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Abstract: Problem statement: Literatures have shown that thermal processes in the interior of the 
earth and the classical thermal explosion are analogous and that combustion processes are characterized 
by ignition and explosion. The heat released during the thermal explosion that occurs in the interior of the 
earth requires more attention. Approach: The study investigated the role of activation energies ratio in 
the thermal explosion that occurs in the earth interior during gravitational differentiation. The study 
examined the effects of activation energies on the unsteady, steady and homogenous reactions of the 
resulting energy equation and provided the numerical and exact solutions of the equations. Results: The 
results showed that activation energies ratio has different implication in terms of heat release and 
established the criteria for the blow up to occur in two different homogenous reactions. It was observed 
that an increase in activation energies ratio increased the maximum temperature of the reactions but 
reduced the ignition time of the homogenous states. Conclusion: The results imply that for any non-zero 
second activation energy, ignition time lowers and more heat are released.  
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INTRODUCTION 

 
 Earthquake is a recent natural disastrous 
occurrence in some parts of the world and this requires 
more scientific attention and knowledge. One of the 
causes of earth quake is the ignition of underground 
hydrocarbons (methane gas (McDonald, 2005)) in the 
interior of the earth. The ignition source is activated 
during gravitational differentiation and when the 
gaseous heated materials come in contact with magma, 
it may lead to explosion. Thus, the energy which 
triggers the process is the activation energy which is the 
energy which the colliding molecules must possess 
before the ignition could result into a reaction.  
 Some scientific literatures have shown that most 
combustion problems are characterized by two 
processes; Ignition and Explosion; and some of the 
useful results on classical thermal explosion are 
recently obtained in (Kannan and Udayakumar, 2009). 
Meanwhile, thermal processes occur in the earth 
interior, although differ from characteristic thermal 
explosion but according to (Vityazev, 2004; Barenblatt, 
1985) they are analogous. There are many sources of 
heat in the interior of the earth but two major sources 

constitute the exothermic regimes; the Gravitational 
Differentiation (GD) and the decay of radioactive 
elements.  
 Explosion generally results from two exothermic 
reactions; one step follows the other in very rapid 
succession depending on the activation energies of the 
reactions has equally shown that although multiple 
steps are involved in chemical reaction but two major 
steps are basically involved and these include chemical 
decomposition and combustion process. The first 
activation energy is for decomposition while the other 
is meant for combustion. This implies that during the 
earth movement chemical decomposition and 
combustion takes place in the presence of activation 
energies. 
 Having been motivated by (Ayeni et al., 2006; 
Vityazev, 2004) in their work on thermal explosion in 
the evolution of the earth and for which they considered 
only one activation energy for the entire process. This 
study therefore extends their work by breaking the 
activation energy into two; one for decomposition and 
the other for combustion. And the study examines the 
role of these activation energies in unsteady, steady and 
homogenous states during gravitational differentiation. 



J. Math. & Stat., 7 (3): 222-226, 2011 
 

223 

Following (Buckmaster et al., 2008), the criteria for the 
blow up to occur in the homogenous reaction even 
when no heat is generated from the decaying of 
radioactive substance, are established.  
 
Problem Statement: Following (Ayeni et al., 2006; 
Vityazev, 2004), a model of sinking of heavy inclusions 
in a viscous matrix η is considered. The thermal 
conductivity equation governing the generation of heat 
during GD and the decay of radioactive elements is 
given by (Ayeni et al., 2006; Vityazev, 2004): 
  

( )p d r d

T
div T

t

∂ρ = λ + λ ∆ + ε + ε
∂

ℓ  (1) 

 
 Satisfying the initial and boundary conditions: 
 
 0 0T(x,0) T , T( 1, t) T(1, t) T= − = =  (2) 

 
where, εd and εr are the rate of generation of heat by GD 
and radioactive decay respectively. According to 
(Vityazev, 2004), the Stoke’s mode of sinking of 
inclusions Re<<1, εd  is proportional to the flow of 
excess density d dc (1 c) g Vε ≈ − ∆ρ , where c is the 

fraction of the volume occupied by inclusions 
2

d

ga
V (1 2.5c)2

9

∆ρ= −
η

 is their velocity and η is the 

viscosity defined by: 
  
 o 1 2exp((E ( ) E ( )) / RT)η = η ρ + ρ  (3)  

 
where, E1 and E2 ( )2 1E E= α respectively account for the 

two activation energies involved during decomposition 
and combustion processes and α is the ratio of the 
activation energies.  
 
Remark 1: ( )2E 0ρ = was considered by (Ayeni et al., 

2006; Vityazev, 2004). 
 The following dimensionless parameters are 
introduced to Eq 1: 
 

2
0 0

0 2 12
1 1

RT RT 4æ h
T T , , t , z ,E E

E E h 2

θ= + ε = τ = = ξ = α  (4)  

  
 And for highly exothermic reaction, the Eq. 1 
together with conditions (2) in a dimensionless form is: 
 

(1 )
(1 )n

eo d r1 P e e
+α θ

+α θ ∂ θ ∂ ∂θ= + + Γ + Γ ∂τ ∂ξ ∂ξ 
 (5) 

 Together with the initial and boundary conditions: 
 
 ( ,0) 0, ( 1, ) (1, ) 0θ ξ = θ − τ = θ τ =  (6) 

  
Where: 
 

2 2 2
r 1 d 1 o 1

r d2 2 2
o o o

h E h E gcv h E
,

4 RT 4 RT 4 RT

ε ε ∆ρΓ = Γ = =
λ λ λ

 

 
Where: 
θ = Dimensionless temperature of the system 
pe = Peclet number 
εr and εd = Rates of sinking of inclusion 
λ = Ordinary thermal conductivity 
R = Universal gas constant 
ρ = Density 
g = gravity 
T0 = Initial temperature 
v0 = Initial velocity 
h = Thickness of a flat layer  
n = Order of thermal conductivity 
 
Remark 2: When α = 0, the unsteady equation 
formulated by (Vityazev, 2004) is obtained. 
 

MATERIALS AND METHODS 
 
 The unsteady problem (5) satisfying initial and 
boundary condition (6) is solved by finite difference 
method with the scheme: 
  

( )

( )
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i , j

i , j

(1 )

n
i, j 1 i, j eo i 1, j i, j i 1, j2

(1 )
(1 )2eo n

i 1, j i, j d r2

k
1 P e 2

h

k P
e k e k

h n

+α θ

+ + −

+α θ
+α θ

+

 
θ = θ + + θ − θ + θ 

 
 

 
+ θ − θ + Γ + Γ 

 
 

 (7) 

  
 Subject to the initial and boundary conditions: 
  
 i , 0 1 1

, j , j
h h

0, 0−θ = θ = θ =  (8) 

  
 The numerical result as obtained through a 
computer programme written in Pascal language is 
presented in the Fig. 1.  
 The homogeneous case of problem (5) satisfying 
(6) is: 
  

(1 )
d r

d
e

d
+α θθ = Γ + Γ

τ
 (9) 

 
 Subject to the initial condition: 
 

(0) 0θ =  (10) 
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Fig. 1: Plot of the unsteady state temperature θ(ξ, t)  for 

some values  α > 0  
 

 
 
Fig. 2: The ignition temperature Profile for fixed values 

Γr = 0, Γd = 0.878 and various values of α 
 
 Assume that Γr = 0, by the method of separation of 
variables, the exact solution of temperature together 
with blow up criterion is respectively presented as: 
 

[ ]d

1
ln 1 (1 ) , 0

(1 )

−θ = − + α Γ τ α >
+ α

 (11) 

 

 
( )

*
d

d

1
, 0, 0

1∞τ = Γ > α >
+ α Γ

 (12) 

 
 The graphical interpretation of (11) is presented in 
Fig. 2. 
 If Γr ≠ 0, then an analytical solution of ignition 
temperature is presented as: 
 

r

(1 )d d

r r

1
ln 1 e

(1 )

−Γ τ

+α
  − Γ Γ
 θ = + − + α Γ Γ   

 (13) 

with the blow up criterion: 
  

* r
r d

r d

(1 )
ln 1 , , 0, 0∞

 + α Γτ = + Γ Γ ≠ α≥ Γ Γ 
 (14) 

 
 The steady state of problem (5) satisfying (6) is 
given by: 
 

(1 )
(1 )n

e d r

d d
1 p e e 0

d d

+α θ
+α θ  θ+ + Γ + Γ = ξ ξ 

 (15) 

 

 

(1 ) (1 )2
2eon n

eo 2

(1 )
d r

d (1 )P d
1 P e e

d n d

e 0

+α θ +α θ

+α θ

    θ + α θ
⇒ + +    ξ ξ    

+Γ + Γ =

 (16) 

 
 Subject to the boundary condition: 
 
 ( ) ( )1 1 0θ − = θ =  (17) 
 
Existence and uniqueness: Following (Olajuwon and 
Popoola, 2006), the following theorems establish the 
criteria for the existence of unique steady solution. 
 
Theorem 1: For 0 N≤ α ≤ , 11 x 1− ≤ ≤ , 

r d eoN, , ,n, P 0Γ Γ > , problem (16) which satisfies 

conditions (17) and for which ( 1)′θ − is fixed, has a 

unique solution: 
 

1

2

3

x

Let x

x

ξ   
   = θ   

   ′θ  

 (18)  
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 
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 
 
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   ′ =    ′  Γ + α + Γ +  
  

+ α + α   
      −

 + α  +       

ψ 
 

= ψ 
  ψ 

 (19) 

 
 Together with the initial conditions: 
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( )
( )
( )

1

2

g3

x 1 1

x 1 0

x 1

 −   −
   

− =   
     −λ−   

 (20) 

 
Remark 3: λg is guessed such that the boundary 
condition x2(1) = 0 is satisfied. 
 
Theorem 2: For 0 N≤ α ≤ , 11 x 1− ≤ ≤ , 

20 x M,≤ ≤ *
g 3 gxλ ≤ ≤ −λ  , r d eoM,N,, , ,n, P 0Γ Γ > , the 

functions (i 1,2,3)ψ =  are Lipschitz continuous. 
 
Proof:  
 

1 1 1 2 2 2 3

1 2 3 1 2 3 1

0, 0, 0, 0, 0, 1, 0,
x x x x x x x
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∂ ∂ ∂ ∂ ∂ ∂ ∂
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  
 
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   
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+ 

 
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3 2
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1 x
2 1 p exp x

n

x 1 x
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n

 + α 
+ α  
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 i

j

, i, j 1,2,3
x

∂ψ =
∂

 are bounded since there exists a 

Lipschitz constant K>0 such that: 
 

i

j

K, i, j 1, 2, 3
x

∂ψ ≤ =
∂

  

 
 Hence ψi(x1, x2, x3), i = 1, 2, 3 are Lipschitz 
continuous and so (19) satisfying (20) is Lipschitz 
continuous. 

 
 
Fig. 3: Steady state temperature profile for fixed values 

of h = 0.1; Pe = 1.0; Γd = 0.9; Γr = 0.4; n = 1 and 
various values of a  

 
Proof of theorem 1: The existence of Lipschitz 
constant in the proof of theorem 2 implies the existence 
of unique solution of problem (19) which satisfies (20). 
And this implies the existence of unique solution of 
problem (16) satisfying the conditions (17). 
  The numerical result by shooting method through a 
computer programme written in Pascal language of 
problem (16) subject to (17) is presented in the Fig. 3: 
 

eo

(1 )
For p exp 1

n

+ α θ  << 
 

                    (21) 

 
the steady state problem (15) becomes: 
 

2
(1 )

d r2

d
e 0

d
+α θθ + Γ + Γ =

ξ
                                           (22) 

 
 Together with the boundary conditions (17). 
 The system of Eq. 19 becomes: 
 

 
2

1

2 3

(1 )y
3 d r

x 1

x y

x e +α

  
   =   

   − Γ − Γ   

 (23) 

 
 The problem (23) subject to condition (20) is 
solved by shooting method in which the value of λg in 
is guessed such that the boundary condition x2(1) = 0. 
The numerical result as obtained through a computer 
programme written in Pascal language, is presented in 
the Fig. 4. 
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Fig. 4: Steady state temperature profile for some α>0  
 
 

RESULTS AND DISCUSSION 
 
 Results have shown that activation energies ratio 
has considerable effect on the maximum temperature 
and blow up.  
 Figure 1 illustrates the temperature profile for the 
unsteady reaction. It is observed that as α increases 
from 0.5 to 0.25, the maximum temperature also rises. 
This implies that more heat is released as the activation 
energies ratio is increased. 
 In the homogenous reaction, the Eq. 11 and 12 are 
the respective ignition temperature and blow up 
criterion under the assumption that no heat is generated 
from the decay of radioactive substances but from 
GD(Γr = 0, Γd ≠ 0). It is observed from Fig. 2 that as α 
increases from 0.5-1.5, the ignition temperature 
increases and the blow up time reduces. The 
implication of these results is that explosion occurs 
quickly as the activation energy ratio is increased. The 
Eq. 13 and 14 are respectively the ignition temperature 
and ignition time of the homogenous reaction when 
heat is also generated from the decay of radioactive 
substance. A similar effect of activation energy ratio α 
is experienced in this case.  
 In the steady state reaction, the proofs of theorems 
1 and 2 established the criteria for the existence of 
unique steady state solution. It is observed from Fig. 3 
that an increase in α from 1 to 2, increases the 
maximum temperature reaction. The steady state 
problem was considered for 

eo

(1 )
p exp 1,

n

+ α θ  << 
 

that is, the diffusion length 

is much longer than the system size. Figure 4 illustrates 
the solution of the resulting problem (22) subject to 
condition (20). The result also follows the previous 
steady state solution as shown in Fig. 3. 
 

CONCLUSION 
 
 In conclusion, results have shown that activation 
energies ratio has appreciable effect on thermal 
explosion in the interior of the earth since it has 
different implications in terms of heat release. The 
criteria for which blow up occurs in the homogenous 
reactions, have equally been established. This result 
clearly indicates that activation energy ratio α plays 
catalytic role in the thermal explosion that occurs in the 
interior of the earth.  
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