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Abstract: Problem statement: The Maximum Likelihood Estimation (MLE) technique is the most 
efficient statistical approach to estimate parameters in a cross-sectional model. Often, MLE gives rise 
to a set of non-linear systems of equations that need to be solved iteratively using the Newton-Raphson 
technique. However, in some situations such as in the Negative-Lindley distribution where it involves 
more than one unknown parameter, it becomes difficult to apply the Newton-Raphson approach to 
estimate the parameters jointly as the second derivatives of the score functions in the Hessian matrix 
are complicated. Approach: In this study, we propose an alternate iterative algorithm based on the 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach that does not require the computation of the 
higher derivatives. Conclusion: To assess the performance of BFGS, we generate samples of over-
dispersed count with various dispersion parameters and estimate the mean and dispersion parameters. 
Results: BFGS estimates the parameters of the Negative-Lindley model efficiently. 
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INTRODUCTION 

 
 Traditionally, Poisson and the Negative Binomial 
(NB) models are regarded as the most suitable models 
to represent count data. In the recent years, some new 
discrete distributions have been introduced such as the 
Com-Poisson model (Shmueli et al. 2005)(Khan and 
Khan, 2010) and Negative-Lindley (NL) distributions 
(Zamani and Ismail, 2010). In this study, we focus on 
the Negative-Lindley (NL) distribution. This is a two-
parameter model and is developed through a mixture of 
the negative-binomial distribution and the Lindley 
distribution. Zamani and Ismail (2010) have applied it 
on two samples of insurance data and compared the fits 
with Poisson and negative binomial models. Their 
results show that NL is slightly better than NB and 
more efficient than Poisson since the counts are 
dispersed. To estimate the two parameters, the authors 
formulated separate maximum likelihood estimating 
equations and found the estimates iteratively using the 
Newton-Raphson technique. We note that, in their 
approach, they did not construct the joint hessian 
matrix. In fact, the hessian component of the likelihood 
function is quite difficult to compute as the second 

derivatives are difficult to express and may lead to 
numerical instability. In this study, we propose an 
alternate iterative algorithm based on the quasi-Newton 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach 
(Yuan, 1991). This algorithm does not require the 
computation of the second derivatives of the score 
function and can yield equally reliable estimates. The 
outline of the study is as follows: We review the 
Negative-Lindley distribution and the maximum 
likelihood approach as demonstrated by Zamani and 
Ismail (2010). We next introduce the BFGS method of 
estimation . We then perform a simulation study where 
we generate samples of over-dispersed counts and 
estimate the parameters using BFGS algorithm. Finally, 
we present the conclusions and recommendations. 
 

MATERIALS AND METHODS 
 
 Zamani and Ismail (2010) showed that the 
marginal distribution of the Negative- Lindley 
distribution is expressed as: 
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 To estimate the parameters (θ, r), they used the 
maximum likelihood approach. The log-likelihood 
function yields: 
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Where: 
nx = The value at the 
xth = Index and the partial derivatives 
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 As it can be noted, the first derivatives of the log-
likelihood function are quite complicated. Thus, the 
construction of the Hessian matrix becomes difficult. 
To eliminate this problem, Zamani and Ismail (2010) 
formulated separate estimating equations to estimate θ 
and r. Following Klugman et al. (2008):  
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 Then Eq. 3 can be re-written as:  
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 The estimate of θ  is obtained by solving Eq. 6 
using the quadratic formula. In the same way, Eq. 4 can 
be written as:  
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  Then r  is obtained iteratively by using the 
Newton-Raphson technique: 
 

1
k 1 k k kr r H (r )H(r )−
+ = −  (8) 

 
where, kH(r )  is the estimate of the Hessian matrix at the 
kth iterated value. The algorithm works as follows: For 
an initial value of r , we calculate the estimate of θ  
using Eq. 6. Using this value of θ , we solve iteratively 
Eq. 8 until convergence. Having obtained an update of 
r , we replace in Eq. 6 to update θ , then solve Eq. 8 
iteratively again. This cycle continues until both 
estimates converge. The Newton-Raphson method 
described above has one major drawback. It does not 
provide an estimate of the joint Hessian matrix of the 
parameters θ and r. As a result, the variance of the 
estimates θ and r may be over-or- under estimated. We 
note that Eq. 8 yields only an estimate of the Hessian 
matrix for the parameter r. To overcome this problem, 
we propose an iterative algorithm that is based on a 
quasi-Newton Broyden-Fletcher-Goldfarb-Shanno 
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(BFGS) approach. The BFGS algorithm can be 
summarized in the following steps: 
 
• The quasi-Newton direction is given by: 
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• The iterative equation yields: 
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• Compute the Hessian matrix at the kth iteration 

using: 
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 Initially, we set the parameters to zero and the 
hessian matrix at the (k-1)th iteration to be the identity 
matrix. Having obtained the first set of estimates, we 
follow the steps (9)-(13). The standard errors of ( , r)θ  
can be obtained through the diagonal entries of 1

kH− . 
 

RESULTS  
  
 We perform a simulation study to estimate (θ, r) 
using the BFGS approach.  

Table 1: Estimates of parameters under BFGS approach 
Sample Estimates Standard errors Computational 
size ( , r)θ  ( , r)θ  time (sec) 
10 (1.23,3.44) (0.213,0.112) 1.8  
30 (2.56,1.11) (0.131,0.107) 1.8 
50 (0.23,1.161) (0.146,0.110) 2.0 
100 (4.09,2.11) (0.132,0.096) 10.0 
500 (3.13,1.12) (0.142,0.110) 20.0 
1000 (5.55,0.21) (0.115,0.010) 40.0 
2000 (0.93,5.21) (0.009,0.008) 40.0 
5000 (2.53,6.02) (0.009,0.007) 56.0 
10,000 (1.18,2.41) (0.007.005) 90.0 
 
 Initially, we generate a set of over-dispersed 
counts using the nbinom function in R 1.6.1 with 
various parameters. Then, we apply (10) to calculate 
the estimates of ( , r)θ . The programs were 
implemented in MATLAB The results of the study are 
shown in the Table 1. 
           
                            DISCUSSION 
  
 The simulation study was run for different sample 
size starting from 10-10,000. Each simulation was run 
5000 times and the estimates obtained were averaged. 
To estimate the parameters, we start with very small 
values of ( , r)θ .We note that as the cluster size 
increases, the standard errors decrease significantly. 
This justifies the consistency property of the estimators. 
Practically, we have reported very few non-
convergence simulations even for large sample size. In 
comparison with the MLE approach, we note that for 
sample size ranging from 10-50, there were around 
2455 non-convergent simulations while BFGS yields 
approximately 600 non-convergent simulations. As the 
sample size increases, the number of non-convergent 
simulations decreases in both methods but BFGS yields 
still fewer ones. The computational time is also very 
encouraging and it indicates that BFGS is quite fast. 
 

CONCLUSION 
 
 Based on the simulation results, we conclude that 
BFGS is a suitable technique to estimate the 
parameters of the Negative-Lindley model. It yields 
reliable estimates and provides consistent results. 
Moreover, this method of estimation provides an 
estimate of the standard errors of both parameters. We 
therefore recommend that to estimate parameters of 
the Negative-Lindley model, the BFGS algorithm is a 
more convenient estimation approach than the 
traditionally MLE technique. 
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