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Abstract: Problem statement: Flows of continuous-time dynamical systems with s$ame number of
equilibrium points and trajectories, and which hnasperiodic orbit form an equivalence class under
the topological conjugacy relatioApproach: Arbitrarily, two trajectories resulting from twastinct
flows of this type of dynamical systems were writi@s a set of points (orbit). A homeomorphism
which maps between these two sets is then builingJthe notion of topological conjugacy, they
were shown to conjugate topologically. By the aghiness in selection of flows and their respective
initial states, the results were extended to alftows of dynamical system of that typeesults. Any
two flows of such dynamical systems were showrhires the same dynamics temporally along with
other properties such as order isomorphic and horagghic. Conclusion: Topological conjugacy
serves as an equivalence relation in the set wfsflof continuous-time dynamical systems which have
same number of equilibrium points and trajectorgg®] has no periodic orbit.

Key words: Dynamical system, equilibrium points, trajectoriggriodic orbit, equivalence class,
topological conjugacy, order isomorphic, Flat Eleehcephalography (Flat EEG),
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INTRODUCTION models. Nandhakumaet al. (2009) for example, the
dynamics of robot arm is studied. On the other hand

Dynamical system is a system where its tempora(Krishan et al., 2010) shows that by adopting neuro-
evolution from some initial state is dictated bget of ~fuzzy system, the design of robust controllers for
rules (Eduarcet al., 1999). Another way to understand uncertain non-linear dynamical systems can be done
this is, it consists of a set of variables thatcdbs its ~ Wwithout resorting to system model simplificationsda
state and a law that describe the evolution ofstlage  linearization and without imposing structural cdiatis
variables with time (i.e., how the state of thetsysin  on the system uncertainties. This shows that tleeofis
the next moment of time depends on the input amd itconcept of dynamical system is vast. Mark and Marc
state in the previous moment of time) (Eugene, 2007 (2005), the importance of dynamical systems as an
There exist various classifications of dynamicategns, approach in understanding development was discussed
e.g. continuous-time (flow or semiflow) or discrétme,  One power of dynamical systems approach is that we
continuous state or discrete state and linear odinear.  can tell something or many things, about a system
In order to study the system of interest more yickbme  without knowing all the details that govern theteys
authors require the state space to possess cgpiiific ~ evolution (Eugene, 2007). With the use of this
structure such as compact Hausdorff space as m (Timathematical theory, it allows one to talk about
and Justin, 1989), separable metric space (Fhgzanistability, equilibrium, bifurcations.

1976), or even smooth manifold as define in (Artur, This study is motivated by the study in (Tahir and
1979). For some survey on the definition of dynaic Tan, 2010), where the authors shows that the dyrsami
system we direct the readers to (Chen, 2000; Limty a of an epilepsy patients who is having seizure, rreatle

Anthony, 2007; Sekhagt al., 1999). as a continuous dynamical system can be transptoted

Dynamical systems have been used in many areddat Electroencephalography (Flat EEG) that are
of research, e.g. fluid flow analysis, economicmodeled in the same way. This study basically
processes (stock market models), physics, medicingeneralizes the theorems obtained from (Tahir aam T
meteorology, astronomy, and population growth2010).
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Literature review: Some dynamical systems are Suppose §(xg):t0d0} is an orbit starting at g<IX,
governed by differential equations and this istiipe of  then this orbit is periodic if for eachXq(xo):t00},
dynamical systems that will be discussed in thishstA  there exist a time IO such that@(x) = x. In our
system of differential equations is relations betwéts  discussion, we restrict our dynamical system tasého
functions and its derivatives (James, 2007). Soneti that has no periodic orbit (since it is not possibd
they are referred to as vector field because tesiga a construct a homeomorphism from a loop[1y, those
vector (direction and magnitude) to each pointhe t with the same number of equilibrium points (since a
state space (also known as phase space). Two fenesingle point cannot be homeomorphic@) and with
classes of system of differential equations arghe same dimension in terms of their state space. W
autonomous and non-autonomous. Systems that depeatbo assume that the number of trajectories of the
explicitly on time are referred to as non-autonomou  systems discussed to be same so that our
time-dependent vector fields and those which do nohomeomorphism will be constructible. For some surve
depend explicitly on time are referred to as automas.  on periodic system, readers may read (Baryaretrah,
Every non-autonomous vector fields can be made int@005) where the periodicity of the HIV/AIDS epidami
autonomous by redefining the time as a new depéndeim a mathematical model that incorporates complagen
variable. Thus, for simplification purposes we wilst is discussed or (Ibrahiret al., 2007) for the periodic
speak of continuous-time dynamical system from thisand non periodic (complex) behavior of a model of

point onwards. bioreactor with cell recycling.
The type of dynamical system that we will be
discussing in this study will be of continuous-time MATERIALSAND METHODS
dynamical system non-periodic orbit where the
evolution rule is a flow. An example usage on tloevf Let %X, be a initial state such thag,(x,)=x,,

concept in different area of research is in (Adecdnid . . .
Alao, 2007), where the temperature-dependent viscodhen the flow will traces out an orbit or trajegtor
fluid between parallel heated walls is modeled as &enote this trajectory a®, ., ={@(x,):t00} . Note

flow. According to (James, 2007), a flag{x) is a one-
parameter differentiable mapping] x X - X, such
that it fulfills two properties, which are:

that the setl is linearly ordered by the usual less than
or equal relationg. Taking account of this property, it
is not difficult to see that elements in the &t | is

@ (x)=x OxOX also linearly ordered, with the ordering relatioe b
defined as follows
And for all t and 810:

%00 =Py, (8] agey (1) = 158
where the composition symbol, ° meagsgs (X) = Therefore, the pair(oﬂ(xo)x%(xu)) is linearly
A@(x)).- ordered and we have lemma 1. As an example, see

For each KX, @(x) defines a curve in X as t varies (Tahir et al., 2005), where the state space trajectory of
over [I. This curve is known as orbit or trajectory. A geijzuyre is augmented and shown to exhibit linear
consequence from the property (b) which is alsaMn0  ,qering properties. The construction is howevdittia

as group property is that two distin.ct. trajectqrv)eiﬁ different from the one we have just presented above
not cross. A property of flow is that it is diffenable, —po.oce the formulation of dynamical system thesest
therefore there is an associated ordinary difféaént off from is slightly different. Nevertheless, thagtually

equations or more precisely a vector field whicigrss . ;
a vector (magnitude and direction) to each of thiats meant the same as the .augmented trajectory isystingl
gvolution of states in seizure over an intervairog.

in the state space (James, 2007). To visualize thi
consider a point chosen from the state spacepthitt o
will generate a curve in the state space. The memem Lemmal: (oq),(xo) ’<<p‘(x0)) is linearly ordered.
of this point from one state to another is accaydio
the evolution rule (flow) and the tangent vectoesxh
point on this curve is exactly the vectors compuigd
using the vector field:

Now, according to (Steve, 2008), every linear
ordering,< can induce a strict linear ordering,< which
can be written as:

_d
f(x)—a@‘(x) bt=0 x<y if x<y and »xy
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Thus, we can certainly “transform” the linearly Consequently, the trajectory is composed into a
ordered set (@) =<axg) N0 a strictly linearly topological space (§o)Togxoy), Namely linearly
ordered set (@xo) < [gdxo), With the ordering relation ordered topological space (LOTS). LOTS are also a

defined as: Generalized Ordered space (GO-space) (Bennet and
Lutzer, 1996). In fact, the class of GO-spacex&cty

(X0t) <4 (%) the class of all subspaces of LOTS (Beneetal.,
2001). Hence from (Koppermaet al., 1998), which

If: says that a GO-space is Hausdorff, we have

(%,8) <, (xj ,tj) (OWO) ,TOWD)) as a Hausdorff LOTS.

And: Lemma 3: (Ogxo) Togixo)) iS @ Hausdorff LOTS.

Now consider two distinct flows from two
(%)% (x,.t) continuous-time dynamical systems with no periodic
o " orbit, @OxX X and ¢:0xY-Y such that the
dimension of the state space of X and Y are same.

Or simply: Using the above argument, we then have two strictly
(X 6) <o ) (Xi,tj) -t <t linearly ordered se(oqq(xo),{q(xo)) and (Ow‘(yo),{u‘(yo))
and this two strictly linearly ordered set can be
And this can be stated formally as. composed into LOTS (Table 1).
From Table 1 we notice the existence of the
Lemma 2: (OQ(XO),{WO)) is strictly linearly ordered. following lemma.

Lemma 4: Let (xt) represents a point on a trajectory

Therefore, we have formulated a strictly linearly O, attime t Similarly, let (y,t) represents another
ordered set from a particular trajectory which tesl
from a flow of an arbitrary continuous-time dynaaiic
system. Before we proceed further, let us emphasizkst, a point (xt) on the trajectoryo,,, precede

once _that, whenever we speak continuous-timegynother point (xt) if and only if a point (yt) on
dynampal system fro_m this point qnwards, we meanty,ther trajectoryow( | precede another point;fy).
those with the properties stated earlier. In thi@fang, e

we explain how the trajectory can be composed into !N other words:
topological space.

Using the definition of interval topology in (Xl’t1)<<ﬂ(xu) (x2t) = (¥uty) X1 (yat)
(Koppermaret al., 1998) one can define a topology on ] . . .
a strictly linearly ordered set by using a subbadiich Pr oof: _ From the linear order of <.:ont|nu0us-t|me
consists of the collection of all order open rdystican ~ dynamical system 1 (Table 1) we have:
be defined as follow:

(Xivti)<m.(xo) (xltl) = 1=y

point on another trajectorgbw‘(yo) at time ¢t Then, for

{(X’t)Doq(xu) 1069 < ) (a'ﬁ} And from the linear order of continuous-time
So,,, = ,{(x,t)D Oy DY <, ( x)} 1) dynamical system 2 (Table 1) we have:
4.0,y 0(ay (b0 Q) (¥it) <y (%08) = 1 =8

. . . Combining these two, we will have:
Equation 1 will generate a topology called intérva

topology. The elements of the topology are the b (x )< X, 1) o (y.t)< t
any finite intersections of elements of Eq. 1. Nttat Cat) <o) (xarte) = (Y2t =) (v2td
each element in Eqg. 1 is itself open in the topplog As desired.

generated by it. We denote this topology as:

Next, define a functior®:0,, , - O as

n Wi(Yo)
{ : U(”] 5 %} o((x.) =(.1)
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Table 1: Two continuous-time dynamical system

Continuous-time dynamical system 1 Type Continume-dynamical system 2
@:O0xX - X X =0" Flow g:Oxy Y 0Oy =0"

Oy ={@ (%) :t00} Orbit 0,y =1 (¥,) :t00}

(X t) =g )(Xﬂtj) =<y Linear order relation (vit)=, (yJ J) = {=q

(Owo) ,<w‘(xu)) Linearly ordered set (Ow () )

(% 6) <) (Xj,fj) = § <t Strict linear order (vit)<, (yj,g) =t <t

(O(R(X ),-<:ﬁ(xo)) Strictly linearly ordered se(OLp = ulve) )

:0(a ) (b0 Q.
oo 0.

(Oney To,.)

Subbasis So,, = i();t) iy (D<) (Y ﬁ}
T (o)
O(c,t),(d, )09y,

Interval topology

] 0.

Hausdorff LOTS (Ow[(yn) 'Tow‘(m)

Theorem 1: 6((x

Proof:
Function: Suppose(x,.t)=(x;.t)

Then by lemma 4{y,.t) =(y;.t)
or 8((x;,t)) :9((xi,tj))

Thus, 6((x

Injective: Supposes((x;,

t)) :9((Xi’tj ))

By the defined function, this implies:

(vit)=(yt)

Now by lemma 4, we then have:
(x.t)=(x.t)
Thus, 6((x

1)) =(y.1) is injective.

Surjective: For all (y,t)00, .|

1)) =(v.1) is a bijective function.

1)) =(v.t) is indeed a function.

There exist(x,t)00, |
Such thate((x,t)) =(y.1)

Therefore,8((x,t)) =(y.t) is surjective

Since 6((x,t)) =(y.t) is injective and surjective, thus it
is bijective.m
Next, using the bijective function we show that

(Oq(xo)'%(xo)) and (O%(yo)x%(yo)) are  order

isomorphic.
Theorem 2: (OWO),<WO)) is order isomorphic to
(4. <us)

Proof: From lemma 4 we have:
(X0 t) <) (X2rta) = (Yut) <y (Yart)

Substituting the functiord((x,t))=(y.t) into this
lemma, we then have

(%, t) B(x,t)

<ot (Xats) = B(Xyt) <y )

Therefore, (Omxo) <

(Ow[(yo) '<w‘(yu)) :

w‘(xo)) is order isomorphic to
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We now proceed to show thaf(x,t))=(y.t) is a
homeomorphism.

Theorem 3: The function 8((x.t)=(y,t) is

continuous.

Proof: Consider the set

{(yvt)Dowt(yu) I(y. ) <lve) (Ct)}
{( y,§0 O ) (d.) <o) ( y)}
9.0, ) :0(a,9 (b)0 Qi)

Wt(vo)

S

Case 1: Sets of the form:

{(y,t) u Ow‘(yo) |( Y, t) <:’J((yo) ( C't)}

Clearly:

9‘1({(y,t) 00,y I(y.9 <ulve) (c. l)})

:{(x,t)DOq(xu) 1(%.9 <) (a'ﬁ}

For some(a,t)01Q, , , , sinceB™ is bijective.

Notice that the se{(x,t)l]o%(xo) (%) <4 ) (a,i)}
is an order-open ray imq(xu) , i.e. element of subbasis.
Since{(x,t)Doq(XD) (%9 <5 e (a,@} is an order-open
ray Thus,{(x,t)l]om(xu) (%) <} e (a,l)} is an open set
iN O, ) -

Case 2: Sets of the form:

{r)o0, ) 1<, (%3]

Clearly:

e‘l({(y,t)DOM(yo) 1(d.9 <0 ( y")})

={(x )30, 1(b.9 < (1)

For some(b,t)00Q, , ,, sinced™ is bijective.

(xo)
Notice that the se{(x,t)l]o%(xo) (B9 <Gy x,t)}

is an order-open ray imq(xu) , i.e., element of subbasis.
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Since{(x,t)l]o%(xo) () <5y x,t)} is an order-open
ray.
Thus, {(x,t)DOQ(xu) |(b,t)<‘%(xu)(x,t)} is an open

setino,, .

Case 3: The setp, i.e., empty set.
Clearly, 8 (q)=¢ (trivial). Since ¢ 0 Soe,

Thus,@is an open set in)q(xo) .

Case4: The setO, .y i.e. the whole set.

(¥%)

Clearly, 9‘1(0%(%)) =0 since™ is surjective.

@ (%)
Since O, \US, Thus, O, , is an open set in

@ (%) *

Combining these four cases, we have the inverse
image of each element in the subbesjws(y) is open in

(OQ(XD)’T%(XO)) . Thus, 8((x,t))=(y.t) is a continuous

function that maps from (Omxo)-ToWD)) 0

(Owt(%) 'TOWx(yo) ) ’

Theorem 4: The functior®™((y,t))=(xt) is continuous.

Proof: Use similar argument in the proof for theorem 3.

In that case, the functioB™((y,t))=(x,t) is bijective,

continuous and open. Thus, it is a homeomorphism
T

from (Om(xo)’ Ou(m)) o (O”"(y")'row‘(y"))

that the flows of the two continuous-time dynamical
system are topologically conjugated temporally. The
topological notion of conjugacy used will be theeon
introduced in (James, 2007). This topological notd
conjugacy is one of the usual ways to relate two
dynamical systems (Erik and Joseph, 2010). In fais,
one of the most useful and interesting among the
different possibilities of introducing an equivaten
relation to classify dynamical systems (Nguyen, )99
To achieve this, we conjugate two trajectories ltegy
from two different flows, and then by the fact tle
initial state chosen is arbitrary, this result were
extended to the rest pair of trajectories in thatest
spaces. Start off by defining two functions thatsam
two different set of points (trajectories) whichsuéis
from two different flows, respectively as:

. Next we show

@, Oy x,) = Oqpx,y @NAW, 10, () ~ O

Wi(Yo)
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Where: For all (x,t)0Xx0,(y,t)d0Yx0, and niN.
_ Notice that our claim that the homeomorphism, h
ot)=(%a ) O(%,1)00,, ,andt00 ' . .
<px0(x, )=(x0ta) D) ) &1 defined above conjugate the two flows topologically
And: must be true. This is clear from the propertiedl@f/
' given earlier where two distinct trajectories wilbt
Wy, (¥0t) =(%rba) O(%.4)00,,, and t00 intersect and that the property (a) for flow isidedl for
Yo (] i+ 4 i W (Yo i

all x(OX. Thus, we can imagine the state space of the
dynamical system as a space filled with a set of
trajectories. In fact, the union of all these tcéjeies
form the state space set. For example, if the stzdee
of a flow is the Euclidean spa€#, then for each point
Theorem S @, Oqx,) = Onx) and  on the state space, there will be a trajectory, ded
g, 0 e is topologically conjugated. union of all this trajectories will be the get. This can

Yo Tlye) T (o) also be visualized as the flow partitions the stace
into classes where each class represents a tnajectd
our method in conjugating the two flows is by

Then it will be these two functions which we will
show they are topologically conjugated.

Proof: For any(x,,t)00,,

Composition of function and ¢, is conjugating each pair of these trajectories. Asttie
’ flows were chosen arbitrary, thus we conclude tadl t
0, (X, ty)] above results in the following theorems.
=0(x..t) Theorem 6: Any two continuous-time dynamical
=(y,.t) systems with no periodic orbit are:

e Order-isomorphic
Composition of functionsy, and® is «  Homeomorphic

» Topologically conjugated temporally

0, 10(x1,ti)] Proof: Let @:OxX -~ X and p:0xY -Y be two
=Wy, (Yiwtia) flows of continuous-time dynamical systems with non
=(y;.t;) periodic orbit. For all (x_.t,)O0XxO and
_ h:Xx0O - Yx[O be defined as (2):

This shows thaBog, =y, -8

Thus, the two trajectories are topologically ho@(X1,5-1)
conjugated. =h(x.t)

In constructing this proof, the point chosen as an=(y_ t)
initial state in both trajectories is arbitrary, sich for a
the rest of pair of points, their trajectories Gdso be Woh(x .t.)
conjugated topologically using similar method A
presented above. In that case, the two flows=W (Vi1 t)
@:0xX - X and g:0xY - Ycan be conjugated =(x,1)
topologically by the homeomorphism
h:Xx0O - Y xO, which can be defined as: As such,ho@=yoh. Therefore, the two flows are
o,x 1) (x,t)DOq(xD) where topologically conjugated.

. _ RESULTS
% 'Oq(xu) - olul(yu) and 6,09, =4, 6,

8,(x.1) if (X,t)gow) In this study, we have shown that the flows of any
. ' _ two continuous-time dynamical systems with the same

where 6, :Q,) —~ Q) andB @ =Y, <8 @ number of equilibrium points and trajectories, &ag no

6,(xt) if (xt) 00, periodic orbit_ can pe _conju_gated _topologically
_ ’ _ temporally. Besides, their trajectories are lineardered

where 8, 1Q,) » Qa0 =, 6, .. and order isomorphic to each other by the relation

8,(x.1) if (X’t)'jo«q(x) induced from their flow Fig. 1. By endowing thedntal

where 6. - " " _ 0 topology, both the LOTS are proven to be Hausdoréf

ere 8, Q) = Q) ABno@ =W, <0, homeomorphic to each other.
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DISCUSSION disorder as well as assisting neurologist in chasg
seizures. EEG has been used extensively to reberd t
abnormal brain activity associated with epileptic
seizures (Fig. 2). It is recorded on the surfacehef
scalp using electrodes, thus the signal is retbleva
non-invasively. The type of activity and the ardahe

In the theory of dynamical systems, classification
problem is important as it provides a method topsifyn
objects under investigation and gives us an indigfiot
the structure of dynamical system (Nguyen, 1996 T
results obtained in this study are therefore ctuasait _ i ) ;
provides us another viewpoint in observing a dywmami Prain that is recorded from EEG will assist the
system of our interests. One example can be foond iPhysician in prescribing the correct medication for
(Tahir et al., 2010) whereby the dynamics of patientCertain type of epilepsy. Patients with epilepsgptth
having epileptic seizure is showed transportedisaal ~ cannot be controlled by medication will often have
platform namely, Flat EEG. Since they are topolaifljc ~ surgery in order to remove the damaged tissue. Tieus
conjugate, they have the same topological progertieEEG plays an important role in localizing this tiss
(Robbin, 1972). Thus, we can study the topological ~On the other hand, Flat EEG is a method for
properties of seizure from Flat EEG. mapping high dimensional signal, namely EEG into a

Epilepsy is a general term used for a group ofow dimensional space (MC) developed in (Tadir
disorders that cause disturbances in electricalasigf  al., 2006). The whole process of this novel model is
the brain. In epilepsy there is a miniature braimetof = consists of three main parts. The first part is
certain groups of brain cells and this is ofterpaisged  flattening the EEG where the transformation of éhre
with a sudden and involuntary contraction of a grofi ~ dimensional space into two dimensional space that
muscles and loss of consciousness. It can happen ininvolved location of sensor in patients head with
small area of the brain or the whole brain. Depegdin EEG signal (Fig. 3). This flattening process can
the part of the brain that is affected, it causesluntary  preserves magnitude and orientation of the surface
changes in body movement or function, sensation(Tahir et al., 2006). Secondly, the EEG is processed
awareness, or behavior where these changes arenknowsing Fuzzy C-Means (FCM) to obtain the number
as epileptic seizure (Fig. 4a). of cluster centers. Finally, the optimal number of

Electroencephalography (EEG) is the recording oftlusters is determined using cluster validialysis.
electrical activity originating from the brain imitrast
to Magnetoencephalography (MEG) which records the
magnetic fields. It plays an important diagnostiterin
epilepsy and provides supporting evidence of iause

v v

= Boum
e Lo et

i ik s |

Ord . . Yk P, 1 b "I-‘. M
Lineatly er semoiphic Lineatly i
ordered ordered
* J' Fig. 2: EEG signal
LOTs Homeomorphic LOTs
(Hauszdorff) < > (Hauszdorff)
Topologically B s )
Trajec.tnr}' C:I%?J;igz ¥ Trajeu:?.or}' - g, / d
Function Function =t o
P Crzg "‘ o L5
J" * - -
~a r'd EEGsensor__,, ™
Flow 1 -+ Flow 2
Topologically s
Conjugated \
Fig. 1: Framework Fig. 3: EEG projection
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.‘r’/,_——— Topologically Conjugated ‘_\\\‘

==

(a) Patient during seizure (b} Visual platform (Flat EEG)

Fig. 4: Topological conjugacy between seizure dat EEG
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