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Abstract: Problem statement: The double Pareto distribution appeared most oftermodel for
variety of fields, including archaeology, biologgconomics, environmental science, finance and
physics. The distribution exhibits Paretian povees-lbehavior in both tails. The family of double
Pareto distributions has recently been proposednfodeling growth rates such as annual gross
domestic product, stock prices, foreign currencghenge rates and company sizes. In this study, |
develop parameter estimates for the double Paiistalilition that are easy to compute. | compare
the performance of the maximum likelihood estimateéh Bayesian and the method of moments
estimates Approach: This study contracted with maximum likelihood, theethod of moments
and Bayesian using Jeffrey’'s prior and the extemsad Jeffrey’s prior information. The
comparisons are made on the performance of thegaaters with respect to the Mean Squared
Error (MSE) for small, moderate and large sampled for some values of the scale and the
extension of Jeffrey’s prior parameters using timugation techniquesResults: It turns out that
the maximum likelihood method and Bayesian methadatth deffrey’s prior result in smaller MSE
compared to others in all cas€onclusion: Basedon the results of the simulation, the maximum
likelihood method and Bayesian method with Jeffsegtior are found to be the best with respect
to MSE.
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INTRODUCTION areas of inquiry such as economics, physical
Sciences, geology, geography and finance (@tex.,

The probability density function and the 1998; Madan et al., 1998; Kozubowiski and

cumulative distribution function of the symmetric Podgoriski, 2001; Amara¢t al., 1998; Buldyrevet
double Pareto distribution are Eqg. 1 and 2: al., 1997; Stanleyet al., 1996; Takayasu and

Hx0p) =2

Okuyama, 1998; Reed, 2001).
x ) The double Pareto distribution arises as
(B] for0<x<p exponential function of double exponential disttibo
2B 041 @) and can be derived by combining the Pareto digidhu
(7j forx = and the distribution of the reciprocal of a Paratadom
X variable and has power tail behavior at zero afidiip
(Reed, 2001; Kotet al., 2001).

And: The double Pareto distribution has been proposed
. as a model for heavy-tailed phenomena. Heavy-daile
1(x} for0< x<p distributions are very important in modeling financ
2\’ - (Embrechtset al., 1997; Fama, 1965; Jansen and
F(x;6.8)= @) Varies, 1991; Loretan nand Phillips, 1994; Mandatibr

(<]
1_}(Ej forx=p 1963; Madfal and Raw, 1996; Rachev, 2003; Rachev
2\ x and Mittnik, 2000), Physics (Barkagét al., 2000),
engineering (Nikias and Shao, 1995; Resnick, 1997,
Resnick and Starica, 1995; Uchaikin and Zolotarev,

For somed>0 andB>0 respectively (Reed, 2001). 1999). Burroughs and Tebbens (2001a; 2001b)
In practice, the double Pareto distribution hasnbe estimated parameters of the truncated distribubign

widely used as a model for growth rates and sizéeast squares fitting on a probability plot and by
distributions of various phenomena arising in défg  minimizing mean squared error fit on a plot of thé
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distribution function. Ramirezt al. (2008) used a where, the scale paramef@ris taken to be constant.
mixture of K Pareto distributions to model EthernetMaximizing Eq. 3 or Eq. 4 we get the maximum
packets interarrival times. Reed and Jorgensen4(200 |icelihood estimator 6 _for ©. It follows that
considered the double Pareto lognormal distribuéien "
model for heavy-tailed data and introduced variousaml_(e)/ae:n/e_znl‘mx__|nB‘ _

approaches to inference this distribution. Cabaal. i '

(2010) developed an algorithm to implement BayesianSetting dInL(6)/d6=0we get the equation
inference for the double Pareto lognormal distitrut o )
Al-Athari (2011) considered the double translatedn/6, - |Inx -Inf/=0and hence the MLE 08,6, is
Pareto distribution as model for infinite excesstésis ) =

data and as model for non-kurtosis data and praposediven by Eq. 5:
various robust confidence intervals to inferences th

distribution. Ahmedet al. (2010), the maximum ém:%
likelihood estimation, Bayesiamsing Jeffrey’s prior 2“” x; —Inp|
and the extensioof Jeffrey’s prior for estimating the =1
parameters of Weibull distribution are compared ) B
using the mean squared error and the mean Under the regularity condltlpns (\_]ohnson, 1996;
percentage error. Ahmed and Ibrahim (2011)Verbeek, 2008; Zacks, 1971), this estimator possess
compared the performance of maximum likelihoodthe major properties of the maximum likelihood
and Bayesian using Jeffrey’s prior and the exteamsio estimator, that i9,, is consistent, asymptotic efficient

of Jeffrey’s prior for estimating the survival fufin 5y pest asymptotically normal estimator with méan

of Weibull distribution with right censored data. . . - .
In this study, | develop parameter estimategtfer ~and asymptotic variancevar @,,) attains the Cramer

double Pareto distribution that are easy to compihe ~ Rao lower bound

Maximum Likelihood Estimation (MLE), the method . .
of Moments Estimation (MM) and Bayesian using Method of moments estimator: Given data assumed

Jeffrey’s prior (BAJ) and extension of Jeffrey’sidtr to be from the dguble Pareto distribution giveﬂE'm 1
Information (BAEJ) are developed. The comparisons®ne could obtain method of moments estimates of
are made on the performance of these estimatots wité and3 using the first two moments of the log-
respect to the Mean Squared Error (MSE) for varyingransformed data distribution. Use of the doublesfa
sample sizes and for some values of the scalthoments (with untransformed data) is not
parameter and the extension of Jeffrey’s prior gisin yecommended, since the population moments of drder

the simulation techniques. or greater do not exist. So, we need to prove the
These methods should be useful for thefollowing Theorems

practitioners in area of science and engineeringravh
power law probability tails are prevalent. Theorem 1: If X has double Pareto distribution given
by Eg. 1, then the density of Y=In X is a shiftholuble

exponential with mean i3 and scale%.

(%)

MATERIALS AND METHODS

Maximum likelihood estimation: Let X;, X,,....X, be

a random sample of size n taken from the doubletBar proof: The p.d.f. of Y is easily found from (1). It can
distribution given in Eq. 1. Then the likelihooddathe  pe expressed as:

log-likelihood functions for the double Pareto dgns

can be written respectively as Eq. 3 and 4: a(y;0.B)=¢ f(& 9B)
NI n With some algebra, the p.d.f. of Y can be shown
L(e) =2 "9"(” x,)'exp(6) | Inx - InB|) 3) to be:
1= i=1

And: ( 'GB)—e ee(y_lnB)’ fory <Inp
Iy BR=5 o~ 0(y-Inp), fory=Inp

InL(6) =-nIn2+nIn6- In|11| X;

1= (4) which is equal to double exponential with meanBin
=8> |Inx, ~Inp| and scale% :
i=1
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It is easy to show that the moment generatinglistribution is proportional to the joint distrithon L
function (mgf) of the shifted double exponential (B)[1(8) that is K@|Xy,Xs,...,%)0 L(6).M(6) with the
distribution is: possibility of dropping all functions involving cetants
and X, X,,....,X, alone (notB) from the right- hand
member of this expression.

BI

M.(© REETY for[t| <8 This posterior distribution is proper provided ttha
6>0 and >0 with the constant of proportionality
And the variance of Y is: turning out to be:
_2 F™ (O InX, ~Ing|)"
Var(Y)‘& (6) [(F(ml (iZ:l:I i ~InBI)
To find the method of moment estimator using theThat IS-
shifted double exponential distribution, one needs L ]
only solve Eq. 6, with Var (Y) set to its sample 0 (lenxi—lnﬁl)
equivalent and gets: NCI R O = ) X

A 2n
O = . (7) -6 In%; -In
e B

where, Y=In X. The estimator in Eq. 7 is independen Which is gamma p.d.f. with parameters a = n and
of the parametep. 1

Bayesian estimation: Given a random sample ;X il'“xi—lnﬁl
Xo,....,. X, from the double Pareto distribution given in =1

Eq. 1, a Bayes’ estimator is a decision functithat Assuming the quadratic loss function, the Bayes’
minimizes the conditional expectation of the lossestimation8yis the mean of the posterior distribution.

function ((6,6) given that Thus:

X1=X1,X2=X2,Xn =Xnand accordingly, it « n
minimizes the expected risk function. By using a O =5 —
quadratic loss functiof(6,6) = (6-6)?, then the Bayes’ ;ani ~Ingl
estimator is given b§, =E@©|x,X, ..., ), the mean of
the conditional distribution of 6,
givenX, =x,X,=X,..,X,=X,.  This  conditional
distribution  K(8|x,,x,,...,X,)is called a posterior
distribution of6. Extension of Jeffrey’'s prior information: The
The goal is to compute the posterior distributionextension of Jeffrey’s prior is given by:
which depends on the likelihood function, the piibr o

(6) and the marginal probability density function. ) o[(e]° "o

This estimator is the same as the maximum
likelihood estimator 8,_given in Eq. 5 and is
independent of the paramefer

Jeffrey’s prior information: Consider the likelihood

function L @) given by Eq. 3 and its Fisher information Where, ¢ is positive constant (Al-Kutubi and Ibrahi
aInL(6) 2009). Therefore, the posterior distribution is peo

n
1(6) :E(T)2 i provided tha®>0, B>0 and n>2c-1 with the constant of
Jeffrey's (Jeffreys, 1946) suggested proportionality turning out to be:
rne) 0./1(e :% as a prior distribution for the [F(n-2c+ 1)T1~(Zn: [InX - InB [y~
i=1
paramete®. Then from standard Bayesian theory (Box
and Tiao, 1992; Hogg and Craig, 1994), the posterioAnd hence:
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samples were simulated from the uniform (0, 1) and

n-2c N _ n-2c+ 1
0 (;an, nB1) then used to generate random samples from the

K(O]Xy, Xpsms X, )= X

r(n-2c+1) double Pareto distribution by using the probability
; transform. For each sample, the parameter was
x| o B estimated by the proposed four methods of

estimation and then the mean- squared errors and th
estimated means of the parameter were calculated to

Which is gamma p.d.f. with parameters n-2c+1 ~ compare the estimation methods with the help of

) 1 MATLAB, the language of technical computing
andp =— . version 6.5 (Part-Enander, 1996).
Z|In X, =InB| The transformation to the double Pareto distrithute
i=1

. . . variable is given by:
Assuming the quadratic loss function, the Bayes’ 9 y

_eritligationeBE is the mean of the posterior distribution. NS B(2U, }*° for0< U <1/2
' i T BI2@- U foru, >1/2
6 = n-2c+1
BET | | Where:
;I X =Ing| F (.) = The distribution function given in Eq. 2
U; = Uniformly distributed random variable on
RESULTS (0,1)

A computer simulation experiment was done 10 Thg gimylation results for the mean-squared errors

compare four methods of estimation of the parametegny the estimated means of the parameter for each
of the double Pareto distribution. Simulations wer€qgtimation of (a) the Maximum Likelihood method
performed for sample 5|z_es n= 10, 25,_50, 100 WItf‘tML) (b) the Method of Moments (MM) (c) Bayesian
values of the paramet& = 0.5 (1.5)5,8 = 1.0 and  yith’ Jeffrey’'s prior (BAJ) and (d) Bayesian with

values of Jefferys extension ¢ = 0.4, 3.0. Withoutgyiension Jeffrey's prior (BAEJ) are summarized and
losing the generality | assumgdequals to 1.0. For o1 ated in Table 1.

each combination of values of6p,c and3 40000

Table 1: The estimated mean and the mean-squaéthe estimators

n 0 c MLE Men MM Mean BAEJ Mean
10 0.5 0.4 0.0413 0.5553 0.0614 0.5977 0.0442 @.566
3.0 0.0413 0.5553 0.0614 0.5977 0.0590 0.2776
2.0 0.4 0.6614 2.2212 0.9827 2.3907 0.7078 2.2656
3.0 0.6614 2.2212 0.9827 2.3907 0.9442 1.1106
3.5 0.4 2.0255 3.8870 3.0097 4.1837 2.1675 3.9648
3.0 2.0255 3.8870 3.0097 4.1837 2.8916 1.9435
5.0 0.4 4.1338 5.5529 6.1422 5.9768 4.4235 5.6639
3.0 4.1338 5.5529 6.1422 5.9768 5.9012 2.7764
25 0.5 0.4 0.0125 0.5216 0.0164 0.5381 0.0129 8.525
3.0 0.0125 0.5216 0.0164 0.5381 0.0145 0.4173
2.0 0.4 0.1997 2.0864 0.2624 2.1523 0.2060 2.1031
3.0 0.1997 2.0864 0.2624 2.1523 0.2325 1.6692
3.5 0.4 0.6116 3.6513 0.8035 3.7666 0.6308 3.6805
3.0 0.6116 3.6513 0.8035 3.7666 0.7120 2.9210
5.0 0.4 1.2482 5.2161 1.6398 5.3808 1.2873 5.2578
3.0 1.2482 5.2161 1.6398 5.3808 1.4531 4.1729
50 0.5 0.4 0.0056 0.5107 0.0071 0.5190 0.0057 @.512
3.0 0.0056 0.5107 0.0071 0.5190 0.0061 0.4596
2.0 0.4 0.0897 2.0428 0.1138 2.0758 0.0911 2.0509
3.0 0.0897 2.0428 0.1138 2.0758 0.0972 1.8385
35 04 0.2746 3.5748 0.3484 3.6327 0.2791 3.5891
3.0 0.2746 3.5748 0.3484 3.6327 0.2978 3.2173
5.0 0.4 0.5603 5.1069 0.7110 5.1895 0.5695 5.1273
3.0 0.5603 5.1069 0.7110 5.1895 0.6077 45962
100 0.5 0.4 0.0027 0.5053 0.0034 0.5095 0.0027 63.50
3.0 0.0027 0.5053 0.0034 0.5095 0.0028 0.4801
2.0 0.4 0.0431 2.0213 0.0539 2.0381 0.0434 2.0254
3.0 0.0431 2.0213 0.0539 2.0381 0.0448 1.9203
3.5 0.4 0.1320 3.5373 0.1651 3.5666 0.1331 3.5444
3.0 0.1320 3.5373 0.1651 3.5666 0.1373 3.3605
5.0 0.4 0.2693 5.0533 0.3370 5.0952 0.2715 5.0634
3.0 0.2693 5.0533 0.3370 5.0952 0.2802 4.8007
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