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Abstract: Problem statement: We presented option pricing when the stock prices follows a jump-
diffusion model and their stochastic volatility follows a fractional stochastic volatility model. This 
proposed model exhibits the a memory of a stochastic volatility model that is not expressed in the 
classical stochastic volatility model. Approach: We introduce an approximated method to fractional 
stochastic volatility model perturbed by the fractional Brownian motion. A relationship between 
stochastic differential equations and partial differential equations for a bivariate model is presented. 
Results: By using an approximate method, we provide the approximate solution of the fractional 
stochastic volatility model. And European options are priced by using the risk-neutral valuation. 
Conclusion/Recommendations: The formula of European option is calculated by using the technique 
base on the characteristic function of an underlying asset which can be expressed in an explicit 
formula. A numerical integration technique to simulation fractional stochastic volatility are presented 
in this study. 
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INTRODUCTION 
 
 Let ( ,F,P)Ω .be a probability space with filtration

t 0 t T(F ) ≤ ≤=F ..All processes that we shall consider in 
this section will be defined in this space. For t ∈  [0, T] 
and T <  ∞ a geometric Brownian motion (gBm) model 
with jumps and with fractional stochastic volatility is a 
model of the form: 
 

( )t t t t t tdS S dt v dW S YdN−= µ + +   (1) 

 
where t t [0,T], S (S )∈µ ∈ℜ =  is a process representing a 

price of the underlying risky assets, [ ]t t 0,TW (W ) ∈= is the 

standard Brownian motion, [ ]t t 0,TN (N ) ∈= is a Poisson 

process with intensity λ and St-Y t represents the 
amplitude of the jump which occurs at time t. We 
assume that the processes W and N are independent. 
The volatility process 2

t tv := σ in (1) is modeled by: 
 

( )t t t tdv v dt v dB= ω − θ + ξ   (2) 

where, ω > 0 is the mean long-term volatility, θ∈ℜ  is 
the rate at which the volatility reverts toward its long-
term mean, ξ>0 is the volatility of the volatility process 
and [ ]t t 0,T(B ) ∈ is a fractional Brownian motion.  

 Assume that the processes (St) and (vt) are Ft-
measurable.  
 The notation St- means that whenever there is a 
jump, the value of the process before the jump is used 
on the left-hand side of the formula.  
 The fractional version of Eq. 1 is given by: 
 

( )t t t t t t tdS S dt v dB S Y dN−= µ + +   (3) 

 
 The process St in (3) can be approximated in 

2L ( )Ω  by a semimartingale tSε  in the sense that 

2
t t L ( )

S S 0 as 0,ε

Ω
− → ε →  where tSε  satisfies the 

following equation (Intarasit and Sattayatham, 2010 for 
more details): 
 

( )t t t t t t tdS S dt v dB S Y dNε ε ε ε ε
−= µ + +  
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 The purpose of this study is to consider the 
problem of option pricing for the gBm model with 
jumps (1) and with fractional stochastic volatility (2). 
Since driving process Bt of vt in Eq. 2 is not a 
semimartingale, thus we cannot apply Itô calculus 
directly. We shall thus work in another direction by 
introducing an approximate model of SDE (1) and (2) 
then using it to price European call option. The 
advantage of these approximate model is there no more 
arbitrage. In order to find such a formula, we shall work 
in the space of a risk-neutral probability measure. 
Indeed, there are some authors who have investigated 
this problem before but not in the fractional case, for 
example (Heston, 1993). In fact, there are many author 
studies a volatility and fractional volatility process. For 
example (Magnus and Fosu, 2006) use GARCH to 
model and forecast volatility returns on the Ghana stock 
exchange and (Shamiri and Isa, 2009) study modeling 
and forecasting of volatility of the Malaysian stock 
markets. An empirical study of fractional volatility are 
presented in (Cheong, 2008) for example.  
 Recall that the fractional Brownian motion with 
Hurst coefficient is a Gaussian process H H

t t 0B (B ) ≥=
with zero mean and the covariance function is given by: 
 

( )2HH H 2H 2H
t s

1
R(t,s) E B B s t t s

2
 = = + − −   

 
 If H = 1/2, then R(t, s) = min(t, s) and HtB  is the 

usual standard Brownian motion. In the case 1/2 < H < 
1 the fractional Brownian motion exhibits statistical 
long-range dependency in the sense that 

( )H H H
n 1 n 1 n: E B B B 0+

 ρ = − >   for all n = 1, 2, 3, … and 

nn 1

∞

=
ρ = ∞∑ . Hence, in financial modeling, one usually 

assumes that H (1 / 2,1)∈ . Put  α= 1/2 –H. It is known 

that a fractional Brownian motion H
tB can be 

decomposed as follows:  
 

t
H
t t s

0

1
B Z (t s) dW

(1 )
−α  = + − Γ + α   

∫
  

where, Γ is the gamma function: 
  

( )
0

t sZ [ t s (s) ]dW
−α −α

−∞

= − −∫  

 
 We suppose from now on that 0 < α < 1/2. The 
process Zt has absolutely continuous trajectories, so it 
suffices to consider only the term: 

 
t

t s

0

B (t s) dW−α= −∫  (4) 

 
that has a long-range dependence. 

 Note that tB can be approximated by: 

 

( )t

t s0
B t s dw

−αε = − + ε∫  (5) 

 
in the sense that tBε converges to Bt in 2L ( )Ω as 0,ε →
uniform with respect to t [0,T]∈  (Thao, 2006). 

 Since t t [0,T](B )ε
∈  is a continuous semimartingale 

then Itô calculus can be applied to the following 
Stochastic Differential Equation (SDE): 
 
 ( )t t tdS S dt dB ,0 t Tε ε ε= µ + σ ≤ ≤  

 
 Let tSε be the solution of the above equation. 

Because of the convergence of tBε  to Bt in 2L ( )Ω  when 

0ε → , we shall define the solution of a fractional 
stochastic differential equation of the form: 
 

( )t t tdS S dt dB ,0 t T= µ + σ ≤ ≤  

 

to be a process *tS  defined on the probability space (Ω, 

F, P) such that the process tSε  converges to *
tS  in 

2L ( )Ω as 0ε →  and the convergence is uniform with 

respect tot [0,T]∈ . This definition will be applied to the 

other similar fractional stochastic differential equations 
which will appear later.  
 A risk-neutral model for a gBm model combining 
jumps with stochastic volatility is introduced next. Its 
solution will also be discussed. Firstly, let us rewrite the 
model (1) into an integral form as follows: 
 

t t t

t 0 s s s s s s s

0 0 0

S S S ds v S dW S Y dN−= + µ + +∫ ∫ ∫    (6) 

 
 Note that the last term on the right hand side of Eq. 
6 is defined by: 
 

 
tt N

s s s n
n 10

S Y dN : S−
=

= ∆∑∫  

 
Where: 
 

n n n n nS : ST ST S Y− −∆ = − =  
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 The assumption Yn > 0 always leads to positive 
values of the stock prices. The process n n N(Y ) ∈  is 

assumed to be independently identically distributed 
(i.i.d.) with density φY (y) and n n N(T ) ∈ is a sequence of 

jump time. 
 In order to solve Eq. 6 with an initial condition 

t ( t 0) 0S S= = we assume that 
T 2

s s0
E v S ds  < ∞
  ∫ . Then, by 

an application of Itô’s formula for the jump process 
(Cont and Tankov, 2009, Theorem 8.14) on Eq. 6 with 

t tf (S , t) log(S )=  we get: 
 

t t t

t 0 s s s s s

0 0 0

1
S S exp t v ds v dW log(1 Y )dN

2

 
= µ − + + +  

 
∫ ∫ ∫  

 
 It is assumed that a risk-neutral probability 
measure M exists; the asset price St, under this risk-
neutral measure, follows a jump-diffusion process, with 
zero-mean, risk-free rate r: 
 

( )t t M t t t t t tdS S r E [Y ] dt v dW ) S Y dN−= − λ + +   (7) 

 
and the stochastic variance vt satisfies the following 
fractional SDE: 
 

( )t t t tdv v dt v dB= ω − θ + ξ   (8) 

 
with an initial condition t ( t 0) 0 2v v L ( )= = ∈ Ω . 

 It is only necessary to know that the risk-neutral 
measure exists (Cont and Tankov, 2009). Hence, all 
processes to be discussed after this will be the processes 
under the risk-neutral probability measure M.  
 Using an initial conditiont ( t 0) 0 2S S L ( )= = ∈ Ω , the 

solution of Eq. 7 is given by: 
 

t t t

M s s s s

0 0 0
t 0 t

s s

0

1
(r E [Y ])ds v ds v dW

2
S S exp .

log(1 Y )dN

 
− λ − + 

 =  
 + + 
 

∫ ∫ ∫

∫
 (9) 

 
 Under approximate method, for each ε > 0, 
consider an approximate model of Eq. 7 and 8 
respectively: 
 

( )t t M t t t t t tdS S (r E [Y ])dt v W S Y dNε ε ε ε
−= − λ + +   (10) 

 

( )t t t tdv v dt v dBε ε ε ε= ω − θ + ξ  (11) 

 By using the same initial condition as in Eq. 10, we 
have: 
 

t t

M s s

0 0
t 0 t t

s s s s

0 0

1
(r E [Y ])ds v ds

2
S S exp

v dW log(1 Y dN )

ε

ε

ε

 
− λ − + 

 =  
 + + 
 

∫ ∫

∫ ∫
 (12) 

 
and one can prove that tSε converges to St of Eq. 9 in 

2L ( )Ω as 0ε → and uniformly on t ∈ [0, T]. Moreover, 

one can show that the solution tvε of Eq. 11 converges 

in 2L ( )Ω to the process: 

 
t

t 0 s t

0

v v exp( s B )ds exp( B t)
 

= + ω γ − ξ ξ − γ  
 

∫  

 
for some real constant γ . Hence, by definition, vt is the 
solution of Eq. 8 (Intarasit and Sattayatham, 2010, 
Lemma 2).  
 

MATERIALS AND METHODS  
 
 The relationship between the stochastic deferential 
equation and the partial differential equation for 
bivarate model is presented. 
 Consider the process 1 2

t t tX (X ,X )=
�

where 1
tX  and 

2
tX  are processes in ℜ  and satisfy the following 

equations: 
 

1 1
t 1 1 t t t t

2
tt 2 2

dX f (t)dt g (t)dW X Y dN

dX f (t)dt g (t)dW

−= + +

= +  (13)

 

 
where, f1, g1, f2 and g2 are all continuous functions from 
[0, T] into ℜ .  
 Since every compound Poisson process can be 
represented as an integral form of Poisson random 
measure (Cont and Tankov, 2009) then the last term on 
the right hand side of Eq. 13 can be written as follows: 
 

t t

n n

t N N
1 1 1 1
s s s n n T T

n 1 n 10

t
1
s z

0

X Y dN X Y [X X ]

X zJ (dsdz)

− − −
= =

−
ℜ

= = −

=

∑ ∑∫

∫ ∫

 

 
where, Yn are i.i.d. random variables with density φY 
(y) and JZ is a Poisson random measure of the process 

tN

t nn 1
Z Y

=
=∑  with intensity measure Y z(d )dtλφ .  
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 Let U(x)
�

 be a bounded real function on 2ℜ  and 

twice continuously differentiable in 2
1 2x (x ,x )= ∈ℜ�  and: 

 

( )T tu(x, t) E u X X x = = 

� �� �
 (14) 

 
 By the two dimensional Dynkin’s formula 
(Hanson, 2007, Theorem 7.7), u is a solution of the 
Partial Integro-Differential Equation (PIDE): 
 

[ ] Y

v(x, t)
0 Av(x, t) v(x y, t) v(x, t) (y)dy

t ℜ

∂= + + λ + − φ
∂ ∫
�

� � � �
 

 
subject to the final condition u(x,T) U(x)=� �

 and
y (y,0).=�  The notation A  is defined by: 
 

 
( )

2
2

1 2 1 2
1 2 1

2 2
2

1 2 2 2
1 2 2

u(x, t) u(x, t) 1 u(x, t)
Au x, t f (t) f (t) g (t)

x x 2 x

u(x, t) 1 u(x, t)
g (t)g (t) g (t)

x x 2 x

∂ ∂ ∂= + +
∂ ∂ ∂

∂ ∂+ρ +
∂ ∂ ∂

� � �
�

� �  

 
and the correlation ρ  defined by t tCorr[dW ,dW ]ρ = . 

 Next, we present the classical method to pricing of 
European call option. The European call option formula 
in terms of characteristic function is given in the next 
section. 
 Let C denote the price at time t of a European style 
call option on the current price of the underlying asset 
St with strike price K and expiration time T. The 
terminal payoff of a European call option on the 
underling stock St with strike price K is max (ST- K; 0). 
This means that the holder will exercise his right only if 
ST > K and then his gain is ST -K. Otherwise, if ST> K, 
then the holder will buy the underlying asset from the 
market and the value of the option is zero. Assuming 
the risk-free interest rate r is constant over the lifetime 
of the option, the price of the European call at time t is 
equal to the discounted conditional expected payoff: 
 

( )

r (T t )

r ( T t )

r (T t)
t t M T t t

r(T t )
T M T t t T

K

t T M T t t T

KM T t

M T t t T

K

t 1 t t 2 t t

C S ,v , t;K,T e E max(S K,0) S ,v

e (S K)P (S | S ,v )dS

1
S S P (S | S ,v )dS

E S S , t

Ke P (S | S ,v )dS

S P (S ,v , t;K T) Ke P (S ,v , t;K T)

− −

− −

− −

∞
− −

∞

∞

 = − 

 
= −  

 

 
 =
  

  

−

= < − <

∫

∫

∫

 (15) 

where, EM is the expectation with respect to the risk-
neutral probability measure, M T t tP (S | S ,v ) is the 

corresponding conditional density given (St, vt) and: 
 

1 t t T M T t t T M T t t

K

P (S ,v , t;K,T) S P (S S ,v )dS / E [S | S ,v ]
∞ 

=   
 
∫  

 
 Note that P1 is the risk-neutral probability that ST > 
K (since the integrand is nonnegative and the integral 
over [0, ∞) is one) and finally, that: 
 

2 t t M t t T T t t
K

P (S ,v , t;K,T) P (S ,v )dS Prob(S K | S ,v )
∞

= = >∫  

 
is the risk-neutral in-the-money probability. Moreover,

r(T t)
M T t t tE [S | S ,v ] e S for t 0−= ≥ . 

 Note that we do not have a formulation for these 
probabilities thus we will calculate some 
approximations of P1 and P2. Indeed, these probabilities 
are related to characteristic functions which have 
formulation as will be seen in Lemma 2.  
 

RESULTS 
 
 In order to calculate the price of a European call 
option with strike price K and maturity T of the model 
(7) for which its fractional stochastic volatility satisfies 
Eq. 8, we consider the approximate model (10) and 

(11). Firstly, we consider logarithm of tSε namely 

t t tL ,i.e. L log(S )ε ε ε=  where tSε  satisfies Eq. 12 (the 

solution of Eq. 10) and its inverse t tS exp(L )ε ε= . Denote 

k = log (K) the logarithm of the strike price. Secondly, 
we now refer to SDE (11), since this approximate 
model is driven by a semimartingale tBε  and hence 

there is no opportunity of arbitrage (for more details 
(Thao, 2006)). This is the advantage of our approximate 
approach and we will use this model for pricing the 
European call option instead of SDE (8). 
 Note that we can write: 
 

t t tdB dt dWε ε α= αϕ + ε   (16) 

 

where 
t 1

t u0
(t u ) dW , 1/ 2 Hε −αϕ = − + ε α = −∫  and 0< α < 

1/2 ((Thao, 2006), Lemma 2.1). 
 Substituting (16) into Eq. 11, we obtain: 
 

t t t t tdv ( ( )v )dt v dWε ε ε α ε= ω + αξϕ − θ + ξε  (17) 
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 Consider the SDE (10) and (17). Define a function 
U on 2ℜ  as follows: 
 

r (T t )
1 2 1U(x ,x ) e max(exp(x ),0).− −= − κ  

 
 By virtue of Eq. 14: 
 

( )M T t

r(T t)
M t t t

u(x, t) E U X X x

e E max(exp((L ) ),0) L ,v v

: C( ,v , t; ,T)

− − ε ε ε ε ε

ε ε

 = = 

 = − κ = = 

= κ

� �� �

ℓ

ℓ

 

 
satisfies the following PIDE: 
 

2
2

1 2 1 2

2 2
2

1 2 2 2

Y

C C C 1 C
0 f f g

t v 2 ( )

C 1 C
g g g rC

v 2 (v )

C( y,v , t; ,T) C( ,v , t; ,T) (y)dy.

ε ε ε

ε ε ε

ε ε ε ε

ℜ

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

∂ ∂+ρ + −
∂ ∂ ∂

 +λ + κ − κ φ ∫

ℓ ℓ

ℓ

ℓ ℓ

 

 (18) 

 
 In the current state variable, the last line of Eq. 15 
becomes: 
 

1

r(T t)
2

C( ,v , t; ,T) e P ( ,v , t; ,T)

e P ( ,v , t; ,T).

εε ε ε ε

κ− − ε ε

κ = κ

− κ

ℓ
ℓ ℓ

ℓ

  (19) 

 
 The following lemma shows the relationship 
between P1 and P2 in the option value of the Eq. 19. 
 
Lemma 1: The probability P1 in the option value of the 
Eq. 19 satisfies the following PIDE: 
 

3/ 21 1 1
1

M t 1

y
1 Y

1
1 1

P P P
0 A[P ]( ,v , t; ,T) v (v )

t v

(r E (Y ))P

(e 1)P ( y,v , t; ,T) (y)dy

p
: A [P ]( , v , t; ,T)

t

ε ε ε α ε
ε ε

ε ε

ℜ

ε ε

∂ ∂ ∂= + κ + + ρξε
∂ ∂ ∂

+ − λ

 +λ − + κ φ 

∂= + κ
∂

∫

ℓ
ℓ

ℓ

ℓ

 

(20) 

 
subject to the boundary condition at expiration time t = 
T: 
 

1P ( ,v ,T; ,T) 1 .ε
ε ε

>κ
κ =

ℓ
ℓ   (21) 

 
 And the probability P2 in the option value of the 
Eq. 19 satisfies the following PIDE: 

2
2

2
2 2

P
0 ( ,v , t; ,T) rP

t

P
: A P ( ,v , t; ,T)

t

ε ε

ε ε

∂= κ +
∂

∂
 = + κ ∂

ℓ

ℓ

  (22) 

 
subject to the boundary condition at expiration time t = T: 
 

2P ( ,v ,T; ,T) 1ε
ε ε

>κ
κ =

ℓ
ℓ   (23) 

 
Where: 
 

[ ]

( )

t

2

2

2 2
3/2 2 2 2

2

Y

1 f
A f ( , v , t; ,T) : (r E[Y ] v )

2

f 1 f
( )v v

v 2 ( )

f 1 f
(v ) (v )

v 2 (v )

f ( y,v , t; ,T)
rf (y)dy

f ( ,v , t; ,T)

ε ε ε
ε

ε ε ε
ε ε

α ε α ε
ε ε ε

ε ε

ε ε
ℜ

∂κ = − λ −
∂

∂ ∂+ ω + αξϕ − θ +
∂ ∂

∂ ∂+ρξε + ξ ε
∂ ∂ ∂

 + κ
− + λ φ 

− κ  
∫

ℓ
ℓ

ℓ

ℓ

ℓ

ℓ

  (24) 

 
 Note that 1 1ε >κ

=
ℓ  if 

ε > κℓ  and otherwise1 0ε >κ
=

ℓ
. 

 
Proof: Calculating the partial derivatives of function 
C( , v , t; ,T)ε ε κℓ in Eq. 19 and substituting it’s in Eq. 18 
then separating it by assumed independent terms P1 and 
P2. This gives two PIDEs for the risk-neutralized 
probability jP ( ,v , t; ,T),ε ε κℓ j =1, 2. For j=1 we have: 
 

( )

1 1
M t 1

2
1 1 1

t 12

2 2
3/ 2 2 2 21 1 1

12

y
1

1

P 1 P
0 r E (Y ) v P

t 2

P 1 P P
( )v v 2 P

v 2 ( )

P P 1 P
(v ) (v ) rP

v v 2 (v )

(e 1)P ( y,v , t;T)

(P ( y, v , t;T) P

ε
ε

ε ε ε
ε ε ε

α ε α ε
ε ε ε ε

ε ε

ε ε
ℜ

 ∂ ∂ = + − λ − +  ∂ ∂  

 ∂ ∂ ∂+ ω + αξϕ − θ + + + ∂ ∂ 

 ∂ ∂ ∂+ρξε + + ξ ε − ∂ ∂ ∂ ∂ 

− +
+λ

+ + −∫

ℓ

ℓ ℓ

ℓ

ℓ

ℓ 1

Y(y)dy
( y, v , t;T)ε ε

 
φ + ℓ

(25) 

 
subject to the boundary condition at the expiration time 
t = T according to Eq. 21. By using the notation in Eq. 
24 to PIDE (25) we get Eq. 20: 
 For 2P ( ,v , t; ,T),ε ε κℓ we have: 
 

 

2 2
2 M t

2
2 2

t 2

2 2
3/ 2 2 2 21 1

2

2
2 Y

2

P 1 P
0 rP r E (Y ) v

t 2

P 1 P
( ( )v ) v

v 2 ( )

P 1 P
(v ) (v )

v 2 (v )

P ( y, v , t; ,T)
rP (y)dy

P ( y, v , t; ,T)

ε
ε

ε ε ε
ε ε

α ε α ε
ε ε ε

ε ε

ε ε
ℜ

 ∂ ∂ = + + − λ −   ∂ ∂   

∂ ∂+ ω αξϕ − θ +
∂ ∂

∂ ∂+ρξε + ξ ε
∂ ∂ ∂

 + κ
− + λ φ 

− + κ  
∫

ℓ

ℓ

ℓ

ℓ

ℓ
 

(26) 
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subject to the boundary condition at expiration time t = 
T according to Eq. 23. Again, by using the notation (24) 
to PIDE (26) we get Eq. 22. The proof is now 
completed. 
 Next, an approximate formula of European call 
option is calculated. For j = 1, 2 the characteristic 
functions for jP ( ,v , t; ,T)ε ε κℓ  with respect to the 

variable k are defined by: 
 

ix
j jf ( , v , t : x,T) : e dP ( ,v , t : ,T)

∞
ε ε κ ε ε

−∞

= − κ∫ℓ ℓ  

 
with a minus sign to account for the negativity of the 
measure dPj . Note that fj also satisfies similar PIDEs: 
 

j
j j

f
A f ( , v , t; ,T) 0

t
ε ε∂

 + κ = ∂
ℓ

 
(27) 

 
with the respective boundary conditions: 
 

jxk
j j

ix ix

f ( ,v ,T;x,T) e dP ( ,v ,T; ,T)

e ( ( )d ) e
ε

∞
ε ε ε ε

−∞

∞
κ ε

−∞

= − κ

= − −δ − κ κ =

∫

∫
ℓ

ℓ ℓ

ℓ

 

 
Since: 
 

jdP ( ,v ,T : ,T) d1 dH( ) ( )dε
ε ε ε ε

>κ
κ = = − κ = −δ − κ κ

ℓ
ℓ ℓ ℓ  

 
 Note that the probabilities Pj, j = 1, 2 are the 
conditional probabilities that the option expires in-the-
money that is: 
 

j T t tP M{L logK | L ,v v}ε ε ε ε= ≥ = =ℓ  

 
where again t tL logSε ε=  and t t(S ,v )ε ε  evolves according 

to Eq. 10 and 11 respectively. 
  Using a Fourier transform method one gets: 
 

ix
j

j

0

e f ( ,v , t : x,T)1 1
dP ( ,v , t : ,T) Re dx

2 ix+

− κ ε ε+∞
ε ε  

κ = +  π   
∫

ℓ
ℓ

 

(28) 

 
where, j = 1, 2 and the characteristic function 

jf ( ,v , t;x,T)ε ε
ℓ also satisfy the PIDEs in lemma 1, 

namely Eq. 20 and 22 and Re[.] denoting the real 
component of a complex number. The practice to 
solving of this kind of equations is to guess the general 
form of the solution. The following lemma shows how 

to calculate the probabilities P1 and P2 as they appeared 
in Lemma 1.  
 
Lemma 2: The probabilities P1 and P2 can be 
calculated by Eq. 28 where the explicit expressions of 
the characteristic functions is given as follows. (i) The 
characteristic function f1 is given by: 
 

j 1 1f ( ,v , t;x, t ) exp(g ( ) v h ( ) jx )ε ε ε ε+ τ = τ + τ +ℓ ℓ  

 
where, T tτ = − : 
 

1

1

1

1 M t M t

(ix 1)y
Y

1 1
1 12 2

1

2 2
1 1

1 2 2
1 1 1 1

1 t

g ( ) r E (Y ) jx E (Y )

(e 1) (y)dy

2 ( ) (1 e )
log 1 ( ) ,

v 2

( )(e 1)
h ( ) ,

v ( ( )e )

v (1 ix) ( )

+

ℜ

τ

α ε

∆ τ

∆ ταε ε

α ε ε

 τ = − λ − λ τ 

+τλ − φ

  ω +η + −− − + ∆ + η τ  ξ ε ∆   

η − ∆ −τ =
ξ ε η + ∆ − η − ∆

η = ρξε + + αξ − θ

∫
△

△

ℓ

 

and 2 2 2
1 1 ix(ix 1)α∆ = η − ξ ε +  

 
(ii) The characteristic function f2 is given by: 
 

( )2 2 2f , v , t;x, t exp(g ( ) v h ( ) ix r )ε ε ε ε+ τ = τ + τ + + τℓ ℓ  
 
Where: 
 

2

2

2

ixy
2 M t Y

2 2
2 22 2

2

2 2
2 2

2 2 2
2 2 2 2

2 t

g ( ) [r E [Y ]iy r] (e 1) (y)dy

2 ( ) (1 e )
log 1 ( ) ,

v 2

( )(e 1)
h ( ) ,

v ( ( )e )

v ix ( )

ℜ

∆ τ

α ε

∆ τ

∆ τα ε

α ε ε

τ = − λ − τ + τλ − φ

  ω ∆ + η + −− − + ∆ + η τ  ξ ε ∆   

η − ∆ −τ =
ξ ε η + ∆ − η − ∆

η = ρξε + αξϕ − θ

∫

 

and 2 2 2
2 2 v ix(ix 1)α ε∆ = η + ξ ε −  

 
Proof: Proof of (i). To solve for the characteristic 
explicitly, letting T tτ = −  be the time-to-go. Following 
(Heston, 1993), we conjecture that the function f1 is 
given by: 
 

( )1 1 1f ( ,v , t;x, t ) exp (g )( ) v h ( ) ixε ε ε ε+ τ = τ + τ +ℓ ℓ
 

(29) 

 
and the boundary condition g1(0) = 0 = h1(0). This 
conjecture exploits the linearity of the coefficient in 
PIDE (27). 
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 Note that the characteristic functions of f1 always 
exists. In order to substitute (29) into (27), firstly, we 
calculate the partial derivative of f1 and substitute it’s 
into Eq. 27. After canceling the common factor of f1, 
we get a simplified form as follows: 
 

1 1 M t

3/2
t 1

2 3/2 2 2 2 2
1 1

(ix 1)y
M t Y

1
0 g ( ) v h ( ) (r E [Y ] v )ix

2

( ( )v ) (v ) h ( )

1 1
v x (v ) ixh ( ) (v ) h ( )

2 2

E [Y ] (e 1) (y)dy

ε ε

ε ε α ε

ε α ε α ε

+

ℜ

′ ′= τ − τ + − λ +

+ ω + αξϕ − θ + ρξε τ

− + ρξε τ + ξ ε τ

−λ + λ − φ∫

 

 
 By separating the order vε and ordering the 
remaining terms, we can reduce it to two Ordinary 
Differential Equations (ODEs): 
 

2 2 2
1 1

2
t 1

1
h ( ) v h ( ) ( v (1 ix)

2
1 1

( ))h ( ) ix x
2 2

α ε α ε

ε

′ τ = ξ ε τ + ρξε +

+ αξϕ − θ τ + −
 

(30) 

 

1 1 M t M t

(ix 1)y
Y

g ( ) h ( ) (r E [Y ])ix E [Y ]

(e 1) (y)dy+

ℜ

′ τ = ω τ + − λ − λ

+λ − φ∫
 

(31) 

 

 Let 1 tv (1 ix) ( )α ε εη = ρξε + + αξϕ − θ  and substitute 

it to Eq. 30.  
 
We get: 
 

2 2 2 1
1 1 12 2 2 2

2 2 2
1 12 2

1 2 2

2 2 2
1 1

1 2 2

2 2 1 1
1 12 2

1 2 1
h ( ) v h ( ) h ( ) ix(ix 1)

2 v v

2 4 4 v ix(ix 1)1
h ( )

2 2 v

2 4 4 v ix(ix 1)
h ( )

2 v

1
v h ( ) h

2 v

α ε
α ε α ε

α ε
α

α ε

α ε

α ε

α ε
α ε

 η′ τ = ξ ε τ + τ + + ξ ε ξ ε 

 η + η − ξ ε +
 = ξ ε τ +
 ξ ε
 

 η − η − ξ ε +
 × τ +
 ξ ε
 

 η + ∆= ξ ε τ + ξ ε 

1 1
2 2

( )
vα ε

 η − ∆τ ξ ε 

 

 
Where: 
 

2 2 2
1 1 v ix(ix 1)α ε∆ = η − ξ ε +  

 
 By method of variable separation, we have: 
 

 2 21

1 1 1 1
1 12 2 2 2

2dh ( )
v d

h ( ) h ( )
v v

α ε

α ε α ε

τ = ξ ε τ
  η + ∆ η − ∆τ + τ +  ξ ε ξ ε  

 

 Using partial fractions, we get: 
 

1
1 1 1 11

1 12 2 2 2

1 1 1
dh ( ) d

h ( ) h ( )
v vα ε α ε

 
 
 − τ = τ
 η − ∆ η + ∆∆ τ + τ + ξ ε ξ ε 

 

 
 Integrating both sides, we obtain: 
 

1 1
1 2

1
1 1

1 2

h ( )
v

log C
h ( )

v

ε ε

ε ε

 η − ∆τ + ξ α  = ∆ τ +
 η + ∆τ + ξ α 

 

 

 Using boundary condition 1h ( 0) 0τ = =  we get: 

 

1 1

1 1

C log
 η − ∆=  η + ∆ 

 

 
 Solving for h1, we obtain: 
 

1

1

2 2
1 1

1 2 2
1 1 1 1

( )(e 1)
h ( )

c ( ( )e )

∆ τ

∆ τα ε

η − ∆ −τ =
ξ ε η + ∆ − η − ∆

 

 
 In order to solve g1 (τ) explicitly, we substitute h1 
into Eq. 31 and integrate with respect to T on both 
sides.  
 Then we get: 
 

1

1 M t t

(ix 1)y
Y

1 1
1 12 2

g ( ) (r E (Y ))ix E(Y )

(e 1) (y)dy

2 ( ) (1 e )
log 1 ( )

v

+

ℜ

∆ τ

α ε

 τ = − λ − λ τ 

+τλ − φ

  ω ∆ + η + −− − + ∆ + η τ  ξ ε    

∫  

 
 Proof of (ii). The details of the proof are similar to 
case (i). Hence, we have: 
 

2 2 2f ( , v , t; y, t ) exp(g ( ) v h ( ) iy r )ε ε ε ε+ τ = τ + τ + + τℓ ℓ  

 
where, 2 2 2 2g ( ), h ( ), andτ τ η ∆ are as given in the 

Lemma. 
 We can thus evaluate the characteristic functions in 
explicit form. However, we are interested in the risk-
neutral probabilities Pj. These can be inverted from the 
characteristic functions by performing the following 
integration: 
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j t t j

ix
j t

0

P̂ (S ,v ;K,T) P ( ,v , t; ,T)

e f ( , v t;x,T)1 1
Re dx

2 ix

ε ε ε ε

− κ ε ε+∞

+

= κ

 
= +  

π   
∫

ℓ

ℓ  

 
for j = 1, 2, where t tlog(S ), v log(v ),ε ε ε ε= =ℓ and 

log(K).κ =  
 To verify the above equation, firstly we note that: 
 

tix (log(S log(K))
M t t t

ix( K)
M t t

E e log (S ) L ,v v

E e L ,v v

ε

ε

− ε ε ε ε

− ε ε ε ε

 = =
 

 = = =
 

ℓ
ℓ

 

 
 The computation of the right of above equation are: 
 

ix( ) ix ix
j j
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∫
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Then: 
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∫

ℓ

ℓ

ℓ
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where we have used the Dirichlet formula

sin(x)
dx 1

x

+∞

−∞
=∫  and the sgn function is defined as sgn

sgn(x) 1= if x 0> , 0 if x 0= and and 1−  if x 0< .  

 In summary, we have just proved the following 
main theorem. 
  
Theorem 3: For each ε > 0; the value of a European 
call option written on the model (10) and (11) is: 

t t t 1 t t

r (T t )
2 t t

ˆ ˆC(S ,v , t,K,T) S P (S ,v , t,K,T)

ˆKe P (S ,v , t,K,T)

ε ε ε ε ε

− − ε ε

=

−
 

 
where, P1 and P2 are as given in Lemma 2. 
 

DISCUSSION 
 
 A simple and efficient numerical scheme for 
determining the approximate process tSε and tvε is 

presented. 
 In order to compute the value of t tĈ(S ,v , t;K,T)ε ε

according to the formula as given in Theorem 3, we 
firstly choose a real number 0ε > , the solution that we 
get is the value of a European call option of the 
approximation model (10) with (11) and this value can 
be used as an approximating value of a call option of 
the fractional model (7) including model (8) as ε 
approaches zero. As the Monte-Carlo based technique, 
it will generate discrete sample values iSε and ivε of the 

stock and its variance respectively, by discretizing the 
associated SDEs (10) and (11). A natural choice for this 
purpose is the Euler scheme: 
 

i 1 i 1 M i i t i i i

i 1 i i i

ˆ ˆ ˆS S ((r E [Y ])dt v W ) S Y N

ˆ ˆ ˆv ( v )h v B

ε ε ε ε
+ + −

ε ε ε ε
+

= − λ + ∆ + ∆

= ω − θ + ξ ∆  

(32) 

 
Where: 
∆Wt = Standard normal random variable with variance 

h, which is defined as the time mesh-size 
∆Ni = A Poisson process with intensity λh 
 
 These processes, W and N are assumed 
independent. However, (Glasserman, 2004) suggests 
that the second-order scheme has a better convergence 
(less bias) for option pricing applications but this 
scheme quite complex. For the simulation of Brownian 
motion there are numerous procedures see (Glasserman, 
2004). For a sample path of fractional Brownian motion 
in Eq. 10, we can be simulated, for fixed t > 0, as: 
 

t t

N N

N

t (k 1) k
k 1

N

(k 1) k
k 1

N

k
k 1

k
B (t t) [W W ]

N

k t
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t k
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α
+

=

α
+

=

α

=

− −

= − −

= −

∑

∑

∑

≃

 

 
where, kg N(0,1) and 0 1/ 2.< α <∼  
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 There are two basic estimation of the volatility 
process of Eq. 32 in the cast the volatility process is 
constant. The first method considers the function of 
density of transition from solution of Eq. 32. The 
second method proposes the estimate of the parameters 
of the model via the observation. Khaled and Samia 
(2010) for more details). In our case, the volatility of 
Eq. 32 is the stochastic process. There are many articles 
provided the estimation procedure for example see 
(Fiorentini et al., 2002).  
 

CONCLUSION 
 

 An alternative fractional stochastic volatility model 
with jump is proposed in this study which the stock 
prices follows a geometric Brownian motion combining 
a compound Poisson processes and a stochastic 
volatility perturbed by a fractional Brownian motion. 
This proposed model exhibits a long memory of a 
stochastic volatility model that is not expressed in the 
classical stochastic volatility model. By using a 
fundamental result of the L2-approximation of a 
fractional Brownian motion, we provide an 
approximate solution of bivariate diffusion model. A 
relationship between stochastic differential equations 
and partial differential equations for a bivariate model 
is presented. The risk-neutral method for valuation of 
options are reviewed. By using the technique base on 
the characteristic function of an underlying assets, an 
approximate formula of a European options is derived 
in an explicit formula. Finally a numerical integration 
technique to simulation the fractional stochastic 
volatility are present.  
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