,, %)0 R (1c)
the S susceptible. This form is called the general ' e e ’

incidence (Hethcote, 1976; Dreismann, 1996; EL- Xs

Owaidy and EL-Sheikh, 1990). This study is orgathize

as follows. We study the local and global stabitifythe 9H 9H 9H

reduced three dimension SIQ epidemic model by using | P35 ™¢ R TRH Y PooTE

the Routh-Hurwth criterion and we study the existeaf M = oH oH oH (1d)
periodic solutions. We also discuss the local aotad Plos  Plg TR -(yrord+a) B'aTg

stability of the four dimensional epidemic modeR® 0 5 -(+d+a)

with general nonlinear incidence rate. We introdtiee

sufficient condition for existence of Hopf bifuriat for It is clear that (2a) haB,- (A/d, 0, 0) as a trivial

some parameters. The study end with a brief digmuss equilibrium (a disease-free equilibrium). The J

Three-dimensional reduced epidemic model: The  matrix of (1d) atR,is Eq. 1e:
total population N(t) is divided into three compagnts

yvith _N(t) = _S(t)+ I(t) + Q(F), where S i; the nuerbof —d BH+y
individuals in the susceptible class, | is the nembf

€

individuals who are infectious but not quarantirset Mg =| O BH-(y+8+D+a) 0 (e)
Q is the number of individuals who are quarantined. 0 5 ~(e+d+a)
The latten period, in which the person is infecked
not yet infectious, is neglected and it is assuthatlan The eigenvalues afig = -d < 0,0, = -(¢ + d +a) <
infection does not confer immunity (L&t al., 1999; 0 andA; = BH-(y + & + d + o) < 0. Set R =
2_001; L.i and Wang, 2002). The following Eq. 1a #ire BH f R<l th th di ¢
dimensional system: (y+d+d+a)’ L, then the disease-lree
S'(t) = A-BIH(S, 1,Q)-dS +yl + £Q, equilibrium P,= (A / d, 0, 0) is locally asymptotically
1'(t) =BIH(S, 1,Q)-¢ +6 +d +a)l stable. If R >1, then the equilibriun®, is unstable.
Q'(t)=8l-(e +d+a)Q, (1a) Now we consider the nontrivial equilibriurg, =
Where: (S, I, Q) of system (1a) Eq. 1f,
A, d andp = Positive constants
v, 6, € anda. = Non-negative constants Where:

The constant A is the recruitment rate of
susceptibles corresponding to births and immignatib S =L0{A_(5 +d+a)+ & } Q= 5 J (1)
is the per capita natural mortality rafét (S, I, Q) is d e+d+a e+d+a
general nonlinear incidencé,is the rate constant for
individuals leaving the infective compartment | the The Jacobean matrix of & is Eq. 1g:
guarantine compartment Q@ is the disease-related
death rate constant in compartments | and Qyaarttle
are the rates at which individuals recover andrreta ~ MP =
susceptible compartment S for compartments | and Q,—BlHg —d BIH, —BH. +y BlHg +e 1
respectively. The total population size N(t) isiahte BlHy  BIH, +BH. ~(y+d+d+a)  BH, (19)

with N'(t) = A- dN-u(l + Q). In the absence of disease,
the population size N approaches carrying capadiy
the differential equation for N implies that sauts of
(1a) starting in the positive outhurtRlefined by Eq. 2a:  Where:
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_OH
_g s=s

looo -H- =H(S,1,Q)

_OH
L _£ ‘l:\‘. !

Q.

)

We assume thaH , H, , H, and H are positive. Set
k1:Y+6+ d +a, k2:€+d +aq, kSZBIOHSo, k4: I.H,.

and k = Bl. Ho. . WhenpH. = k; we have Eq. 1h:
Ke-d  k,k ty kg te
M, =| Kk, k, K, (1h)
0 3 -k,

The characteristic equation oM, at P is Eq. 1i
and 1j:

MN+ar*+a +0a,= 0 (i)
Where:

a,=d+k,+k, -k,

o, = (k, +k,—y -2k, )k,— (d+ k,)k,+ dk,~ 8k, (1))

Ay = (K, -y - 2Kk, )k, - 3e)k, - d(k K, + k).

Since the Routh-Hurwitz criterion (Lizana an

Rivero, 1996; Nani and Freedman, 2000; Thieme, A
1992; 1993, Anderson and May, 1991) and says tha?‘

P.= (S, I,
0, az > 0 and aj0,-a; > 0,
following theorem.

Q.) is locally asymptotically stable >

then we have the

_d’@+d+a)+dEe+d+ay
27 (BlL)%(2a +3+¢e+2d)
2Bl.(e+2d+a)
(e+2d+0) (X +5+e+ 2d)

0,=0,(e+2d+a)+

oBl. _Ye+d+a)
0, = 21 Y57
(e+2d+a) E+2d+ay
anda, = Bl.(2e +6d+ 3uz+ 2)
(e+2d+a)

Then the equilibrium point.B (S, I,
asymptotically stable.

Now we choose: as a bifurcation parameter for
system (la). Leti, be the value ofx at which the
characteristic Eq. 1i has two pure imaginary roots
A1,2. Thus we have the following result.

Q) is locally

Theorem 2.2: If the assumption (1q) holds, thencat

ac ,there exists one parameter family of periodic
solutions bifurcating from the critical point B (S, 1.,

Q.) with period T, where 7> T. asa — a. and where

T.=2nlw, = 21'[/\/0(_2 anda; is given in (1j).

Proof: Since there exists at least one real root of the
cubic Eqg. 1ix; say, we have the following Eq. 1k and 1l
d factorization:

Theorem 2.1: Assume that the following conditions are

satisfied:
(A) L,+Hg > H,, where L = 2d+e ,
o Blo
Hg H,
(A) L,—=+L,—+L H +L <,
S Hy,
Where:
L= ds ,L3=E,L4 281, L. _detyk,
k.k, k, K, Kk,

(Ay) Hi+oH +0,+0H H* >
H, to,HgHg toHgtoHH

Where:

_(dd+da+de+e+2d+a )€+ 2d+a )
! (Bl.)% (20 +5+¢€ +2d)

’

JIN+ (A, +a)h+ Ai+a ), +a )] =0 (1K)
Since, by (1j):
MAA A, =0, (an
Also ato = o, we obtain Eq. 1m:
A=-a;, A=A,
(Im)

Me= {0 ra)e [0 ra, - 405rad o)

Thus, atx = o, (1j) can be written in the following
form Eq. 1n:
Dy(a,) =0,0a,

-a, (1n)

Hence, sincea, > 0 andas; > 0, ata = o, we
should have\; = —a,; < 0. Also, the critical value = o,
> 0 is the solution of (2n) which can be seen k) (@
be the quadratic equationdras follows Eq. 1o and 1p:
(20)

2 -
-ca‘-co+c=0
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Where: d -1d
di (RQ‘Z)L:aczza Ol+)\3)‘l:qc
a (1w)

¢, = d+BL(H, -H,) d
. =R, (—A <0
e(dG 2) L:(]C

c,= PBlL+ 2d)(H, - H, )+ 2({£+ 2d %j
HI(HE ~8HH . +H2)=3BI H This completes the proof.

c,= [E+d)BLO(He.+Hy) + 2 + &) (1p) . i onal educed demi el

) ourth-dimensional reduc epidemic  model:
*Bl(e+ 2d)(H, ~H,) + €+ 2d) Assume that infection confers permanent immunity, s
B15(Hg +H ) +BAIIH I + 2H H? that individuals can move from thel and Q classethé
+8H, Ho, +(2d+ 2)H, Hy +8H, Hy) R class, Where R(t) is the number of individualshwi
permanent immunity and N(t) = S(t) + I(t) + Q(t)+R(
In this model, the flow is from the S class to ttaass
and then either directly to the R class or to thel&3s
and then to the R class. This model is given bylkq.

Conversely, knowing that, > 0, a3 > 0 anda > 0,
then we can solve (20) for. > 0 and we then know that
a,> 0,23 = -0, <0 and\, , are conjugate imaginary.

Now, choosing both d andig to be sufficiently small
S(t) = A-BIH(S, I, R)- dS,

and H, sufficiently large, then we get Eq. 1q: 1) =BIH(ES, 1, R)= (/+5+ d+a,)l,
Q) =81-(+d+a,)Q, ()
d+BlHg > BI.H, (19) R(t) =yl+eQ-dR
0E Bu]'fr'smce by (o) and (1g)& 0, ¢ > 0 and ¢> whered ande are the removal rate constants from group
q.r I and Q respectively. Alsa; anda, represent the extra
B , _ 1 disease-related death rate constants in classes Qa
D.(a,) =¢;>0, imD, @,) =e° (n respectively. The general nonlinear incidence iate

_ _ _ _ _ BIH(S, I,R) and the other parameters are the sanie as
Thusa, is uniquely determined. Now, since by (1i), the first model. The total population size N (tisfes
A3 = -0, <0 and Eq. 1s: N'(t) = A-dN-wyl-0,Q, so that the population size N
approaches the carrying capacity A/d when themois
D,(a,) =a,0,-a,= @, +A)JAA,—ap) disease. The differential equation for N impliestth
(1s) . o .
sgnD, @ ) = sgng, +A; ) solutions of (la) starting in the positive orthary
defined by Eq. 1y:
Consequently we have Eq. 1t and 1u:
r ={sS. I,Q,R)IR*
1 (G 1oR) (1y)
Re\, , = > @, +A;)< 0 fora > a, (1) + :S+1+Q+R< A/d}

Re\,,> 0 for a <o, (1u) We discuss the existence and global stabilityhef t
equilibrium of (1a). The equilibrium points of E2p is

By the above discussion, we see that @sincreased ©Obtained by the system of isoclines Eq. 1z:

though o, there exists a pair of complex conjugate

imaginary eigenvalue,, , of the Jacobian matriv,, . A-BIH(S, I, R)-dS= 0,

BIH(S, I,R)- (y+d+d+a,)I= O,

ol —(e+d+0a,)Q= 0,

yi+eQ-dR= 0

Since ata=a,, \;=-a,, A,,=*ifa,=+iw, where it is
clear thatn. > 0. Now, since fok; = -2, Eq. 1v:

(12)

Re\, = 1()\2+—X2)= 0 ata=a, (1v) i o

2 The possible equilibrium of (1x) are £ (A/d, 0, 0,
0) and P* = (S*, I*, Q* R*). The Jacobean matrined
and by above discussion we see thaije0 fora <o,  to linearization of (1x) at the equilibrium point B
and Rée\, = < 0 fora > a. thus Eq. 1w: (A/d, 0, 0, 0) is Eq. 2a:
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J, =
—d -BH. 0 0
0 BH.—(y+5 +d+a,) 0 0 (2a)
0 o) -(e+d+a,) O
0 y € —d

The eigenvalues ofpJat R = (A/d, 0, O, 0) are
given byl; =44 = —d < 0,A3 = -(e+d+0y) < 0 andi,=

BH.
P +0+ < . e B
BH.—(y+d+d+a;) < 0. SetR, rordra)

discussion leads to the following results.

the above

Theorem 3.1: If R<1, then P= (A/d, O, 0, 0) is locally
asymptotically stable. If &1, then the equilibrium .P
is unstable.

Now we consider the endemic equilibrium point P*
= (S* I*, Q*, R*) of system (1x).

Where:

0
o= (A—(y+6+d+al)%,

o)

= 9, 2b
e+d+a, (2b)

QU

0
RO= (y+ed(e + d+a2)%

The Jacobean matrix at P* = (S*, I*, Q*, R*) is
Eqg. 2c:

Bl'Hg-d  PIH.-BH* 0  -BI'Hg
3 - 0 BIH.+BH -L 0 BlHg. 20)
0 5 -L, 0
0 y € -d
Where:
_oH JOH oM _oH
HSk_gs:s'H"_asl:"’H;?'_6(?4’:<j N _aQJ{:R '

H =HES,I,R)L=(y+d+d+a,) and L= €+ dra,)

The characteristic equation at
equilibrium point is Eqg. 2d and 2e:
M+oA+oA+0A+0,=0

(2d)

Where:

323
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o, =€+ 3d+a,+BI*(Hs-H,),

0, =BI*H ((d +L,+L )
—BI'H,.(2d+L,)-yBI' Hp + 2dL, + &,

0, =BI'Hg(dL,+dL,+LL ) —dPI'H .
(2L, +d)—BI'H..(Be+dy+YyL,) +dL,,
0, =dBI'(LH&—dH, )L, - (W, +3&H )

(3e)

The Routh-Hurwitz criterion (Lancaster, 1969;
Nani and Freedman, 2000) that are necessary and
sufficient for the local asymptotic stability of eh
endemic equilibrium point is that the coefficierase
positive Eq. 2f:

(i)o, >0, i= 1,2,3,4( i)0,0,0,> 0°0,+0%, (2f)
Lemma 3.2: Assume that the following conditions are
satisfied Eq. 29:

(i)o,>0, i= 1,2,3,4( i)0,0,~0,> 0 ii)0,0,0,< 0?0 ,+0%, (2Q)

Then the characteristic Eq. 2d can be factorized
into the form Eq. 2h:

A2+n)A+n)A+n,)=0,n> 0, F 1,27 (2h)

where,c; = 1y +1g, 62 = My +MpN, 3= My(Nz +1g) andoy

= mnn;, which implies that n= %and R, n are
1

satisfied by the quadratic Eq. 2i:

0 (2i)

2 _ _0;

Kok @,
The eigenvalues of (2c) are given by

{iyh,A\h, n,-n}. Thus, under the conditions of the
above Lemma, the eigenvalues of the Jacobian matrix
Jp+ have two pure imaginary roots for some value,of
saya = o . ForaO(a*—0,0 +0), the characteristic Eq.
2c cannot have real positive roots. But fdf (o -
0,a +0), the roots are in the general form Eq. 2j:

Ay(0) =6(a) +ig(a),
Ay(a) =6(a)-i¢(a),
Ag(@) =-n, %0,
A(a) =-n;z 0O

(2))

We now apply Hopf transversality criterion to J2d
in order to obtain the required condition for
Hopfbifurcation to occur for this system. Hoofs
transversality criterion is given by:
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d, L
Rel— L o 0, 5 1,2

Substitutingh (o) =8(a) +ig(a) into (2d),we obtain:

40(@) +ig))’(®'(@) +ig(@) +0o'; (B@) +ip@))*+
30,(0(a) +ig(0))* (@ (@) +ig(a)) +0',(8() +ig(a))*
+20,0() +ip)(® (@) +ig(@)) + 85, O@) +
ig0)) +0,(8(a) +ig(a)) +o',= 0

equilibrium point, = (A/d,0,0), P- = (A/d, 0, 0, 0) for
systems (la) and (2.1), respectively. Our resules a
consistent with those obtained bydtial. (2001); Jing
and Lin (1993); Wu and Feng (2000) and Greenhalgh
(1992). The disease-free  equilibrium  point
P. = (A/d,0,0) is locally asymptotically stable in the
interior of the feasible region and the diseaseagfv
dies out. Also we showed that the endemic equilibri
point P° = (§ I, Q) exists and is locally
asymptotically stable in the interior of the fedsib
region. The global stability &t = (A/d,0,0) and P° =

By comparing the real and imaginary parts in both(S, I., Q) was established using Lyapunov functions

sides of the above equation, we get Eq. 2k and 2I:

A(a)8(a) -B(a)@(a) +C(a) = 0,

(2k)
B(c)€'(a) +A(a)¢@(a) +D(a) = 0
Where:
A0) = 48(6°-3¢°) + I, 0°-¢°)+ BB+0;.
B(o) = 49(B°-¢°) + (I, +0,),
C(a) =0',6(6° - 39") +0',0*-¢°) +0' ,0+0',, @)
D(G) :0.'1([)(36_("2) + Zj’ze(p+0’3(p
Thus, from (3j), we have Eq. 2m:
-C(a) -B(a)
de
dA; _ -D(a) A(o) ) (AC+BD)
Re — a=ald™ - 2 2 (zm)
da de A(a) -B(0) A% +B
B(a) A(a)
. dA.
Since (AC + BD) = 0, thenRed—O(J =0. The

above discussion proves the following result.

Theorem 3.3: Suppose the equilibrium point P* = (S*,

I*,Q*R*) exists, ¢; > 0, i = 1, 2, 3, 4 and

0,0,0,<0%0,+0%5then the system (2b) exhibits an
in the first

Hopf- Andronov-Poincare bifurcation
orthant, leading to a family of periodic solutiotisat
bifurcate from P* for suitable values af in the
neighborhood oé = a*.

CONCLUSION

similar to those discussed by Li and Wang (2002) an
Nani and Freedman (2000), respectively. We employed
the mathematical tools of differential analysis,
persistence theory Hopf-Andronnov-poincare
bifurcation and 9 linear system theory to deduce th
existence of a family of periodic solutions thaubiate
from P* = (S*, I*, Q* R*).Our results obtained heer
improve and partially generalize those obtainefLiret

al., 1999; 2001; Li and Wang, 2002; Guckenheimer and
Holmes, 1983; Andersoet al., 1982).
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