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On Computing of Eigenvalues of Differential Equations
Q = AP with Eigenparameter in Boundary Conditions
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Abstract: Problem statement: Our purpose of this study is to use sinc methods to compute
approximately the eigenval-ues of second-order operator pencil of the form Q-AP. Approach: Where
Q is second order self adjoint differential operator and P is a first order and AeC is an eigenvalue
parameter. Results: The eigenparameter appears in the boundary conditions linearly. Using
computable error boundswe obtain eigenvalue enclosures in a simple way.
Conclusion/Recommendations: We give some numerical examples and makecompanions with
existing results.
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INTRODUCTION

The aim of the present study is to compute the
eigenvalues numerically of a differential operator of the
form Q-AP approximately by the sinc method, where Q
and P are self-adjoint differential operators of the
second and first order respectively. By the sinc method
we mean the use of the Whittaker-Kotel'nikov-Shannon
(WKS) sampling theorem, (Shannon, 1949; Whittaker,
1915; Zayed, 1993). The WKS states that if f(A) is
entire in A of exponential type o, >0, which belongs to
L2(R) where restricted to R, then f(A) can be
reconstructed via the sampling representation:

(L) = if(ﬂ]smc(cx—nn),xec (1.1)
o, (¢}

Series (1.1) converges absolutely on C and
uniformly on R and on compact subsets of C (Butzer
et al., 2001; Stenger, 1993). The space of all such f is
the Paley-Wiener space of band limited functions with
band width o which will be denoted by PW?. The

nodes {ﬂ} are called the sampling points and the
© nez

sinc functions are:

sinc(oA — nm) nn

. (oh—nm) c
sinc(oh —nn) = (1.2)

1, p=""

c

28

neZ Theorem (1.1) is used extensively in
approximating solutions and eigenvalues of boundary
value problems, (Boumenir, 2000a; 2000b; Lund and
Bowers, 1992; Stenger, 1981; 1993). One type of error
is associated with sinc-based methods, truncation error.
An estimate for the truncation error is established by
Jagerman (1966), as follows. For NeN and

f(h e PW2), let fy(A) be the truncated cardinal series:

N

fo)=> (n—njsinc(ck—nn) (1.3)
n=-N 9
Jagerman proved that if AeR and in addition
ML) el(R), for some integer k>0, then for
NeN,A|<Nn/c, we have:
1 +
60— £, s OOM_| INn/ o=
n(n/ ) V1-47* 1 (1.4)
NVNn/c+A '
_
(N+D¥’
Where:
© - ) 1/2
Ek(f)::{J:xk £ dt} (1.5)

We are concerned with the computation of
eigenvalues of the boundary-value problem:
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=(p(y'=1y))'(x) = T(X)p(x)(y "= 1y)(x) +

L (1.6)
q(x)y(x) =M(2ipy'+ip'y + wy)(x), 0<x <1
cos yy(0) —sin y(p(y'-ry) +iipy)(0) =0 (1.7)
cos 8y(1) + sin 8(p(y'—ry) +iApy)(1) =0 (1.8)

where, p, q, p and w are real-valued functions on
[0,1],p ", 1, g, weL'(0, 1), p>0, pe ACJ0, 1], the set of
all absolutely continuous functions on [0, 1], q is
essentially bounded from below and vy, €[0,n). This
problem has been studied in its general form in the
comprehensive study of (Langer et al., 1966) as a linear
pencil Q-AP, where Q is a second-order operator and P
is a first-order operator. Problem (1.6-1.8) differs from
classical second-order eigenvalue problems in several
respects. First, the operator in the left-hand side of (1.6)
is not the identity operator multiplied by the
eigenparameter, but a first order operator. Also, the
eigenvalue parameter appears linearly in the boundary
conditions. Illustrative examples and tables are included
in the last section. It is worthy to mention that the
sampling scheme is used to approximate eigenvalues
for different types of boundary value problems in
(Boumenir, 1999; 2000a; 2000b; Chanane, 1999; 2005).

Preliminaries: In the following we consider the
eigenvalue problem (1.6-1.8) introduced in Section 1

above. For simplicity, we assume that y,Se[O,g] and

without any loss of generality, we assume thatr =0, p =
p=w =1 on [0, 1]. Thus we consider the eigenvalue
problem:

—y"(x,A) +q(x)y(x,A) = A(2iy'(x,A)0 < x <1 2.1)
U, (y) := cosyy(0,A) —siny(y'(0,A) +iLy(0,A)) =0 2.2)
U,(y) = cosdy(L,A) +sin8(y (LA) +idy(0,A) =0 (2.3)

where, qeL'(0, 1). Let ¢(., A) denote the solution of
(2.1) satisfying the following initial conditions:

®(0,1) =siny, ¢"(0,) = cosy (2.4)

where, o'(x,h) = @'(x,0)+tiAo(x,A). Since ¢(.,A)
satisfies (2.2), then the eigenvalues of problem (2.1-2.3)
are the zeros of the function, cf. (Langer et al., 1966):

QL) = e**[cosdp(1,1) +sin S (1, A)] = e H(L) (2.5)

Where:

A(L) =[cosdp(1,A) +sin Sl (1, 1)] (2.6)

According to (Langer et al., 1966) A(L) has two
sequences of positive and negative simple eigenvalues
{A 1y, . Using the method of variation of constants, the

solution @(x, A) satisfies the integral equation:

sinycosvA® +Ax +
0sy sinVA? +Ax

A+

o(x,M)=e™ +T,0(x,7) 2.7

where, T;, is the Volterra integral operator:

T = [ S LA, ;X ~ ety

A+

Differentiating (2.7) and adding the result to iA@(X,
A), we obtain:

OM(x,1) = e M [—/A* + Lsinysiny A +Ax +

(2.8)

cosycosm] + T o(x,1) @9)
Here T, is the Volterra integral operator:

T f(x) = j;cos\/m (x — t)e V(1) (t)dt (2.10)
Define u(x, A) and v(x, A) to be:

u(x,1) =T, 0(x,A), v(x,1) =T, p(x,1) (2.11)

In the following, we shall make use of the
estimates (Chadan and Sabatier, 1989):

< S M (2.12)
1+‘z‘

‘«M+p‘ S\/W+\/m,‘cosz‘ Se‘ﬁz‘,

sinz
z

where, ¢, is some constant (we may take ¢y = 1.72 cf.
(Chadan and Sabatier, 1989)). For convenience, we
define the constants:

»Cs = Cydy

q, = J.Ol‘q(t)‘dt, c, = ‘siny‘ + co‘cosy
(2.13)

€ =C4E€XpCs, C; =€y, C3 = C,Cs

|cos 8| + (q,¢, + ¢,¢5)|sin |
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Table 1: Observe that A, and the exact solution A are all inside the interval [a, a.] when N=40, m= 10 and 6 = 1/15

1k Exact Ay a a, MeN
Ao -6.842613403785793 -6.8542419744969810 -6.8299202670083460 -6.8426134037858070
A -3.758605094490024 -3.7632697348613644 -3.7541208431839883 -3.7586050944900227
Ao 2.758605094490024 2.7518990040100073 2.7654801295144110 2.7586050944900240
M 5.842613403785775 5.8400058020619420 5.8449689020210150 5.8426134037858010
A2 8.964493358995961 8.9241740258191800 9.0026492126459700 8.9644933589959540
From (2.7) and (2.10), we have: On the other hand:
cina/ sSInVAZ +A(X—1) i
uh) =[] wew a(®) [P e e g (e, M)t
N/ AT+
. sinvVA” + At x Co(x — K
sinycosvA® + At +cosy ———— |dt (2.14) < IO > exp((‘ SA+|3VAZ + 0 )
VA + 0 1+‘\/X +k( -

xsinyA® +A(x —t) x —t))|q(D)|[u(t,1)|dt 2.18
+J~ sin (x—t) He-0g(tyu(t, )dt ( ))‘Q( )H ( )‘ ( )

0 A+

Lemma 1: For X e C, the following estimates hold:

€Cs

lu(x,0)| < exp((| T +| 322 +x‘)x) (2.15)
T+{VAZ + A

lu(x, )| < Ll ek (2.16)
1T+ VAZ + 4

Proof: Using the inequalities (2.12), we have for
reC:

J-x sinvA? + (X —t) .
0 VA2 +)

.2
sinycos\/k2+kt+cosyM dt
VAR +A

AR a0} ——

q(®)

Cy(x—1)
‘\/ A|x-1)

<exp((|IA|+

co‘cosy‘t

‘Siny‘+
A+t

<exp((|IA]+[IVAZ + 4 (2.17)

>

_ex
1+[\a7 2
[} laco]sin| +eos vie,tlde

< exp((|32] + ‘s\/xz n k‘)x)

>

CO
1+‘\/7&+x

_[(Jl |a(v)|[|siny| +|cos yle,t]dt

30

< ¢ exp((| TN + ‘3\/78 ) ‘)x)
[} exp(( 3] + ‘sx/xz ) ‘)t)‘q(t)‘ fu(t.0)]dt, A e C

Combining (2.17) and (2.18) together with (2.14),
we obtain for any complex A:

fu(x, )] < exp((| 4] + ‘\5\/}3 )X)M

f;‘(l(t)‘ [[siny|+|cosy|c,tidt
+c, exp((|IA] + ‘S\MZ + k‘)x)
[ exp((32] + ‘Sx/xz Y ‘)t)\q(t)\ (e, )| dt

(2.19)

The use of Gronwall's inequality, cf. (Eastham,
1970), yields, e C:

exp(—(|TA| +|IVAZ + 4

)x)‘u(x,k)‘ <

1+‘\/k2+k 0

sin y‘ + ‘cos y‘ c,tldt exp(cojox ‘q(t)‘ dt)

< siny|+ [cosy| c,t]dt exp(cOJ.O1 |a(t)]dt)

Cy 1
1+‘\/7»2 +]”

Therefore:

CO[‘Sin"{“F‘COS"{‘CO]

1+ ‘\/}»2 + k‘
[ laco]dt
exp((| 3] + ‘J\/M ‘)x)h eC

lu(x,1)| < exp((| T + ‘3\/# T k‘)x)

exp(c, [ a(v]dt) =

mi
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From (2.12), we get, for LeC:

2 ‘ 2
‘Wf—rk‘: 7»+1] +[—lj <+l 4
2 4 2
ool +lsm+1
4 2| 2

Then from the previous inequality together with
(2.15), we get (2.16).
Also, from (2.7) and (2.11), we have:

V(xX,h) = jo" cosvVAZ + A (x — e q(t)
. 2
{sinycosxlkz + A+ COSYM

dt (2.20)

NVSESS
+ j: cosvA2 +A(x — t)e O Vq(tu(t, A)dt

Hence, by using (2.12), we have the following
estimates.

Lemma 2: For A e C, the following estimates hold:

V(X M) < (@ue, +cs05)exp((| 4] + ‘3\/;\2 ) ‘)x) 2.21)

2

(2.22)

‘V(X,?\,)‘ <e(qyc, +cyC5)e

Proof: Using the inequalities (2.12), we have for
reC:

“cosvVAZ + A (x — t)e Mq(t)

0

invA? + At
sinAcosvA? + A +cosym7 dt
{ NAE A
<

exp(( 3+ [3V27 420 aco)

¢y |cosy|t

siny|+ ————— |dt

fin 1+|VA” + At

< exp(| 3]+ 3V + 2 px) (2.23)
[ la(ollsiny| + [cosy|e,t1dt

<exp((| T4+ ‘3\/;& N ?»‘)x)

J acosin |+ cos]c,tldt

Also, from (2.15), we have:

31

‘ J.Oxcosx/kz +A(x— t)e**q(t)u(t,x)dt‘ <

2.24)
—O8 exp((| 3] + |5V + A])x) (
1+ ‘\/kz +2 [ ‘ ‘

Combining (2.23) and (2.24) together with (2.20),
we obtain for any complex A:

v(x,A)| < exp((| S| +|IVA2 + A
[v(x,M)| < exp((|FA|+| 3V

)X)

I;\q(t)\[\sin ¥|+[cosy|c,t]dt (2.25)

C,Cs

9% (A + ‘S\/XZ + k‘)x)
1+ ‘\/7& +A [

The rest of the proof can be accomplished as in the
previous lemma.

The method and error bounds: In this section we
derive the method of computing eigenvalues of problem
(2.1-2.3) numerically. The basic idea of the scheme
is to split A(A) into two parts:

AL =G +S(L) (3.1)
where, S(A) is the unknown part:
S(A) = cosdu(l,A) +sindv(1, 1) 3.2)

and G(A) is the known part:

cosdsiny +sindcosy)cosvA® + A +

( Y 7)

sinVA2+a | G-3)
NAZ A

G(\)=e™
(cosScosy —sindsiny(L* +A))

Then, from Lemma 2.1 and Lemma 2.2, we have
the following lemma.

Lemma 3: The function S(A) is entire in A for each
x€[0, 1] and the following estimates hold:

IS()| <y exp((| 32| + ‘S\/?f T x‘)) (3.4)
S(V)| < ec, e 3.5
Proof: Since:

S(L)| < |cos 8| |u(, 1)| + [sin 3||v(L,1)| (3.6)
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Table 2: Observe that A,y and the exact solution A are all inside the interval [a., a.] when N =40, m =20 and 6 = 1/10

1k Exact A a a, AN

Ao -6.842613403785793 -6.8427489879179450 -6.8424777272988150 -6.8426134037858080
A -3.758605094490024 -3.7586220927015312 -3.7585880937270120 -3.7586050944900236
Ao 2.758605094490024 2.7585832691014900 2.7586269202341933 2.7586050944900210
M 5.842613403785775 5.8425042541914920 5.8426134037857750 5.8426134037858070
A2 8.964493358995961 8.9636764517170560 8.9653127499942840 8.9644933589959380

Table 3: Observe that A, n and the exact solution A, are all inside the interval [a., a.] when N=30,m=8 and 6 = 1/11

1k Exact Ay a. a, AN

Ao -3.7419233725545210 -3.74237866791672640 -3.74146912206194000 -3.7419233725545240
A -1.2582490364604133 -1.25859144578689120 -1.25790866905852680 -1.2582490364604058
Ao 0.2582490364604128 0.25749078764309463 0.25901052779376754 0.2582490364603885
A 2.7419233725545210 2.74136528771669540 2.74248197201602740 2.7419233725545490
A2 5.8305081032590080 5.83042779415377500 5.83058859204998700 5.8305081032590140

then from (2.15) and (2.21), we get:

IS(L)| < [cos§|

C105 ~ ~ P
O exp((S +‘\s\/k +x‘))+
1+‘\/7f +A <

‘sin 6‘ (qoc, + czcs)exp((‘SM +|3

(3.7)

leading to (3.4). Also, from (2.16), (2.22) and (3.6) we
obtain (3.5).

Let0€(0, 1) and meZ", m>1 be fixed. Let Gom(L)
be the function:

(3.8)

(M) = [Smfk ] SO, heC

The number 6 will be specified latter. The number
1 is the smallest positive integer that suites our
investigation as is seen in the next lemma.

Lemma 4: Fon(A) is an entire function of A which
satisfy the estimates:

ol < 75 e‘x G exp( 31+ mO)+| VAT 2] (3.9)
ec,ch'
F, (L)< ——20 gm0 3.10
£, (V) T+l (3.10)
Moreover, A""'F, () e *(R) and:
B ()= [ E 00 @< e, 3.11)

Where:

32

6172m
m-—1

+1.489830> " +

\/(1 +0) " (=1+(-1+(1 +1)2m)e)
Vo = 0
2m-1

Proof: Since S(A) is entire, then also Fy, m(k) is entire in
Sll’l z

£2

<

A. Combining the estimates e, where

z

1+ ‘z‘
¢, =1.72, cf. (Chadan and Sabatier, 1989) and (3.4), we

obtain:

‘ em( )‘ [ exj e‘f‘z\me'c3
2

AD)heC

(3.12)
exp((| 3|+

leading to (3.9). Also, as the above lemmas, we can
prove (3.10). Therefore if Ae(-o, -1) (0, ®), we have:

m }\“m—l
R e Diea 3.13
o (V)] < e (3.13)
and from which:
B

= (1+6[A)*"
J. }Lm IFe m(}\’)‘ d}\,<C2m 2 , ) —

o| AT eV

T

" 7\‘ 2m-2

. 1+ O

Then A"™'F,,(M)eLl’(R) and by calculating the

integrals we obtain (3.11).
What we have just proved is that Fg ,,(1) belongs to
the Paley-Wiener space PW? with o = 2+m6.
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Table 4: Observe that A,y and the exact solution A are all inside the interval [a., a.] when N =30, m =5 and 0 = 2/25

1k Exact A a a. AN

Ao -3.7419233725545210 -3.7435280774791470 -3.74029081919575300 -3.7419233725312133
A -1.2582490364604133 -1.2591411072738001 -1.25732395370185630 -1.2582490364748544
Ao 0.2582490364604128 0.2539975606237622 0.26261020951039676 0.2582490363879327
M 2.7419233725545210 2.7408673846710445 2.74299646377402300 2.7419233725741194
A2 5.8305081032590080 5.8283634020522745 5.83265514673283900 5.8305081032150110

Hence, Fy (1) can be recovered from its values at

the points A, = E,n € Z via the sampling expansion:
(e}

Fy ()= i Fy (ﬂj sin(oA —nm) (3.15)
= G

Let NeZ",N>m and approximate Fy,(0) by its
truncated series Fo ,, n(A), Where:

Fy ()= i Fy (ﬂj sin(cA —nm) (3.16)
n=-N )

Since A"'F,,,(A) e ’(R), the truncation error is

given for [A| PRAL by:
(e}

[Fy (1) = Fy o (V)| S T () (3.17)
Where:
E (F i
TN ()\‘) = mfl( e,m) ‘Sln 07‘:‘71
1-4™'n(n/o)™" (N+])
(3.18)
1 1
+
[)Nn/c—x \/Nrc/c-r}»}
Let:
%aﬁ:mmﬁéwﬂ Fy ()
oL o,
Then (3.17) implies:
AG) - A, ()] < smex‘ T <2 (3.19)
or c

and 0 is chosen sufficiently small for which | 0] <r.
Let A" be an eigenvalue, that is:

. .. [ sinOA"
AA)=G(A )+ .
A)=GR) [ o

] Fe,m(w) =0

33

Then it follows that:

e (sinoA )" . sinOA ) "
GO\ + E .(\)=
()(ekje‘m,N()(exj

sin OA
oL

amﬁ@v—( )m%mav

and so:

sinOA"
oL

sinOL" ) " .
o ] By )

< T

m

G(k*)+£

Since G(M\)+ Smef”
or

] F,.v(A") is given and,

-m

sin 02, T,(A") has computable upper bound, we can

o
define an enclosure for A", by solving the following
system of inequalities:

sinOA [ . . (sinoa" )"
- T.A)<GA)+
o NA)SGV) ( o J
» (3.20)
e |sinoO)” .
F o)< o T,(2)

. . . . . *
Its solution is an interval containing A and over

which the graph G(A") +[Sig§2”

j F,..n(A) is trapped

between the graphs:

—-m

To(2)

—-m

T,(1") and

: sinOA"

*

sin OA
or'

Use the fact that F, (A)—>F,, (L) converges

uniformly over any compact set and since A" is a simple
root, we obtain for large N:

0

—[G(X) . sin O

oA

a}\, j 1:“G,m,N (}\‘) * 0
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Fig. 1: A(L), An(A) with N =40, m = 10 and 0 = 1/15

Er=—a

s

0.2

. J/\‘- Jrl .ﬁ-f\\.
-15 NA0 T

(VAR IRV

Fig. 2: A(L), An(M) with N'= 40, m =20 and 0 = 1/10

in a neighborhood of A". Hence the graph of

_ 512 fk T,(.) and sin Ok‘ T,(A) at two points with

abscissae a-(A", N)< a,(A", N) and the solution of the
system of inequalities (3.20) is the interval:

(A =[a_ (", N),a, (A", N)]

and in particular L'e In(L"). Now, we summarize the
above idea in the following lemma, (Boumenir, 2000a).

Lemma 5: For any eigenvalue A":

e There exists Ny such that 1" eIN(X*) for N>N,
e [a(M,N),a.(M", N)] >{L"} as N—>oo

Proof: Since all eigenvalues of (2.1-2.3) are simple,
then for N large enough  we have

O\ oA
neighborhood of A.". Now we choose Nj such that:

a[G(x) + (Sm e}“j Feﬁm.N(}L)J >0 say, in a

GO+ [sin oA
oA

Tyo(A)

sin OA
)

‘—m

]ﬂn 1:6.|TL,N (X) =%

has two distinct solutions which we denote by a.(1.", No)
< a/ (X", Ng). The decay of Ty(A) = 0 as N—oo will
ensure the existence of the solutions a.(\", N) and a,(A",
N) as N—ow. For the second point we recall that
Fomn(A) = Fom(X) as N—>co. Hence by taking the limit
we obtain:

sin@" ) " .
- F, .(a,(A,0)=0
on j om (@, (A ,0))

G(a,(1",0)) +[

sin@A" ) .
67\.* j Fe.m(a'—(}\‘ ?OO)) = 0

G(a_(\",0)) + [

that is A(a;) = A(a.) = 0. This leads us to conclude that
a,=a =\", since A" is a simple root.

Examples: In this section, we now illustrate the above
theory by looking at two simple examples where
eigenvalue

enclosures are obtained. We also indicate the effect of
the parameters m and by several choices. Both
numerical results and the associated figures prove the
credibility of the method. In the following examples,
we consider AN be the kth root

of G(V) + [Sin o
oL

j F,.n(*)=0. Also, in the following

examples, we observe that Ay x and the exact solution A
are all inside the interval [a, a.].

Example 1: Consider the boundary value problem:
—y"(X,A) + xy(x,A) = A2iy '(x,A) + y(x,1)), 0<x <1 (4.1)

U, (y) = y(0,4) =0, Uy (y) = y(1,A) =0 (4.2)

This problem is a special case of problem (2.1-2.3)
when q(x) = x, & =y = 0. After some easy calculations:

(4.3)

34
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Fig. 4: A(A), Ax(A) with N =30, m =5 and 0 = 2/25

N=40,m=10,0 = %,EQ(FM) =3.71701x10"

1
N=40,m =20,6 =27,y (Fy,;,) = 2.19108 x 10%*

Example 2: Consider the boundary value problem:

—y"(x,A) + x*y(x,1) = A(2iy'(x,1) + y(x,1)),0< x < 1
(4.4)

U, (y):=y'(0,2) +iry(0,1) =0,

(4.5)
U, (y) = y'(,A) +iry(1,h) =0

This problem is a special case of problem (2.1-2.3)
2

T After some easy

when q(x) = x°, & = v

calculations:

G(A) = —Jh + 27 siny/A + A7

(4.6)
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N=3o,m=8,e=1—11,137(1:e )=1.2251x10°

,m

2
N=30,m=50=—",E,(F,,) =301631

CONCLUSION

In this study, we have used the regularized
sampling method introduced recently (Chadan and
Sabatier, 1989) to compute the eigenvalues of second-
order operator pencil of the form Q-AP, where Q is
second order self adjoint differential operator and P is a
first order and AeC is an eigenvalue parameter. We
recall that this method constitutes an improvement upon
the method based on Shannon’s sampling theory
introduced in (Boumenir, 1999) since it uses a
regularization avoiding any multiple integration. The
method allows us to get higher order estimates of the
eigenvalues at a very low cost. We have presented two
examples to illustrate the method and compared the
computed eigenvalues with the exact ones when they
are available. In these examples we observed, in Tables
1-4, that A, x and the exact solution Ay are all inside the
enclosure interval [a, a:], and also we illustrated, in
Fig. 1-4, a slight different between A(A) and Ax(A) for
different values of N, m and 6.
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