
Journal of Mathematics and Statistics 7 (4): 295-301, 2011 
ISSN 1549-3644 
© 2011 Science Publications 

Corresponding Author: M.M.A.  El-Sheikh, Department of Mathematics, Faculty of Science, Menoufia University, 
 Sheben El-Koom, Egypt 

295 

 

On the Dynamics of a General Predator-Prey System 
 

1M.M.A. El-Sheikh, 1,2S.A.A. El-Marouf and 2Z.M. Alaofy 
1Department of Mathematics, Faculty of Science, 
 Menoufia University, Sheben El-Koom, Egypt  

2Department of Mathematics, Faculty of Science,  
Taibah University, Saudi Arabia 

 
Abstract:  Problem statement: In this study a general two dimensional predator-prey model is 
considered. The dynamic and existence of equilibrium points are studied. 
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INTRODUCTION 

 
 There has been a demanding need for developing 
and analyzing models of interacting species in 
ecosystems. Predator-prey models are one of the most 
important models of two-species interaction. In this 
study we are concerned with a general 2-dimensional 
predator-prey system of the form  
 

1 1

2 2

dx
xg(x) yp(x) q E x,

dt
dy

Dy syp(x) q E y
dt

= − −

= − + −
 (1) 

 
where, x and y are the prey and the predator 
population sizes, respectively. The parameters s, D 
and k are positive and represent the conversion 
efficiency rate of prey to predator, predator death rate 
and the carrying capacity of the prey population, 
respectively. The parameters E1 ≥ 0, E2 ≥ 0 denote the 
harvesting efforts for the predator and prey 
respectively. The expressions q1E1x and q2E2x 
represent the catch of the respective species, where 
q1and q2 denote the catch ability coefficients of the 
prey and predator, respectively. The functions g(x) 
and p(x) denote the functional response of the prey 
and predator, respectively and satisfy the assumptions 
p(0) = 0 and g(0)>0, for all x>0. There have been 
considerable interests in the dynamics of the predator-
prey models of some special cases of (1) by several 
authors (Attili, 2001; Attili and Mallak, 2006; Xiao and 

Ruan, 2001; Hesaaraki and Moghadas, 2001; Kar and 
Matsuda, 2007; Moghadas and Corbett, 2008; 
Moghadas and Alexander, 2005; Sugie et al., 1997; 
Ruan and Xiao, 2001). Hasik (2000); Sesay et al. 
(2010); Moghadas and Alexander (2006); Saha and 
Bandyopadhyay (2005) and Tao et al. (2011) the 
authors considered Eq. 1 in the special 

case x
g(x) r(1 )

k
= − . 

 The aim of this study is to discuss the qualitative 
properties of the general predator-prey system (1). We 
discuss the existence and stability of equilibria and 
nonexistence criteria for limit cycles. We explore the 
uniqueness of limit cycles using Kuang and Freedmann 
approach (Moghadas and Corbett, 2008) and some 
applications. It is natural due to biological 
considerations to expect that the solutions of (1) must to 
be positive and bounded. So we give the following 
result which is a partial extension of those of 
(Freedman and So, 1985) and (Saha and 
Bandyopadhyay, 2005).The paper end with a brief 
discussion.  

 
Theorem 1.1: All the solutions of Eq. 1 which start in 

2
+ℝ

 
are positive and uniformly bounded.  

 
Proof: According to the ecological consideration the 
positivity of the solutions of (1) is obtained. To show 
the roundedness’, we set: 
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1
w(x, y) x y

s
= +  

 
 Then we easily obtain: 
 

2
1 1 2

dw dx 1 dy D q
xg(x) q E x y E y

dt dt s dt s s
= + = − − −  

 
 i.e. for any r, we have: 
 

2
1 1 1

dw
rw x( r q E ) M M ,say

dt
+ ≤ α + − ≤ =  

 
where, α = max g(x) and x≤M =(α+r-q1E1). 
 Thus applying the theory of differential inequality 
(Freedman and So, 1985), we obtain: 
 

rt rt1M
0 w(x, y) (1 e ) w(x(0), y(0))e

r
− −< < − + . 

 

 So the limits as tends to ∞ yields 1M
0 w(x, y)

r
< < . 

Thus we have that all solutions of (1) start in 2
+ℝ

 
are 

confirmed to the region D 

where ( ) 2 1M
D x, y R : w for 0

r+

 
= ∈ = + ∈ > 
 

. The equilibria 

of (1) are the intersection points of the prey and 

predator isoclinesdx dy
0 and 0

ds ds
= = , respectively. It is 

clear that all possiple equilibria are: 

 
• The trivial equilibrium 0P (0,0), 

• The equilibrium corresponding to predator absence 
P1(x1, 0), where 

 
1

1 1 1 1x g (q E ), y 0−= =   

 

• The positive Equilibrium P2(x
∗

,y
∗

),where 

 

1 2 2 1 1D q E x *[g(x*) q E ]
x* p , y*

s p(x*)
−    + −= =   
   

 

 

 It is clear that y*
 
increases with s and decrease with 

D. This is a natural conclusion because an increase in 
the predator death rate will cause decrease in the 
predator population and hence enhances the survival 
rate of prey. It is also clear that the positive equilibrium 

P2 (x
∗

, y
∗

) exists for (1) only if the harvesting 
satisfies 1

1 10 g (q E ) x *−< < . 

 
The nature of Equilibria: We discuss the stability 
properties of the equilibria p0(0,0), p1(x1, 0) and 

p2(x
∗

,y
∗

) .The Jacobian matrix of (1) around P0(0,0) is: 
 

0

1 1

P (0,0)
2 2

0g(0) q E
J

D q E0

 =
=  − − 

 

 
 i.e., we have two eigenvalues λ1=-D-q2E2 and 
λ2=g(0)-q1E1. 
 Therefore if g(0) > q1E1 then P0(0,0) is a saddle 
point, while if g(0) < q1E1, then P0(0,0) is 
asymptotically stable. Further at the boundary 
equilibrium P1(x1, 0), the Jacobian matrix has the 
eigenvalues: 
 

1 1 1 1 1 1 2 2 2 1x g '(x ) g(x ) q E and (D q E sp(x ))λ = + − λ = − + −  

 
 i.e. if we assume that D+q2E2 >sp(x1), then for 
x1g'(x1)+g(x1) > q1E1, P1(x1,0) is a saddle point while if 
x1g'(x1)+g(x1) > q1E1 then p1(x1, 0) is asymptotically 
stable. 
 Now to discuss the stability of the interior 

equilibrium P2(x
∗

, y
∗

), the Jacobean matrix around P2 is: 
 

2

1 1
P (x*,y*)

x *g '(x*) g(x*) y*p '(x*) q E p(x*)
J

sy*p '(x*) 0

 + − − −
=  
 

 

 
 The eigenvalues of 

2PJ
 
obey the equation: 

 

p p2 2

2 (traceJ ) det J 0λ − λ + =  

 
 Since it is clear that det

2PJ
 
=sy*p'(x*)p(x*)>0, so 

the sign of the characteristic roots depend only on 

2

* *
Ptrace J (x , y ). Following (Pimply, 1974), we introduce 

an auxiliary parameter β such that 
2PJ

 
takes the form: 

 
[ ]

2

1 1
p

x *g '(x*) g(x*) y*p '(x*) q E p(x*)
J

sy*p '(x*) 0
β

 β + − − −
=  
 

 

 

 Since by the Routh-Hurwitz criterion P2(x*, y*) is 
stable or unstable if (trace 

2PJ ) <0 or > 0, respectively. 

This leads to if 1 1y*p '(x*) q E

x *g '(x*) g(x*)

+β <
+

, then critical point 

P2(x*, y*) is
 

locally asymptotically stable. On the other 
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hand if β is chosen such that 1 1y*p '(x*) q E

x *g '(x*) g(x*)

+β >
+

, then 

P2(x*, y*) is unstable in the positive quadrant.  
 However in the case β = β*, trace 

2pJβ  
= 0. In this 

case the characteristic roots are pure imaginary. Further 

since
2p *

d
(trace J ) 0

d β β=β ≠
β

, then by Hopf bifurcation 

Theorem (Hassard et al., 1981), we have small 

amplitude periodic solution at β = β*∗. Therefore the 
two interacting populations oscillate around the unique 
nontrivial positive equilibrium P2(x*, y*).  
 
Existence of limit cycles: Now we discuss the existence 
and nonexistence of limit cycles of the general system (1). 
(Attili, 2001; Attili and Mallak, 2006; Hesaaraki and 
Moghadas, 2001; Kar and Matsuda, 2007; Moghadas and 
Corbett, 2008; Sesay et al., 2010). We start with a criterion 
for nonexistence of limit cycles.  
 
Proposition 3.1: If x*g'(x*) + g(x*) – y*p'(x*) –q1E1 < 0, 
then there is no periodic solutions of (1). 
 
Proof: Since for any real function α(x, y) we have: 
 

[ ]
[ ]

[ ]1 1

(x, y) xg(x) yp(x)
divF(x, y) div

(x, y) Dy syp(x)

x *g '(x*) g(x*) y*p '(x*) _ q E Dy sp(x) ,

 α −
= = α − + 

+ − + − +

 

 
choosing Dulac function α=1, then: 
 

1 1div{F(x, y)} x *g '(x*) g(x*) y*p '(x*) _ q E 0= + − <  

 
 By Bendixon-Dulac Theorem (Kelley and 
Peterson, 2003), this is sufficient for nonexistence of 
periodic solutions of (1). The following result discusses 
the existence of limit cycles.  
 
Theorem 3.1: The system (1) has at least one limit 
cycle in Ω = {(x,y):x >0, y>0} if and only if Eq. 2: 
 

1 1x *g '(x*) g(x*) y*p '(x*) _ q E 0+ − <  (2) 
 
 In order to prove sufficient condition of Theorem 
3.1, we first note that one can show ((Freedman and So, 
1985; Moghadas and Corbett, 2008) that, if: 
 

( ) 2 1M y M
x, y : 0 x ,0 x

2 s r+

 
ϑ = ∈ ≤ ≤ ≤ + ≤ 

 
ℝ  

 

where, M

2
=max x then: 

• The set ϑ  is positively invariant 
• For ( ) ( ) ( )( )2

0 0x , y , x t ,  y t  as t  +∈ →ϑ → ∞ℝ   

 
 Now since by above, the characteristic polynomial 
at the nontrivial positive equilibrium P2(x

*, y*) is: 
 

2 *

1 1

y * p'(x*) x *g '(x*)
p( ) sy p'(x*)p(x*)

g(x*) q E

− − 
λ = λ + λ + + 

 

 
 Since sy*p'(x*) p (x*)>0, the roots of p(λ) have 
positive real parts if and only if (2) holds. Cosequently 
P2(x

*, y*) is unstable if (2) holds. It is easy to check that 
the stable and unstable manifolds at (0, 0) are on the x-
axis and y-axis, respectively. If P2(x

*,y*) is unstable, 
then by above discussion and Poincaré Bendixson 
Theorem, it follows that the ω -limit set of every solution 
initiating at a point in the first quadrant is a limit cycle. 
Therefore, we have established that if (2) holds, then the 
system (1) has at least one limit cycle. This proves the 
sufficient condition.  
 
Remark 3.1: We note that it can be shown that this 
condition is not only sufficient but also necessary 
(Attili, 2001; Attili and Mallak, 2006; Hesaaraki and 
Moghadas, 2001; Moghadas and Corbett, 2008). 
  
Uniqueness of limit cycles: We discuss the uniqueness of 
limit cycles of the general system (1). Our criterion 
improves and partially generalizes those of (Hasik, 2000; 
Kuang and Freedman, 1988; Sugie et al., 1997). We first 
start with the most famous uniqueness result which was 
the motivation for several authors and criteria. As in 
(Kuang and Freedman, 1988) we consider the system Eq. 
3: 
 
dx

xp(x) y (x),
dt
dy

y( (x))
dt

= − φ

= −γ + ψ
 (3)  

  where, γ>0, all the functions are sufficiently smooth on 
[0,∞) and satisfy Eq. 4: 
 

(0) (0) 0 and '(x) 0, '(x) 0 for x 0ϕ = ψ = ϕ > ψ > >  (4)  

 
 The authors in (Kuang and Freedman, 1988) gave 
the following result on the uniqueness of limit cycles. 
 
Theorem 4.1: Kuang and Freedman (1988) if there 
exist constants x*

 
and m with 0< x*< m such that: 
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*

*

'
x x

(x ) and (x m) (x) 0 for x m,

d x( (x))
0,

dx (x) =

ψ = γ − ρ < ≠

 ρ > ϕ 

 

*,

' (x)
xp '(x) (x) x (x)

d (x)
0 for x x

dx (x)

ϕ + ρ − ρ ϕ
  ≤ ≠

ψ − γ 
 
 

 

 

 Then the system (3) has exactly one limit cycle 
which is globally asymptotically stable. In view of 
Theorem 4.1 and those of (Sugie et al., 1997; Hasik, 
2000), we give the following uniqueness theorem for 
the limit cycles of our general system (1).  
 
Theorem 4.2: Assume that H(x) = x*g'(x*)+g(x*)-
y*P'(x*)-q1E1 ≥0. Then the system (1) has a unique limit 
cycle.  

 
Proof: Rewriting the system (1) as the system (3) of 
Kuang and Freedman (1988) with: 

 

2 2 1 1D q E , (x) g(x) q E , (x) p(x) and (x) sp(x)γ = + ρ = − ϕ = ψ =  

 
 Then it is clear that our functions satisfy the 
conditions (4) of (Kuang and Freedman 1988). Moreover: 

 

1 1
x x* x x*

1 1 1 1
2

1 1

d x( (x)), d x *[g(x*) q E ]

dx (x) dx P(x*)

xg '(x*) g(x*) q E x *[g(x*) q E ]p ' (x*)

p(x*) p (x*)

xg '(x*) g(x*) q E y*p ' (x*) H(x)
0

p(x*) p(x*) p(x*)

= =

  ρ −= =  ψ   

+ − −− =

+ − − = >

 

 

Setting 
2 2

H(x)
W(x)

sp(x) D q E '
=

− =
then: 

 

( )
2

2 2 2 2

'(x)
xp '(x) (x) x (x)

d (x)
W '(x*)

dx (x)

H ' (x) H '(x).sp '(x)

sp(x) D q E (sp(x) D q E )

ϕ + ρ − ρ ϕ  = =
ψ − γ 

 
 

  − − − − −  

 

 
 Hence since H(x)>0, sp'(x)>0, D+q2E2>sp(x*), then 
W’(x *)<0. 
 Therefore the condition of Theorem 4.1 (Freedman 
and So, 1985) is satisfied and this completes the 
uniqueness of limit cycles.  

Applications: Now we give some examples from the 
ecological literature. The numerical simulations may 
justify the results.  
 
Example 5.1: Consider the special case: 
 

x mx
g(x) r 1 ,p(x)

k bx
 = − =  α + 

 

 
 Then we have the system: 
 

1 1

2 2

dx x mx
rx 1 y q E x,

dt k bx

dy mx
Dy sy q E y

dt bx

 = − − −  α + 

= − + −
α +

 

 
 Clearly all the assumptions hold. Thus the critical 
point 

2 2
1 1

2 2

D q E x* bx *
(x*, y*) , r 1 q E

sm bD bq E k x

 α + α   α +   = − −     − −      
 

and the Jacobian is: 
 

1 12

2

2rx * amy* mx*
r q E

k ( bx*) bx *
A

asmy*
0

( bx*)

− − − − α + α +
 =
 
 α + 

 

  
choosing r = 1, k = 0.5, m = 2, α = 0.51, b = 1, q1 = 
0.001, E1 = 1,D = 1,s = 10, q2 = 0.02, E2 = 0.5, x(0) = 
0.01, y(0) = 0.2, T1 = 200.  

 It is clear that 1 12

2rx * amy*
r q E 0

k ( bx*)
− − − <

α +
. Thus the 

condition of Theorem 3.1. holds. Then there exists at 
least one limit cycle (Fig. 1).  
 
Example 5.2: Consider the special case: 
 

p

p

x x
g(x,k) r(1 ), p(x)

k x
= − =

α +
 

 
 Then we have the Holling system: 
 

p

1 1p

p

2 2p

dx x x
rx 1 y q E x,

dt k x

dy x
Dy sy q E y

dt x

 = − − −  α + 

= − + −
α +

 

 
 Clearly the conditions (H1)-(H3) and (H4)-(H6) hold. 
Thus the critical point 
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p

p

1
*P

2 2
1 1 *

2 2

D q E x* x
(x*, y*) , rx * 1 q E x *

s D q E k x

 
  α + α   α +  = − −        − −      

 

 

 

and the Jacobian is: 
 

p

p p

p 1

1 12

p 1

p 2

2rx * Py*x * x *
r q E

k ( x * ) x *
A

spy* x *
0

( bx * )

−

−

 α− − − − 
α + α + =  α 

 + 

 

 

choosing r = 0.1, k = 20, α = 0.51, q1 = 0.001, E1 = 1, D 
= 1, s =10, q2 = 0.02, E2 = 0.5, T= 150, x(0) = 0.5, y(0) 
= 0.001, p = 3.  

 It is clear that
p 1

1 1p 2

2rx * Py*x *
r q E 0

k ( x * )

−α− − − <
α +

. Thus 

the condition of Theorem 3.1. Holds.  
 Then there exists at least one limit cycles (Fig. 2).  
 
Example 5.3: Consider the special case: 
 

2

2

x x
g(x,k) r(1 ), p(x)

k x
= − =

α +
 

 

 Then we have the system: 
 

2

1 12

2

2 22

dx x x
rx 1 y q E x,

dt k x

dy x
Dy sy q E y.

dt x

 = − − −  α + 

= − + −
α +

 

 
 Clearly the assumptions (H1)-(H3) and (H4)-(H6) 
hold. Thus the critical point 

2
2 2

1 1
2 2

D q E x* bx *
(x*, y*) , r 1 q E

s D q E k x *

  α + α   α + 
 = − −     − −      

and 

the Jacobian is: 
 

 

2

1 12 2 2

2 2

2rx * 2 x *y* x *
r q E

k ( x * ) x *
A

2 sx *y*
0

( bx * )

 α− − − − α + α + =
 α
 α + 

 

 
choosing r = 0.1, k = 20, α = 0.51, q1 = 0.001, E1 = 1, D 
= 1, s =10, q2 = 0.02, E2 = 0.5, T= 150, x(0) = 0.5, y(0) 
= 0.001, p = 2.  

 It is clear that 
p 1

1 1p 2

2rx * Py*x *
r q E 0

k ( x * )

−α− − − <
α +

. Thus 

the condition of Theorem 3.1. holds.  

 Then there exists at least one limit cycles (Fig. 3). 
 
Example 5.4: Consider the special case: 
 

xx
g(x,k) r(1 ), p(x) 1 e

k
−α= − = −  

 

 Then we have the system: 
 

x
1 1

x
2 2

dx x
rx 1 y(1 e ) q E x,

dt k

dy
Dy sy(1 e ) q E y

dt

−α

−α

 = − − − − 
 

= − + − −
 

 
 Clearly the conditions (H1)-(H3) and (H4)-(H6) hold. 
Thus the critical point: 
 

1 1
2 2

x*

x *
rx * 1 q E x *

1 D q E k
(x*, y*) In 1 ,

s 1 e−α

  − −   +   = − −
 α −
 
 

 

 

And the Jacobian is: 
 

x* x*
1 1

x*

2rx *
r y*e q E x * e 1

J k
sy*e 0

−α −α

−α

 − − α − − =
 

α  

 

 
choosing r = 1,k = 0.5, α = 0.51,q1 = 0.001,E1 = 1, D = 
1,s = 10,q2 = 0.02, E2 = 0.5, x(0) = 0.01, y(0) = 0.5, T1 
= 100.  

 It is clear that x*
1 1

2rx *
r y*e q E 0

k
−α− − α − < . Thus the 

condition of Theorem 3.1. holds.  
 Then there exists at least one limit cycle (Fig. 4).  
  

 
 
Fig. 1: Existence of limit cycles for choosing r = 1,k = 

0.5, α = 0.51,q1 = 0.001,E1 = 1, D = 1,s = 10,q2 
= 0.02, E2 = 0.5 
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Fig. 2: Existence of limit cycles for choosing r = 0.1, k 

= 20, α = 0.51, q1 = 0.001, E1 = 1, D = 1, s =10, 
q2 = 0.02, E2 = 0.5, T= 150, x(0) = 0.5, y(0) = 
0.001, p = 3 

 

 
 
Fig. 3: Existence of limit cycles for r = 1, k = 0.5,m = 

2, α = 0.51, b = 1,q1 = 0.001,E1 = 1,D = 1,s = 
10,q2 = 0.02, E2 = 0.5, x(0) = 0.01, y(0) = 1, T1 
= 100, p = 2 

 

 
 
Fig. 4: Existence of limit cycles for choosing r = 1, k = 

0.5, m = 2, α = 0.51, b = 1, q1 = 0.001,E1 = 1,D 
= 1,s = 10,q2 = 0.02, E2 = 0.5, x(0) = 0.01, y(0) 
= 0.5, T1 = 100, p = 2 

Remark 5.2: we may note that our examples and 
graphs are different from those exist in (Kar and 
Matsuda, 2007; Moghadas and Corbett, 2008).  
 

COUCLUSION 
 
 In this article we discuss the existence and stability 
of equilibrium points using Routh-Hurwitz approach. 
Theorem1 shows that all solutions of the model are 
positive and bounded. We give sufficient condition 
guarantees that the model has at least one limit cycle in 
the first quadrant of the xy plane. We give sufficient 
condition guarantees that the model has at least one 
limit cycle in the first quadrant of the xy plane. We give 
sufficient condition guarantees that the model has at 
least one limit cycle in the first quadrant of the xy plane 
if: 
 

1 1x *g '(x*) g(x*) y*p '(x*) _ q E 0+ − <  

 
 Using Bendixon Dulac Theorem we discuss the 
case for which the predator-prey model (1) has no 
periodic solution. Using Kuang and Freedman 
technique we give sufficient condition for the 
uniqueness of limit cycles of (1). Numerical examples 
for some special cases of g(x) are given to justify the 
results with graphs showing the existence of limit 
cycles. 
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