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Abstract: Problem statement: In this study a general two dimensional predateypmodel is
considered. The dynamic and existence of equilibriu points are studied.
Conclusion/Recommendations. Hopf bifurcation is discussed. The existence amdueness of limit
cycles is proved. Special cases are consideragstidyj our results.
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INTRODUCTION Ruan, 2001; Hesaaraki and Moghadas, 2001; Kar and
Matsuda, 2007; Moghadas and Corbett, 2008;
There has been a demanding need for developingloghadas and Alexander, 2005; Sugteal., 1997;
and analyzing models of interacting species inRuan and Xiao, 2001). Hasik (2000); Sesayal.
ecosystems. Predator-prey models are one of th¢ moR010); Moghadas and Alexander (2006); Saha and
important models of two-species interaction. Insthi Bandyopadhyay (2005) and Taet al. (2011) the
study we are concerned with a general 2-dimensionauthors considered Eq. 1 in the special
predator-prey system of the form caseay(x) = r(l_E)'

d The aim of this study is to discuss the qualigtiv
= xg(x)-yp(x)- G E X, / )

dt properties of the general predator-prey system\{lg.
1) : ) o S

dy _ Dy +syp(x)- G E y discuss the existence and stability of equilibrizd a

dt nonexistence criteria for limit cycles. We expldte

uniqueness of limit cycles using Kuang and Freedman
where, x and y are the prey and the predatogpproach (Moghadas and Corbett, 2008) and some
population sizes_,_respectively. The parameters s, %pplications. It is natural due to biological
and k are positive and represent the conversiop,ngigerations to expect that the solutions ofrflit to
efficiency rate of prey to predator, predator dele be positive and bounded. So we give the following

and the carrying capacity of the prey population, . ) . ;
respectively. The parameters £0. E, > 0 denote the result which is a partial extension of those of
i ; $EO, &> and So, 1985) and (Saha and

harvesting  efforts for the predator and prey(Freedman : :
respectively. The expressions;Egx and gE,x Bandyopadhyay, 2005).The paper end with a brief
represent the catch of the respective species, evhefliscussion.

g:and g denote the catch ability coefficients of the

prey and predator, respectively. The functions g(x)Theorem 1.1: All the solutions of Eq. 1 which start in

and p(x) denote the functional response of the preyk: are positive and uniformly bounded.
and predator, respectively and satisfy the assumgti

p(0) = 0 and g(0)>0, for all x>0. There have been

considerable interests in the dynamics of the pozda Proof: According to the ecological consideration the
prey models of some special cases of (1) by severdlositivity of the solutions of (1) is obtained. Bbow
authors (Attili, 2001; Attili and Mallak, 2006; Xiaand the roundedness’, we set:
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W(X,y):x+1'y P, (x*, y*) exists for (1) only if the harvesting
s satisfie < g™ (q E )< x*.

Then we easily obtain: The nature of Equilibria: We discuss the stability

properties of the equilibria o(0,0), p(x;, 0) and

%Vt" :%Jﬂ: xg()-GEx-2y-2 Ey p2(x,y") .The Jacobian matrix of (1) aroung(®0) is:
s dt S S
0)= 0

i.e. for any r, we have: Jpﬂovo){g( )0 q‘E‘_D_q E

d—W+rwsx(a+r-qlE1)s M? = M,,say i.e., we have two eigenvalueg=-D-q,E, and

dt

A2=g(0)-qE;.
Therefore if g(0) > d=; then RB(0,0) is a saddle

where,a = max g(x) and M =(a-+r-G,Ey). point, while if g(0) < gE, then R(0,0) is

Thus applying the theory of differential inequalit

(Freed d So, 1985) btai asymptotically stable. Further at the boundary
reedman and So, , we obtain:

equilibrium R(x;, 0), the Jacobian matrix has the
eigenvalues:

M, . _
0< w(x,y)<T(1 e" »+ w(x(0),y(0)€" . A, = X0 %)+ GX)- GE, andh ,= - (D q E~ sp(x |

i.e. if we assume that D#g, >sp(x), then for
x19'(%)+9(%) > qE;, Pi(x1,0) is a saddle point while if
Thus we have that all solutions of (1) start®A are X19'(%)+g(x) > aE; then p(x4, 0) is asymptotically
confirmed to the region D stable.

So the limits as tends to yields 0< W(x,y)<&.
r

" Now to discuss the stability of the interior
whereD = {(Xry)D R? ZW:Tl+D for> o} - The equilibria gquilibrium R(x", y'), the Jacobean matrix aroungi®

of (1) are the intersection points of the prey and

predator isoclinegl =0 andﬂ =
ds ds
clear that all possiple equilibria are:

_[XFg'(x*) +9(x*) —y*p'(x*) o E, p(x¥)

Jo o =
) sy*p'(x*) 0

C, respectively. It is

The eigenvalues of, obey the equation:

*  The trivial equilibriumPp, (0,0),

*  The equilibrium corresponding to predator absence
Pi1(x4, 0), where

A2 —(trace] )+ detJ =

Since it is clear that def =sy*p'(x*)p(x*)>0, so
X, =g(q,E,), y,= 0 the sign of the characteristic roots depend only on
trace J (x .y . Following (Pimply, 1974), we introduce

. S . an auxiliary parametd} such thatJ, takes the form:
»  The positive Equilibrium &x ',y ),where :

- =p‘l[D+q2E2} v :(x*[g(x*) ~9.E,]

3 = B[x*g'(x?) +g(x) |-y*p'(x) 4 E, (X9
s p(x*) j

> Sy*p'(x) 0

Since by the Routh-Hurwitz criteriorp(®*, y*) is

Itis clear that yincreases with s and decrease withgiaple or unstable if (trace, ) <O or > 0, respectively.
D. This is a natural conclusion because an incr@aase :

the predator death rate will cause decrease in thehis leads to ifg<X PV *9E: then critical point

predator population and hence enhances the survival X*g'(x*) +g(x*)

rate of prey. It is also clear that the positivaiggrium Py(x*, y*) is locally asymptotically stable. On the other
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hand ifB is chosen such tha> y*p"(x*) +q,E, , *+ Thesets is pozsmvely invariant
X*g'(x*) +g(x*) e For (x,y,)OR.?, (x(t), y(t)) -9 as ts o
P,(x*, y*) is unstable in the positive quadrant.
However in the casp =B, trace J,, = 0. In this Now since by above, the characteristic polynomial

case the characteristic roots are pure imaginamther  at the nontrivial positive equilibriumpfx’, y') is:

. d . .
smceﬁ(trace &, b # G then by Hopf bifurcation V¥ DIXR) —X*g'(x*) —

A)=A%+ A +sy p'(x*)p(x*
Theorem (Hassardet al., 1981), we have small PR) g(x*) +q,E, Y P)p(e)
amplitude periodic solution g = B**. Therefore the
two interacting populations oscillate around théqua Since syp'(X) p (X)>0, the roots of P) have
nontrivial positive equilibrium gx*, y*). positive real parts if and only if (2) holds. Coseqtly

P,(x', y) is unstable if (2) holds. It is easy to check tha
Existence of limit cycles: Now we discuss the existence the stable and unstable manifolds at (0, 0) artherx-
and nonexistence of limit cycles of the generalesyg(1).  axis and y-axis, respectively. I,®,y) is unstable,
(Attili, 2001; Attili and Mallak, 2006; Hesaarakind then by above discussion and Poincaré Bendixson
Moghadas, 2001; Kar and Matsuda, 2007; Moghadas antheorem, it follows that thed-limit set of every solution
Corbett, 2008; Sesayal., 2010). We start with a criterion jnjtiating at a point in the first quadrant is anili cycle.
for nonexistence of limit cycles. Therefore, we have established that if (2) holden tthe
. 5 gk . o system (1) has at least one limit cycle. This psotre
Proposition 3.1: If x g'(x) + g(X) =y p'(X) “hE1< 0,  gfficient condition.
then there is no periodic solutions of (1).

Remark 3.1: We note that it can be shown that this
condition is not only sufficient but also necessary
(Attili, 2001; Attili and Mallak, 2006; Hesaarakind
Moghadas, 2001; Moghadas and Corbett, 2008).

Proof: Since for any real function(x, y) we have:

a(x,y)[xg(x)- yp(x)] | _

divF(x,y) = diVL(X,y)[-Dwsyp(x)]

X*g'(x*) +g(x*) —y*p'(x*) _q £, +[-Dy +sp(x)], Uniqueness of limit cycles: We discuss the uniqueness of
. ) limit cycles of the general system (1). Our crdari
choosing Dulac function=1, then: improves and partially generalizes those of (Ha0Q0;
Kuang and Freedman, 1988; Sugial., 1997). We first
div{F(x, y)} =x*g'(x*) 49(x*) ¥*p'(x*)_d E , <0 start with the most famous uniqueness result whiab

_ the motivation for several authors and criteria. iAs
By Bendixon-Dulac Theorem (Kelley and (Kuang and Freedman, 1988) we consider the system E
Peterson, 2003), this is sufficient for nonexiseernd  3:

periodic solutions of (1). The following result disses

the existence of limit cycles. d
X

— = Xp(X) = y@(x),

Theorem 3.1: The system (1) has at least one limit gt 3)
cycle inQ = {(x,y):x >0, y>0} if and only if Eq. 2: dit/ =y(-y+P(x))
X*g'(x*) +g(x*) -y*p'(x*) _q E, <0 (2)

where,y>0, all the functions are sufficiently smooth on

In order to prove sufficient condition of Theorem [0:%0) and satisfy Eq. 4:
3.1, we first note that one can show ((FreedmanSmd

1985; Moghadas and Corbett, 2008) that, if: ¢(0)=y(0)=0andd '(xp> O '(xp Ofor » 4)
3:{(x,y)DR§ 0 x< M o< X+VSM1} The authors in (Kuang and Freedman, 1988) gave
2 s T the following result on the uniqueness of limit B

Theorem 4.1: Kuang and Freedman (1988) if there
exist constants>and m with 0< X< m such that:
297
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W(x') =yand (x- mp (x)< O for x£ m. Applications: Now we give some examples from the
d ( x((x)). ecological literature. The numerical simulationsyma
dx(q)(x) j x>0 justify the results.
Xp‘(x)+p(x)—xp(x)¢l ) Example 5.1: Consider the special case:
% MO 00 <o for x# x°
- _ (X _ mx
g(x)= r(l kj,p(X) 4+ bx

Then the system (3) has exactly one limit cycle Then we have the system:
which is globally asymptotically stable. In view of
Theorem 4.1 and those of (Sugieal., 1997; Hasik, dx « mx
2000), we give the following uniqueness theorem for —=rx(1—fj—y -qEXx,

the limit cycles of our general system (1). dt k) “a+bx
dy _ mx
" \ PTER A a1
Theorem 4.2: Assume that H(X) = %'(X)+g(X)- 0 bx
y P'(X)-g4E;>0. Then the system (1) has a unique limit
cycle. Clearly all the assumptions hold. Thus the ctitica

point
Proof: Rewriting the system (1) as the system (3) of (xx y¥) :{O‘D"O‘quz, {r (1_X*j_qlEl}(a+bx*D
Kuang and Freedman (1988) with: sm-bD- bg E k X
and the Jacobian is:

y=D+0,E, p(X)=9g(x)- q B $ (x)= p(x) andp (xF sp(x

r—ﬁ— amy* ~q,E, -mx*
*) 2 1 *
Then it is clear that our functions satisfy the A= k +*bx) o+ bx
conditions (4) of (Kuang and Freedman 1988). Mogeov (aaf:z*)z 0
d , d( x*[g(x*) —-q,E, _ .
&(Xi)((:)»j - :dx[x[g(é()mq]j - choosingr=1, k=05 m=2=051,b =1, g=
0.001, E=1,D =1,s = 10, &= 0.02, E= 0.5, x(0) =
Xg'(x*) +g(x*) —q,E, _ x*[9(x*) g £ Jp" (x*) _ 0.01, y(0) = 0.2, T1 = 200.
p(x*) p?(x*) . 2rx*  amy*
Xg'0¢) +90¢) ~Q.E, _y*p’ (¢) _H() It is clear that - K (arbe)’ -q,E, < 0. Thus the
p(x*) PO p(x¥) condition of Theorem 3.1. holds. Then there exidts
least one limit cycle (Fig. 1).
; - H(X) :
Setting W(x) = sp(x)- D= g, E, then: Example 5.2: Consider the special case:
. ot ) ==X =X
q Xp'(X)+p(X) = xp(X) 09 e - g(x,k)=r@ k), p(x) o
dx W) -y
Then we have the Holling system:
{ (H () _ HE)sp() }
sp(x)-D-gE (sp(x) D- g E) dx_ ( _z)_ X__
a ! k) Yarx GEX
Hence since H(x)>0, sp'(x)>0, Da&3>sp(x), then dy _ -Dy+sy X’ -g,EY
W'(x")<0. dt a+x°

Therefore the condition of Theorem 4.1 (Freedman
and So, 1985) is satisfied and this completes the Clearly the conditions (H+(Hs) and (H)-(He) hold.
unigueness of limit cycles. Thus the critical point
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(x*y9) =

1
aD+ag,E, | [ x*j a+x”
s * 1_ E *
(S_D_%EJ L= x| =3

and the Jacobian is:

2rx*  aPy*x*Pt x*"
r— _ _ _
A: k (G+X*p)2 q1E1 G+X*p
aspy* X *P1 0
(+bx*7)?

choosingr=0.1, k=2& =0.51,q=0.001,E=1,D
=1, s =10, g=0.02, E= 0.5, T= 150, x(0) = 0.5, y(0)
=0.001, p=3.
It is clear that—E—%x*pl
k  (a+x*?)?
the condition of Theorem 3.1. Holds.
Then there exists at least one limit cycles (E)g.

-g,E, <0. Thus

Example 5.3: Consider the special case:

XZ

o+x?

MKM=NPE% P(X)=

Then we have the system:

%—rx 1-X -y X
dt k a+x
dy X

—=-Dy+s
dt y y0(+x2

-G Ex,

-4EY.

Clearly the assumptions (H(Hsz) and (H)-(He)
hold. Thus the critical point

. _| |aD+agq,E, XY o +bx*?
R

the Jacobian is:

2

2rx*  2ax*y* X*
r= - *2 z_qlEl - % 2
A= k  (a+x*) o +Xx
2asx*y* 0
(o +bx*?)?

choosingr=0.1, k=2@& =0.51,q=0.001,E=1,D
=1, s =10, g=0.02, E= 0.5, T= 150, x(0) = 0.5, y(0)
=0.001, p=2.

It is clear thatr—ﬁ—%x*pl
k  (a+x*P)?
the condition of Theorem 3.1. holds.

-q,E, <0. Thus

Then there exists at least one limit cycles (B)g.

Example 5.4: Consider the special case:
X ~O0X
g(x,k)= r(l_i)' p(x)= 1= &
Then we have the system:

dx _ rx[l—ij—y(l— €™)-qEx

dt k
dy _
Gt Dytsyl-e" ) gBy

Clearly the conditions (h+(Hs) and (H)-(Hsg) hold.
Thus the critical point:

k
1_ éux‘

_D+g,E)|
s |

1 rx*(l—x—*j—qlElx*
(x*,y*) = —alnh ,

And the Jacobian is:

2rx* Xt . o
J:[r ” ay*e g,E x e 1}

asy*e™ 0

choosingr=1k=0.5y=0.51,q=0.001,=1,D =
1,5 =10,§=0.02, E = 0.5, x(0) = 0.01, y(0) = 0.5, T1
=100.

2rx*

It is clear that- ”

—ay*e ™™ -q,E, <0. Thus the

condition of Theorem 3.1. holds.
Then there exists at least one limit cycle (Fig. 4

x(t)

Fig. 1: Existence of limit cycles for choosing 17k =
0.5,0=0.51,g=0.001,=1,D=1,s=10g
=0.02,=05
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Fig. 2: Existence of limit cycles for choosing 04, k
=20,0=0.51,9=0.001,E=1,D =1, s =10,
g, = 0.02, E= 0.5, T= 150, x(0) = 0.5, y(0) =

0.001, p=3
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= /
= /
— \
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Fig. 3: Existence of limit cycles forr = 1, k =50m =
2,0=051,b=19g=0001,=1D=1s=
10,=0.02, E= 0.5, x(0) =0.01, y(0) =1, T1

0.03

0.4

=100,p=2
1.3 '
./"f-—#i_- h
1] = ," /,/’:*‘-— -
S bl
= f r'/ g i g 8
f [ f 173N
05F \\{‘\\@’lf’
=
0 0.05
x(1)

Fig. 4: Existence of limit cycles for choosing A7k =
05 m=20=051,b=1,¢g=0.001,5=1,D
=1,s =10,9= 0.02, E= 0.5, x(0) = 0.01, y(0)

=0.5,T1=100,p=2

Remark 5.2; we may note that our examples and
graphs are different from those exist in (Kar and
Matsuda, 2007; Moghadas and Corbett, 2008).

COUCLUSION

In this article we discuss the existence and ktabi
of equilibrium points using Routh-Hurwitz approach.
Theoreml shows that all solutions of the model are
positive and bounded. We give sufficient condition
guarantees that the model has at least one lirole éy
the first quadrant of the xy plane. We give suéfiti
condition guarantees that the model has at least on
limit cycle in the first quadrant of the xy plan&e give
sufficient condition guarantees that the model has
least one limit cycle in the first quadrant of theplane
if:

X*g'(x*) +g(x*) -y*p'(x*)_q E, <0

Using Bendixon Dulac Theorem we discuss the
case for which the predator-prey model (1) has no
periodic solution. Using Kuang and Freedman
technique we give sufficient condition for the
uniqueness of limit cycles of (1). Numerical exae®pl
for some special cases of g(x) are given to justify
results with graphs showing the existence of limit
cycles.
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