Modules in $\sigma[M]$ with Chain Conditions on δ_M Small Submodules

Ali Omer Alattass
Department of Mathematics, Faculty of Science,
Hadramout University of science and Technology,
P. O. Box 50663, Mukalla, Yemen

Abstract: Problem statement: Let M be a right module over a ring R. In this article modules in $\sigma[M]$ with chain conditions on δ_{M^-} small submodules are studied. **Approach:** With the help of known results about M- singular, Artinian and Noetherian modules the techniques of the proofs of our main results use the properties of δ_{M^-} small, δ_{M^-} supplement and δ_{M^-} semimaximal submodules. **Results:** Modules in $\sigma[M]$ with chain conditions on δ_{M^-} small are investigated, δ_{M^-} semimaximal submodule is defined . Some Properties of δ_{M^-} semimaximal submodules are proved. As application a new characterization of Artinian module in $\sigma[M]$ is obtained in terms of δ_{M^-} small submodules and δ_{M^-} semimaximal submodules, as well as δ_{M^-} small submodules and δ_{M^-} supplement submodules. **Conclusion/Recommendations:** Our results certainly generalized several results obtained earlier.

Key words: Small submodules, supplement submodules, chain conditions, M-singular, supplemented module, finitely generated, uniform dimension, nonzero submodules, positive integer

INTRODUCTION

Throughout this research, R denotes an associative ring with unity and modules M are unitary right Rmodules Mod-R denotes the category of all right Rmodules. Let M be any R - module. Any R- module N is M -generated (or generated by M) if there exists an epimorphism $f: M^{(\Lambda)} \to N$, for some indexed set Λ . An R -module N is said to be subgenerated by M if Nis isomorphic to a submodule of an M -generated module. We denote by $\sigma[M]$ the full subcategory of the right Rmodules whose objects are all right R-modules subgenerated by M. Any module $N \in \sigma[M]$ is said to be M-singular if $N \cong L/K$, for some $L \in \sigma[M]$ and K is essential in L The class of all M-singular modules is closed under submodules, homohorphic images and direct sums. The concept of small submodule has been generalized to δ - small submodule by Zhou (2000). Zhou called a submodule N of a module M is δ - small in M (notation $N \leq_{\delta} M$) if, whenever N+X=M with M/X singular, we have X=M Ozcan and Alkan consider this notation in $\sigma[M]$ For a module N in σ[M], Ozcan and Alkan (2006) call a submodule L of N is $\delta\text{-}M$ small submodule, written $\,L\,\ll_{\delta_M}\,N,\,$ in N if L $+K\neq N$ for any proper submodule K of N with N/K Msingular. Clearly, if Lis δ - small, then L is a δ_M – small submodule.

MATERIALS AND METHODS

Hence $\delta_{\mathbf{M}}$ – small submodules the generalization of δ - small submodules in the category Mod-R Let L,K be two submodules of M L is called a δ- supplement of Kin M if M= L+K and L ∩ K \ll _s L. L is called a δ- supplement submodule of M if L is a δsupplement of some submodule of M.M is called a δ – supplemented module if every submodule of M has a δ- supplement in M. If for every submodules L, K of M with M=L+K there exists a δ -supplement N of L in Msuch that $N \le K$, then M is called an amply δ – supplemented module. Now, let $N \in \sigma[M]$ and $L, K \le N$. L is called a δ_M -supplement of K in N if N=K+L and $K \cap L \ll_{\delta_M} L$. L is called a δ_M -supplement submodule of N if L is a δ_M -supplement of some submodule of N Nis called a δ_{M} - supplemented module if every submodule of N has $\delta_{\scriptscriptstyle M}$ - supplement. On the other hand N is called an amply δ_{M} - supplemented module if for every submodules L,K with N= L+K there exists a δ_M - supplement X of L such that $X \leq K$. For the other definitions and notations in this study we refer to Anderson and Fuller (1974) and Wisbauer (1991).

The properties of δ - small submodules that are listed in Zhou (2000) Lemma 1.3 also hold in $\sigma[M]$.

We write them for convenience Ozcan and Alkan, (2006) lemma 2.3, Lemma 2.1).

Lemma 1.1: Let $N \in \sigma[M]$:

- 2. For submodules K and L of N, $K+L\ll_{\delta_M}N$ if and only if $K\ll_{\delta_M}N$ and $L\ll_{\delta_M}N$
- 3. If $K \ll_{\delta_M} N, L \in \sigma[M]$ and $f: K \to L$ is a homomorphism, then $f(k) \ll_{\delta_M} L$ In particular, if $K \ll_{\delta_M} N \le L$, then $K \ll_{\delta_M} L$
- 4. If $K \le L \le^{\oplus} N$ and $K \ll_{\delta_M} N$, then $K \ll_{\delta_M} L$

Also Ozcan and Alkan (2006) consider the following submodule of a module N in $\sigma[M]$ Zhou (2000).

 $\delta_{M}(N) = \bigcap \{K \leq N : N / K \text{ is } M \text{- singular simple } \}$

Lemma 1.2: For any N in $\sigma[M]$, $\delta_M(N) = \sum \{L \le N : L \ll_{\delta_M} N\}$.

The next Lemma is proven in Alattass (2011).

Lemma 1.3: Let $N \in \sigma[M]$ be δ_M -supplemented. Then $N/\delta_M(N)$ is semisimple.

RESULTS AND DISCUSSION

Theorem 2.1: Let $N \in \sigma[M]$. Then $\delta_M(N)$ is Noetherian if and only if N satisfies ACC on δ_M – small submodules.

Proof: By lemma 1.2, every ascending chain of δ_M – small submodules of N is ascending chain submodules of $\delta_M(N)$. Hence the necessity is clear.

Sufficiency: Suppose to the contrary that $\delta_{M}(N)$ is not Noetherian. Then there is a properly ascending chain $N_{1} \leq N_{2} \leq \cdots$ of submodules of $\delta_{M}(N)$. Let $n_{1} \in N_{1}$ and $n_{i} \in N_{i} - N_{i-1}$, for each i > 1. For each $j \geq 1$, let $K_{j} = \sum_{i=1}^{j-j} n_{i}R$. Hence K_{j} is finitely generated and $K_{j} \leq \delta_{M}(N)$. So, by Lemma 1.2 and Lemma 1.1, $K_{j} \ll_{\delta_{M}} N$, for each $j \geq 1$. Hence $K_{1} \leq K_{2} \leq \ldots$ is a properly ascending chain of δ_{M} – small submodules of N. This implies N fails to satisfy ACC on δ_{M} – small submodules, a contradiction. Thus $\delta_{M}(N)$ is Noetherian.

Recall that a module M is said to have a uniform dimension n, where n is a nonnegative integer ,if n is the maximal number of summands in a direct sum of nonzero submodules of M. In this case we write u.dim M = n and we say M has a finite uniform dimension.

Theorem 2.2: For any $N \in \sigma[M]$, the following are equivalent:

- a) $\delta_{M}(N)$ has a finite uniform dimension.
- b) Every δ_M small submodules of N has a finite uniform dimension and there exists a positive integer n such that u.dimL \leq n, for any L \ll_{δ_M} N.
- c) N does not contain an infinite direct sum of nonzero $\delta_{_M}$ small submodules of N

Proof: (a) \Rightarrow (b). This is clear as any δ_M – small submodule of N is contained in $\delta_M(N)$.

 $\begin{array}{lll} (b) \Longrightarrow (c). & \text{Assume that} & N_1 \oplus N_2 \oplus \cdots \text{ is an infinite} \\ \text{direct sum of nonzero} & \delta_{\text{M}} - \text{small} & \text{submodules} & \text{of } N. \\ \text{Then, by lemma } 1.1, & N_1 \oplus N_2 \oplus \cdots \oplus N_{n+1} \ll_{\delta_{\text{M}}} N \text{ and} \\ \text{hence} & \text{u.dim}(N_1 \oplus N_2 \oplus \cdots \oplus N_{n+1}) \geq n+1, & \text{a} \\ \text{contradiction to the hypothesis. Hence} & (C) \text{ follows.} \end{array}$

(c) \Rightarrow (a). Let $N_1 \oplus N_2 \oplus \cdots$ be an infinite direct sum of nonzero submodules of $\delta_M(N)$. For each $i \ge 1$, let n_I be a nonzero element of N_I Hence, by Lemmas 1.1 and 1.2, $n_i R \ll_{\delta_M} N$. Thus $n_1 R \oplus n_2 R \oplus \cdots$ is an infinite direct sum of nonzero δ_M – small submodules of N This contradicts (C) and hence $\delta_M(N)$ has a finite uniform dimension.

Theorem 2.3: Let $N \in \sigma[M]$. Then the following are equivalent:

- a) $\delta_{M}(N)$ is Artinian.
- b) Every δ_M small submodule of N is Artinian.
- c) satisfies DDC on δ_M small submodules of N

Proof: (a) \Rightarrow (b). This is clear as every δ_M – small submodules of N is a submodule of $\delta_M(N)$.

(b) \Rightarrow (c). This is obvious.

 $(c) \Rightarrow (a)$. By Anderson and Fuller (1994), proposition 10.10) it will be suffice to show that every factor module of $\delta_M(N)$ is finitely cogenerated. For this suppose that there exists a factor module of $\delta_M(N)$ which is not finitely cogenerated. Then the set

$$\begin{split} &\Lambda = \{L \leq \delta_M(N) : \delta_M(N) / L \ \, \text{is not finitely cogenerated} \} \ \, \text{is} \\ &\text{nonempty} \ \, . \ \, \text{We show that} \ \, \Lambda \ \, \text{has a minimal member.} \\ &\text{Let} \ \, \{L_\alpha\}_{\alpha \in \Gamma} \ \, \text{be a chain of submodules in} \ \, \Lambda \ \, \text{Consider} \\ &\text{the submodule} \qquad L = \bigcap_{\alpha \in \Gamma} L_\alpha. \qquad \text{If} \quad L \not \in \Lambda, \quad \text{then} \\ &\delta_M(N) / L \ \, \text{finitely cogenerated and so} \qquad L = L_\alpha, \text{ for some} \\ &\alpha \in T \ \, \text{a contradiction.} \ \, \text{This contradiction gives} \ \, L \in \Lambda \ \, \text{and} \\ &\text{we conclude that every chain of} \ \, \Lambda \ \, \text{has a lower bound} \\ &\text{in} \quad \Lambda. \ \, \text{Hence, by Zorn's lemma,} \quad \Lambda \ \, \text{has a minimal member } K. \end{split}$$

We claim that $K \ll_{\delta_M} N$. First we show $Soc(\delta_M(N)/K)$ is not finitely generated. Let $x \in \delta_M(N)$ and $x \notin K$. By lemmas 1.2-1.1 , $xR \ll_{\delta_M} N$. Hence xR is Artinian. This implies (xR+K)/K is a nonzero Artinian as $(xR+K)/K \cong xR/(xR \cap K)$. Therefore (xR+K)/K and hence $\delta_M(N)/K$ has an essential socle. Thus $Soc(\delta_M(N)/K)$ is not finitely generated Anderson and Fuller (2000), Proposition 10.7.

Now suppose that U is a submodules of N such that N=K+U with N/U M- singular. Let V be a submodule of $\delta_M(N)$, containing K such that $V/K=Soc(\delta_M(N)/K).$ Then we have $V=K+(U\cap V).$ Suppose to the contrary that $K\cap U\neq K.$ Then $\delta_M(N)/(K\cap U)$ is finitely cogenerated. But $V/K\cong (K+(U\cap V))/K\cong (U\cap V)/(K\cap U)$

 $\leq Soc(\delta_{M}(N) \, / \, (K \cap U)). \quad So \ V \, / \, K \ is finitely generated, a contradiction. This contradiction gives \quad K \cap U = K \ and hence \ N=U \ Thus \quad K \ll_{\delta_{M}} N.$

Next we show $V \ll_{\delta_M} N$. Suppose that $W \leq N$ such that N=V+W with N/W M- singular. Then $N/(K+W) = (U+W)/(K+W) \cong U/(K+U\cap W)$, implying that N/(K+W) is semisimple. If $N\neq K+W$ then K+W N is contained in a maximal submodule Z of N Therefore N/Z is M- singular simple. It follows that $U \leq \delta_M(N) \leq Z$ and so N=Z, a contradiction. Thus N=K+W which will imply N=W So $V \ll_{\delta_M} N$. Therefore, by the hypothesis, V and hence V/K is Artinian.

The following example explain that if every δ_M -small submodule of N is Noetherian, then δ_M -(N) need not be Noetherian.

Example 2.4: Let $R = \mathbb{Z}, M = \mathbb{Z}$ and let $N = \mathbb{Z}_{(p^*)}$, the Prufer P- group. Hence N is an R- module in fact $N \in \sigma[M]$. It is known that every submodule of N is Noetherian, but N is not Noetherian. Moreover $\delta_M(N) = N$ Wang (2007), Example 2.6.

Remark: If we look to a ring R as a module over it self and taking M=R in 2.1,2.2, 2.3 we get the results 2.3, 2.4,2.5 in Wang (2007) respectively.

Recall that a submodule N of an R- module M is called a δ - semimaximal submodule if $N = \bigcap_{\alpha \in \Lambda} N_{\alpha}$, for some finite set Λ with $N_{\alpha} \leq M$ and M/N_{α} singular simple, for each $\alpha \in \Lambda$. Here we consider this definition in the category $\sigma[M]$.

Definition 2.5: Let $N \in \sigma[M]$ and $K \le N$. K is called δ_M – semimaximal submodule of N if there is a finite collection $\{A_\alpha\}_{\alpha\in\Lambda}$ of submodules of N such that $K = \bigcap_{\alpha\in\Lambda} A_\alpha$ and N/A_α M- singular simple for any

Since any M- singular module is singular, any δ_M – semimaximal submodule of $N \in \sigma[M]$ is δ – semimaximal submodule of N. The next example gives a module with a δ – semimaximal submodule which is not δ_M – semimaximal submodue.

Example 2.6: Let M be a simple non projective module. Then M is singular and not M-singular Wisbauer (1991). Hence the trivial submodule is a δ -semimaximal submodule of M but it is not δ_M -semimaximal submodule.

Lemma 2.7: Let $N \in \sigma[M]$. Then:

- 1. $\delta_{M}(N)$ is contained in any δ_{M} semimaximal submodule of N
- 2. If N has DDC on the δ_M semimaximal submodules, then N has a minimal δ_M semimaximal submodule

Proof: The proof is standard and is omitted.

Theorem 2.8: Let $N \in \sigma[M]$. Then the following statements are equivalent:

- a) N is Artinian
- b) N satisfies DCC on δ_M small submodules and on δ_M semimaximal submodules
- c) N satisfies DCC on δ_M small submodules and $\delta_M(N)$ is δ_M semimaximal submodule
- d) N amply $\delta_{\rm M}$ supplemented satisfies DCC on $\delta_{\rm M}$ small submodules and $\delta_{\rm M}$ suplementet submodules.

Proof: (a) \Rightarrow (b). Is obvious.

 $(b) \Longrightarrow (c). \ \ Let \quad K \ \ be \ \ a \ \ minimal \ \ \delta_{M} - semimaximal$ submodule of N. We show that $\ \delta_{M}(N) = K.$

If $\delta_M(N)=N$, then, by Lemma 2.7 (1), $N=\delta_M(N)\leq K$ and so $\delta_M(N)=K$. Suppose that $\delta_M(N)\neq N$. By the definition of $\delta_M(N)$ and Lemma 2.7 (1) it is suffice to show $K\leq L$, for any submodule L of L with N/L is M- singular simple . If $L\leq N$ such that N/L is M- singular simple, then $K\cap L$ is δ_M - semimaximal submodule of N Hence, by the minimality of K, $K\cap L=K$ and so $K\leq L$.

 $\begin{array}{lll} (c) \Longrightarrow (a). & \text{ If } N = \delta_{_M}(N) \text{ , then } N \text{ is Artinian by} \\ \text{Theorem } 2.3. & \text{Suppose that } N \ne \delta_{_M}(N). & \text{Then} \\ \delta_{_M}(N) = \bigcap_{_{i=1}}^n L_{_i}, \text{ where } N/L_{_i} \text{ is } M\text{- singular simple for} \\ \text{each } i=1,\dots n & \text{Therefore } N/\delta_{_M}(N) \text{ is isomorphic to a submodule of the finitely generated semisimple} \\ \text{module } \bigoplus_{_{i=1}^{i=n}} N/L_{_i}. & \text{Hence } N/\delta_{_M}(N) \text{ and so } N \text{ is} \\ \text{Artinian.} \end{array}$

(d) \Rightarrow (a). Suppose that N is an amply δ_M supplemented which satisfies DCC on δ_M supplement submodules and δ_M small submodules. Then, by Theorem 2.3, $\delta_M(N)$ is Artinian and hence it is suffices to show $N/\delta_M(N)$ is Artinian. $N/\delta_M(N)$ is semisimple by Lemma 1.3.

We claim that $N/\delta_{M}(N)$ is Noetherian.

Suppose that $\delta_M(N) \le N_1 \le N_2 \le \cdots$ is ascending chain of submodules of N.

We show by induction there exists descending chain of submodules $K_1 \geq K_2 \geq \cdots$ such that K_i is δ_M – supplement N_i of in n for each $i \geq 1$.

Since $N=N_1+N$ N is amply δ_{M} and supplemented, there exists $a\delta_M$ supplement K_1 of N_1 in N Then $N=N_1+K_1$. Again since $N=N_2+K_1,K_1$, contains a $\delta_{M}^{-} \text{ supplement } K_2 \text{ of } N_2 \text{ in } N. \quad \text{Now assume } r \geq 1$ and there is a descending $K_1 \ge K_2 \ge \cdots \ge K_r$ submodules such that K_1 is δ_M supplementet of N_I in for each i=1,2,...r Hence $N = N_r + K_r$ and so $N = N_{r+1} + K_r$. Again since Nis amply supplemented, we have a δ_M supplement K_{r+1} of N_{r+1} in N Proceeding in this way we see that there exists a descending chain of submodules $K_1 \ge K_2 \ge \cdots$ such that K_i is δ_M – supplement of N_i in N for each $i \ge 1$. By the hypothesis there exists a positive integer m such that $K_n = K_m$, for each $n \ge m$. Since $N = N_i + K_i$ and $N_i \cap K_i \subseteq \delta_M(N)$,

 $N / \delta_M(N) = N_i / \delta_M(N) \oplus (K_i + \delta_M(N) / \delta_M(N))$. Thus

 $N_n = N_m$, for each $n \ge m$. Therefore $N/\delta_M(N)$ is Noetherian and hence finitely generated. Thus $N/\delta_M(N)$ is Artinian.

Note: The condition N is amply δ_M supplemented in the statement (d) in Theorem 2.8 cannot be deleted (see the following example).

Example 2.9: Take RZ and M=Z It is clear that $M \in \sigma[M], M$ satisfies DCC on δ_M supplement submodules and δ_M small submodules, but M is not Artinian.

The next corollary follows from the proof of $(b) \Rightarrow (c)$ in 2.8 and Lemma 2.7(1).

Corollary 2.10: The following statements are equivalent for any R- moduleN.

- a) N is Artinian.
- b) N satisfies DCC on δ_N small submodules and on δ_N semimaximal submodules.
- c) N satisfies DCC on δ_N small submodules and $\delta_N(N)$ is δ_N semimaximal submodule.
- d) N is amply $\delta_{_N}$ supplemented satisfies DCC on $\delta_{_N}$ small submodules and $\delta_{_N}$ supplement submodules.
- e) N satisfies DCC on δ small submodules and on δ semimaximal submodules.
- f) N satisfies DCC on δ small submodules and $\delta(N)$ is δ_N semimaximal submodule.
- g) N is amply $\delta-$ supplemented satisfies DCC on $\delta-$ small submodules and $\delta-$ supplement submodules.

Proof: (a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow (d) is by taking M=N in Theorem 2.8 and (a) \Leftrightarrow (e) \Leftrightarrow (f) \Leftrightarrow (g) by taking M=R in 2.8.

Remark: The equivalence of (a,e,f,g) has been proved by Wang (2007), Proposition 2.8 and Theorem (3.10) Then Theorem 2.8 is an extension of such results.

Corollary 2.12: A finitely generated δ_M – supplemented module N in $\sigma[M]$ is Artinian if and only if N satisfies DCC on δ_M – small submodules.

Proof: The necessary part is trivial.

Sufficiently part, suppose that N is a finitely generated δ_M – supplemented module in $\sigma[M]$ satisfies DCC on δ_M – small submodules. Then, by Lemma 1.3, $N/\delta_M(N)$ is semisimple and hence it must be Artinian as N is finitely generated. By the hypothesis and 2.3, $\delta_M(N)$ is Artinian. Thus N is Artinian.

We end this Article by showing that every factor module of a δ_M – supplemented module that satisfies ACC on δ_M – small submodules is also satisfies ACC on δ_M – small submodules.

Theorem 2.13: Let $N \in \sigma[M]$ be δ_M supplemented module. If N satisfies ACC on δ_M small submodules, then so does every factor modules of N.

Proof. Let $L \le N$ and let $L_1/L \le L_2/L \le \cdots$ be an ascending chain of a δ_M - small submodules of N/L. Since N is a δ_M - supplemented module and $L \le N$, there exists a submodule K of N such that N= L+K and $L \cap K \ll_{\delta_M} K$. Hence $N/L \cong (L+K)/L \cong K/L \cap K$. Let $f: N/L \rightarrow K/L \cap K$ be an isomorphism. Therefore for each $i \ge 1$, there exists a submodule K_i of N containing $L \cap K$ such that $f(L_i/L) = K_i/K \cap L$. Hence, by Lemma 1.1, $f(L_i/L) = K_i/K \cap L \ll_{\delta_M} K/L$. Now we show that $K_i \ll_{\delta_M} N$, for each $i \ge 1$. Suppose that $X \le N$ such that $N = K_i + X$, with N/X M- singular. $N/K \cap L = K_i/K \cap L + (X + L \cap K)/L \cap K$. $K_i / K \cap L \ll_{\delta_M} K / L$ and $N / (X + L \cap K)$ is M-singular. $N/K \cap L = (X + L \cap K)/L \cap K$ $N = (L \cap K) + X$. Therefore N=X. Thus we have a sending chain $K_1 \le K_2 \le \cdots$ of δ_M – small submodules of N. Then, by the hypothesis, there exists a positive integer n such that $K_n = K_{n+1} = \cdots$.

This implies $L/L_n = L/L_{n+1} = \cdots$. Therefore N/L satisfies ACC on δ_M – small submodules.

CONCLUSION

For any module N in $\sigma[M]$ we have obtained a necessary and sufficient conditions for the sum of all δ_M – small submodules of N to has a finite uniform dimension. Also it is shown that (i) the sum of all δ_M – small submodules of N is Noetherian (Artinian) if and only if N satisfies ACC (DCC) on δ_M – small submodules. (ii) Every factor module of a δ_M – supplemented module in $\sigma[M]$ with ACC on

ACKNOWLEDGEMENT

The author is thankful for the facilities provided by department of mathematics , at Universiti Tekonologi Malaysia during his stay.

REFERENCES

- Alattass, A., 2011. On δ_{M} Supplemented and δ_{M} Lifting modules (submitted).
- Anderson, F.W. and K.R. Fuller, 1974. Rings and Categories of Modules. 1st Edn., Springer-verlage, New York, ISBN-10: 0387900705, pp. 339.
- Ozcan, A.C. and M. Alkan, 2006. Semiperfect modules with respect to a preradical. Comm. Alg., 34: 841-856. DOI: 10.1080/00927870500441593
- Wang, Y., 2007. δ small submodules and δ supplemented Modules. Int. J. Math. Math. Sci., 2007: 1-8. DOI: 10.1155/2007/58132
- Wisbauer, R. 1991. Foundations of Module and Ring Theory: A Handbook for Study and Research. 1st Edn., Gordon and Breach Science Publishers, USA., ISBN-10: 2881248055, pp: 606.
- Zhou, Y.Q., 2000. Generalizations of Perfect, Semiperfect, and semiregular rings. Alg. Coll., 7: 305-318.