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Abstract: Problem statement: Empty containers are an essential part of the logistics of the 
movement, repositioning and distribution of containers. Optimizing the allocation and transportation of 
empty containers contributes significantly in reducing cost. Approach: A mathematical model is 
formulated with the objective of finding an optimal sequence of ships movement among ports in order 
to satisfy demands at the ports with minimum total cost. Results: Several numerical examples are used 
to compare the performance of the developed optimization model with well known standard models 
available in the literature. Conclusion/Recommendation: It was observed that the solution obtained 
by the developed method to be either as good as or better than the solution provided by other standard 
models. Future work should consider contribution of full containers in meeting demand for empty 
containers.  
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INTRODUCTION 
 
 Containers were introduced in maritime shipping in 
the 1960’s of the last century as an important means of 
transporting goods. Containers had contributed 
significantly in making transportation easier and faster 
and in reducing encountered handling costs. However, it 
had brought about some problems such as preloading, 
owning or leasing and repositioning in addition to the 
problem of handling, acquisition and maintenance which 
are very costly. Today approximately 60% of maritime 
cargo is transported in containers. Literature related to 
maritime containerizing and optimization is extensive 
and detailed. Francesco et al. (2009) studied the 
maritime problem dealing with the non-deterministic 
nature of the historical data that deals with empty 
containers repositioning.  The existence of uncertainty 
in the parameters makes it very difficult for the decision 
makers to take the proper actions. In order to overcome 
such problem, a time-extended multi-scenario 
optimization model was developed. The different 
scenarios were based on expert opinion obtained from 
the different shipping companies.  
 In their attempt to study resource allocation in 
shipping lines, Qingcheng et al. (2010) built a 
deterministic model based on equilibrium principle for 
shipping liners. The model expanded to an optimization 
model that takes into account the different uncertain 
parameters and factors.  This robust model treats the 

ship size and slot allocation in the port as the design 
and the control variables, respectively. Hajeeh (2011) 
formulated two nonlinear mathematical models with the 
objective of finding the optimal failure and repair rates 
for a system that is deteriorating over time.  The system 
was assumed to be imperfectly repaired after each 
failure. In the first model, the failed system was 
replaced by a new one after several imperfect repairs, 
while in the second model and upon each failure the 
system was either replaced or imperfectly repaired with 
different probabilities. 
 Lei and Church (2011) developed models for 
locating empty containers yards, the objective was to 
select a convenient location away from the ports such 
that the travel time involved in repositioning empty 
containers is minimized.  The port complexes at Los 
Angeles and Long Beach were taken as an example in 
order to show that the savings associated with storing 
empty containers are usually overestimated when 
neglecting the trucking company’s viewpoint. Chou et 
al.  (2010)  studied containers transportation problems 
using fuzzy logic approach. In this regards, a two stage 
fuzzy multiple criteria optimization model was 
developed with the objective of minimizing the 
transportation cost in addition to considering the 
volume of containers and port facility conditions. In the 
first stage, containers demand split rate was computed, 
while in the second case network optimization model 
was developed to determine the inland origin 
destination of import/export containers. 
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 Song and Dong (2011) used simulation and 
mathematical modeling to find an appropriate policy for 
the problem of repositioning empty containers in the 
presence of flexible destination ports. In this regards, no 
specific ports were chosen in advance, however, empty 
containers are unloaded in ports based on demand. Onut 
et al. (2011) examined a real life problem which was 
faced by a firm in Turkey.  This firm deals with around 
thirty-party logistics companies and uses different ports 
each time. The objective was to select among many 
ports, the most convenient one. The selection process 
was based on several quantitative and qualitative factors 
that are complex and conflicting. Hence, the fuzzy 
analytic network process approach was utilized in order 
to overcome the vagueness associated with the problem. 
In this approach, six main criteria were used along with 
twenty sub-criteria. Fan et al. (2010) developed an 
optimization model for studying the transportation 
network of containers shipped to the United States of 
America. Sensitivity analysis was used for evaluating the 
impacts of congestion on capacity constraints and on the 
alternative routes in the shipment transport. 
 Bandeira et al. (2009) presented decision support 
systems integrating both full and empty containers. The 
problem was modeled as a network; a management 
approach was developed for the allocation and the 
distribution of the containers. Here, the distribution 
planning was integrated in a user friendly manner. 
Wong et al. (2009) developed a Hybrid Artificial 
Immune Systems (HAIS) algorithm for solving multi-
objective optimization problems. This algorithm has 
been successfully applied to the problem of global 
repositioning containers. It was claimed that the 
developed HAIS will assist shipping liners too 
optimally and cost effectively reposition containers 
globally. Investigated the relationship between quay 
cranes, yard machines and container locations in a 
multi-berth and multi-ship environment. The main 
objective was to build a model for improving the 
operation efficiency of the seaports and to develop an 
analytical tool for yard operation planning.  
 

MATERIALS AND METHODS 
 
 Containerization has become the most significant 
mode of operations nowadays. Containers come into 
different shapes and sizes and move between ports 
either as full carrying goods demanded in other ports, or 
as empty to be filled in another port. Although full 
containers have allocation priority, empty containers 
are on the move and are necessary for new shipments. 
Empty container are in high demand, their allocation 
problem is complex. They are either owned or leased 

and have to be optimally allocated in the different ports. 
There are many costs associated with containers; these 
include storage cost, repair cost, maintenance cost and 
inspection cost, transportation cost, handling cost, ship 
berthing cost and cleaning cost among others. 
 The main objective of this research work is to find 
the optimal movement of empty containers among ports 
to meet demand at minimum cost. There are many 
constraints that are  considered in this problem, these are: 
Demand for shipments to be transported from one port to 
another at a given time, demand for empty containers to 
carry such shipments among ports at a given time period, 
demand for space on board of a ship that is journeying 
among ports in order to carry the demanded shipments 
(full containers) and empty containers, balance equations 
for empty containers in each port at any given time 
period, a balance equation for the space available in a 
ship after leaving a port in a given time period. Note that 
space in a ship is counted in terms of number of 
containers.  
 The assumptions are: All containers are of the 
same size and type, empty containers stored in a given 
port should not exceed its storage capacity, containers 
loaded on board of a ship should not exceed the ship’s 
capacity at any time and number of ships berthed in a 
port in any time period should not exceed the maximum 
allowable number (port capacity). The problem is 
presented schematically in Fig. 1.  
 The general model for transporting empty 
containers by s ships to satisfy demands at p ports is 
presented by the following mathematical model (P1):  
 

P S

ps ps ps ps
p 1 s 1

minimizeZ (C X K Y )
= =

= +∑∑  

 
Subject to: 
 

S

ps P
s 1

X a , p 1,2,....,P
=

= =∑  

 
S

ps s
s 1

X A , p 1,2,....,P
=

≤ =∑   (1) 

 

ps p psX a Y , p 1,2,....,P; s 1,2,....,S≤ = =  

 

 
 
Fig. 1: A schematic presentation of the shipping 

problem 
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psX are positive integers, p 1,2,....,p; s 1,2,....,S= =  

 

psY 0 or 1, p 1,2,....,P; s 1,2,....,S= = =  

 
Where:  
Xps = Number of empty containers carried by ship s to 

meet demand at port p.  
Yps = Number of stoppage made by ship s at port p. 
Cps = Cost of transporting an empty container by ship s 

to port p.  
Kps = Stoppage cost imposed on ship s at port p.  
ap = Number of empty containers demanded at port p.  
As = Space availability on board of ship s, measured 

in number of empty containers.  
 
 The above problem (P1) cannot be easily solved 
analytically by existing techniques. However, when 
examined closely, the structure of the problem is found 
to possess some features of the well known Capacitated 
Plant Allocation Problem (CPL). The CPL problem 
could be simply stated as follows: Given there are n 
potential plants locations and m set of customers to be 
supplied from selected plants with the objective of 
satisfying customers demand from the different plants 
at minimum cost. The mathematical model for the CPL 
is presented in several forms in the literature. The most 
popular structure is as follows:  
 

m n m

ij ij i i
i 1 j 1 i 1

minimize Z (C X ) K Y
= = =

= +∑∑ ∑   
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≤ =

= =

≥ = =

= = =

∑

∑  (2) 

 
 The input parameters are:  
 
K i =  Fixed cost associated with plant i 
ai = Maximal capacity (output) at plant i 
Cij = Cost of supplying one unit of the product from the 

ith plant to the jth customer 
bj = Number of units demanded by customer j 
m = Total number of customers 
 
 The decision variables are:  

Y i = Whether a plant is open in location i ( Yi = 1) or is 
closed at the same location ., (Yi = 0) 

X ij = Number of products shipped from the plant in 
location i to customer j 

 
 The apparent difference between the main problem 
P1 and CPL lies mainly in the decision variable Y. In 
order to show that the solution of the original problem 
(P1) is close to that of some standard models in the 
literature; the original problem P1 has been modified 
and it was proved that its solution is close to that of the 
standard models. In this regards, the original problem 
P1 solution was compared to that of the Transportation 
Problem and the Capacitated Plant Location problem as 
explained by the two approaches below. 
 
Approach 1: Transportation Problem (TP): This 
approach is based on solving the transportation version 
of the general problem and adding the appropriate 
stoppage costs to the optimal solution. The main steps 
of this approach are follows:  
 
• Transform the original problem (P1) into the well 

known Transportation problem (TP) by excluding 
the stoppage costs.  

• Solve the new TP using existing techniques in the 
literature.  

• Add the port stoppage costs to the costs value 
obtained by the TP model.  

 
 The problem is mathematically presented as 
follows:  
  

P S

ps ps
p 1 s 1

minimize Z (C X )
= =

=∑∑  

 
Subject to: 
 

S

ps P
s 1

S

ps s
s 1

ps
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=
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= =

∑

∑        (3) 

 

 Solving the above problem gives the optimal 
assignment of ships to ports. The added stoppage cost is 
as follows:  
 
Kps = 0     if  Yps = 0   
 
Kps > 0     if   Yps > 0 
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 Thus the optimal solution of the problem P (Z*) is 
as follows:  
  

P S

ps ps ps
p 1 s 1

Z* (P) Z* (P1) K Y for Y 0
= =

= + ∀ >∑∑   

 
 However, this approach does not always produce 
the optimal solution to the general problem (P1).  
 
Approach 2: Capacitated Plant Location Problem 
(CPL): In this approach, the problem is transformed 
into several one ship problems. Hence, a specific ship is 
chosen and ports are assigned to it optimally by solving 
the one ship problem. Next, another ship is selected and 
ports are assigned to it and so on until either the 
demand for empty at all ports are met, or all available 
ships have already been assigned. The detailed steps are 
as follows:  
 
1. Take the one ship model of problem P1 and by 

selecting any ship s, the structure becomes similar 
to the CPL.  

2. Find the optimal solution of the previous structure 
by the available CPL algorithm, or develop a new 
algorithm.  

3. Remove those ports that their demand is 
completely met by the ship in the system.  

4. In ports where the demand is partially satisfied; the 
demand is modified to be equal to original demand 
minus the allocated number of empty container by 
the assigned ship. 

5. If all demands are met go to 7, otherwise continue.  
6. Assign a non-assigned ship and go to 1. If all ships 

are already assigned, go to 7.  
7. Find the optimal solution and stop.  
 
 The solution of the general model is the sum of the 
solutions of the one ship models. The mathematical 
model for the one ship is as follows:  
 

P

p p p p
p 1

minimize Z (C X K Y )
=

= +∑  

 
Subject to: 
 

p p pX a Y , p 1,2,....,P≤ =                                                 (4) 

 
P

p
p 1

X A
=

≥∑  

 

pX are positiveintegers, p 1,2,....,P=  

pY 0 or 1, p 1,2,....,P= =  

  
 The above problem is the capacitated plant location 
problem with one ship and several ports. It also could 
be looked at as an assignment problem. Solving the 
problem, the following optimal solutions are obtained:  
 

* *
p pZ*,X ,a  

 
 

*
pX Can take one of several categories:  

 
• * *

p p pX 1, a a some p= =  

• * *
p p pX 1, a a= <  some p different than port 1 

•  * *
p pX 0, a 0= =  some p different than ports 1 and 2  

 
 It should be emphasized that any port in the system 
can be in one and only one of the above categories. 
Next a different ship is selected and a new 
mathematical model is formulated. This model has a 
similar structure as before, but with the following 
modifications:  
 
• All ports with fully satisfied demand, i.e., as in the 

first category above are omitted from the first ship 
• Ports where their demands are partially met by the 

first ship are included, but with modified demand, 
i.e., the new demand is equal to the original 
demand minus the demand met by the first ship 

• Ports that are not supplied with any empty 
containers by the first ship. The new demand for 
these ports is the same as their original demand 

 
 Next, another non-assigned ship is selected with 
similar modification until either the demand for all 
ports are met or no ship is available in the system or 
both. Therefore the optimal solution of the complete 
problem is the sum of the solutions of the one ship 
problems. The following example is presented for 
illustration.  
 
Examples: The following example is used to illustrate 
how the different models are used and to compare the 
results obtained from each.  

 
Input data: Number of ships (S) = 3, Number of ports 
(P) = 5. In Table 1, the transportation costs encountered 
by moving one empty container by the various ships to 
the different ports are given. Other relevant parameters 
are also shown. In Table 2, the stoppage cost imposed 
by each port’s authority on each ship is provided.  
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Table 1: Transportation costs to the ports by the different ships  
 Ports      
 -------------------------------------------------  
Ships 1  2  3  4  5  Capacity 
1  3  4  2  7  5  20  
2  7  2  3  6  8  12  
3  5  9  11  3  2  18  
Demand  10  12  7  6  15  50  

 
Table 2: Ship stoppage cost at each port  
 Ports  
 ----------------------------------------------------------- 
 1  2  3  4  5  
Stoppage cost 5  12  7  9  3  

 
RESULTS  

 
 Solving the problem using the above data in the 
different mathematical models is discussed below:  
 
The general model (P1):  
 

*

11 22 13 34 15 35

1 2 3 4 5

X 164

X 10, X 12,X 7, X 6,X 3,X 12

Y 1, Y 1, Y 1, Y 1,Y 2

=

= = = = = =

= = = = =

 

 
The transportation model:  
 

*

11 22 13 34 15 35

*
T j

X 125

X 10, X 12, X 7,X 6, X 3,X 12

Z Z Z 125 39 164

=

= = = = = =

= + = + =

 

 
The Capacitated Plant Location (CPL) Model:  
 
Sequence-1:  
 
Ship 1, Ship 2, Ship 3.  
 

*
1 2 3

10 22 13 34 15 35 35

1 2 3 4 5

Z Z Z Z 74 36 54 164

X 10, X 12, X 7, X 6, X 3,X 3,X 12

Y 1, Y 1,Y 1,Y 1,Y 2

= + + = + + =

= = = = = = =

= = = = =

 

 
Sequence-2:   
 
Ship 3, Ship 1, Ship 2.  
 

*
3 1 2

35 34 11 12 13 22 24

1 2 3 4 5

Z Z Z Z 51 57 80 188

X 15, X 3, X 10, X 3, X 7, X 9,X 3

Y 1, Y 2, Y 1,Y 2, Y 1

= + + = + + =

= = = = = = =

= = = = =

 

 
Sequence-3:  

Ship 3, Ship 2, Ship 1.  
 

*
1 2 3

11 13 15 22 34 35 24

1 2 3 4 5

Z Z Z Z 74 63 54 191

X 10, X 7, X 3,X 12,X 6,X 12,X 3

Y 1,Y 1, Y 1,Y 2, Y 2

= + + = + + =

= = = = = = =

= = = = =

 

 

DISCUSSION 
 

 It can be deduced from the results produced by the 
example that transforming the original problem into the 
well known transportation problem version is the best 
option. Such approach results in producing an optimal 
solution with minimum cost. While, using that of the 
capacitated plant location problem version requires 
solving several combinations of the problem in order to 
come up with the sequence that produces the optimal 
solution.  

 
CONCLUSION 

 
 Strategically and optimally moving and storing 
containers is essential in the transportation 
establishments. Empty containers movement and 
distribution is an integral part of maritime business. In 
this research work, attempts were made to solve relaxed 
versions of the complex problem of empty containers 
shipment. Since solving the complete problem 
analytically is tedious and challenging, the strategy was 
to transform the original into well known structured 
standard methods in the literature and to develop new 
algorithms to solve the resulted problems.  
 Future work should address the movement of both 
empty and full containers, since full containers 
contribute to satisfying the demand for empty 
containers in subsequent ports upon unloading their 
goods. Another option is to introduce nonlinear cost 
functions associated with transporting empty containers 
among ports which are more realistic and thus solving a 
nonlinear mathematical programming problem.  
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