Journal of Mathematics and Statistics 6 (2): 92298,0
ISSN 1549-3644
© 2010 Science Publications

Model for Analyzing Countswith Over-,Equi-and
Under-Dispersion in Actuarial Statistics

'!Naushad Mamode Khan afidaleika Heenaye-Mamode Khan
1Department of Mathematics, Faculty of Science,
’Department of Computer Science and Engineering,
University of Mauritius, Mauritius

Abstract: Problem statement: Actuarial science has grown much popularity in theent years due
to the growth of insurance companies. In practice,data involved in actuarial science are mostly
counts which may be over-,equi-or under-disperdeiéiny probability distributions were proposed to
model such data such as the mixed Poisson didtiitsit However, the estimation methodologies
based on such mixed Poisson distributions may lmpticated and may not yield consistent and
efficient estimatesApproach: In this study, we consider a recently introduceadet known as the
two-parameter Com-Poisson distribution that is ilex in modeling both over-,equi-and under-
dispersed datdresults: The estimation of parameters is carried out usiggasi-likelihood estimation
technique based on a joint estimation approachaamdrginal approach via Newton-Raphson iterative
procedureConclusion: The Com-Poisson distribution is applied on two sspf insurance data and
we compare the estimates with the estimates bas#ideoNegative-Lindley distribution. Based on the
results, it is shown that both Com-Poisson and Megad.indley yield almost equally efficient
estimates of the parameters with fitted values atrolwse to the actual values under both the piit
marginal quasi-likelihood approaches.

Key words. Actuarial, count data, insurance, Com-Poisson, Negrdindley, Quasi-likelihood, Joint
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INTRODUCTION estimation equation to estimate the parameteref t
model using an iterative procedure. Ultimately, we
The modeling of count data is one of the mostapply the Com-Poisson model to two insurance claim
important issues in actuarial theory. Various plolitg data collected by Klugmaet al. (2008). Moreover, we
distributions have been proposed to model thesa datompare the fits based on the Com-Poisson modhal wit
but the fundamental question is which model yiglds the fits based on the Negative-Lindley distribution
best fits. These distributions comprise of the 8mis (Zamani and Ismail, 2010).
distribution, the negative binomial distributionhet
Generalized Poisson  distribution and  mixed MATERIALSAND METHODS
distributions (Johnsost al., 1993). However, actuarial
data may be over-, equior under-dispersed. Poiaedn Com-Poisson model (CMP): Recently, Shmuelét al.
negative binomial distributions may not be suitatle (2005) proposed the Conway Maxwell Poisson (Com
model such data because of the restriction on #enm Poisson) distribution to model counts which may be
variance ratio. The Generalized Poisson distrilbutio equi-, over- and under-dispersed. Kadahel. (2006)
may not also be suitable when the data is underand Shmuelét al. (2005) studied the basic properties of
dispersed (Jahangeetr al., 2009). To overcome these this distribution and the fitting of this distribab to
problems, Shmueliet al. (2005) have recently re- over -and under -dispersed cross sectional couat da
introduced a discrete model known as Com-PoissonTo estimate the parameters, Shmeelal. (2005) has
This model has the ability to account for over-uieq used the Maximum-likelihood estimation technique
and under-dispersion irrespective of the type ofwhile Lord et al. (2008) used Bayesian techniques.
dispersion of the count data. In this study, wevigle  Following, Jowaheer and Mamode Khan (2009), we use
an overview of the Com-Poisson model and discisss ita Joint Quasi-Likelihood technique (JGQL) to estena
statistical properties. We then apply a quasidiledd the parameters of the model. The JGQL approach
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provides consistent and equally efficient estimades The matrix components are as follows:
the maximum likelihood approach. The Com-Poisson
model is given by: o = 00, /0N 08, /dv
' lom /oA am Jov
A 1
fly,) =— 1
SRSy D Where:
where, y is the value of the insurance claim )\5
corresponding to the™i accident. In Eq. 1,v 08, /a)‘:j' (6)
corresponds the dispersion index. More specificéllg
values v>1 correspond to equi-,over- and under- 1
dispersion. Since Eg. 1 does not have closed formy . _1v-1 1 A’ 7
expressions, we use an asymptotic expression for 227 X v
Z(A;,v) proposed by Shmusedt al. (2005) given by:
1 2
'{ 1] om, /9 = w (8)
exp VA v
Z0 V)= )
A2 (2m) 2 v !
20 InQh. -1
ami /a\):i3 |\:n(|)+\) ) (9)

Shmueliet al. (2005) derive the following moment

2 1 1
expressions: ~ANINQ v =AY = AN Ing, )

The covariance matrix of s expressed as:

E(Y,) =8 =\ 22 ®
v o[var(v) cov(Y .¥?)
and | var(Y?)
e The elements in Mare derived iteratively from the
Var(Y, ) =-—— (4) moment generating function of which is given by:
\Y

r+l] — d
To estimate the parameteksandv, we consider the ELY, ]_)‘JE[YT EYIELY ] (10)

Quasi-likelihood Equation (QLE) developed by

Wedderburn (1974). We extend his approach and By deriving the moments for?,Y? and Y* , we
review the joint quasi-likelihood estimating eqoat Y '
and develop marginal quasi-likelihood estimating
equations.The joint quasi-likelihood equation is given

obtain:

cov(Y, ,¥?) = E(Y9) - E(Y )E(Y?)

by:
1 21
. 2\Y + UAY —VAY (11)
Z DIV'(f, —1) =0 (5) v?
i=1
Where: Var(Y?) =E(Y,") - E(Y)*
B 1 3 2 1 12 (1)
fo=(v.¥7) APVEHANVE IO = Y + A - AV
b =EQ) v’
Vi =cov(f,) The QL estimates oh and v are obtained by
D _ 9E(f;) solving Eq. 7 iteratively until convergence using
LoAw) Newton-Raphson technique. At iteration:
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sl ] o

Where:

Vi, is the variance of ¥ and is calculated using:

Viv = E(Y)-E(Y?? (20)

A, =The value ofA at the I iteration

[.]: = The value of the expression at tfidteration

where the moments are derived iteratively from the
moment generating function. The Newton-Raphson
technique is then applied to the two estimating

The estimators are consistent and under mil¢duations. The iterative equations are given dsvist
regularity conditions, for 4 o, it may be shown that

1

12((A,9) -(A\,v))" has an asymptotic normal distribution
matrix

with mean 0 and

|:z' 1D'TV' D, i| |:zl 1D|TV| ](fi ) )TVi_

[Z. _ DIV, D, }

covariance

3

At the (" iteration:

(As)=(R,)+ {ZDTle ll{ioi}v;;(yi-

i=1

e.ﬂ (21)

1

(9.)=(0 ){iD.V - } {ZDL % ni)} (22)

The marginal quasi-likelihood equations under the
Com-Poisson regression model is as follows: That fir Where:

QLE is to estimateh while the second QLE is to A and9, = The values ok and9, atthe {'iteration

_esti_matebthe dispersion index The QLE to estimat& L1 = The value of the expression at th® r
IS given by iteration
1
2 DLVl =8) =0 (14) The estimators are consistent and under mild
= regularity conditions, for 4 o, it may be shown that
where: PN . S
12(A) —(A))" has an asymptotic normal distribution
1/v . H H
v, = A (15) with mean 0 and covariance matrix
\Y) -
|:Z, 1D|TAV 1D } [Z, -1 m m](yl =)y, _Q)Tvi, Abi,x:|
and: R
. [Z. DLV, ‘1DM} and IE((\))—(\)))T has an asymptotic
D= %?\ N (16)  normal distribution with mean 0 and covariance iratr
' \Y)
D;rvvl\}Dlv i,v |v](y| r]|)(y| - )TVi_ i, v
The QLE to estimate is given by: [Z' = } [Z' N VP, }
1
[Z ,DLVD, v} . The algorithm to estimate the
D/ - 0 17 - :
Z Va0 =) = (A7) parameters works as follows: For an initial estenat
_ A andv, we iterate Eq. 14 until convergence, then use
where: the updated\ to updatev in Eq. 17. We then replace
ALY vo1T the updatedA and v in Eq. 14 and iterate until
n =E(Y?) :if{)\ﬁ’v _W} convergence. Having obtained the newwve replace in
v (18)  Eg. 17 to obtain a new and the cycle continues until
ZD.a Viy?-n)=0 both values converge.
RESULTSAND DISCUSSION
and:
The first set of insurance claim data is taken
_1 2 2 from Klugman et al. (2008), whereby it was
Di. '2\,3{2)“ IN(\ ) +v =1= 4" Iny )'} collected by Dropkin in 1956-1958 and analyzed in a
(19)  paper in Dropkin (1959). The methods JGQL and

1 1 1
+2V3[—4)\ivv =4\ In(\; )}
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MGQL are implemented in MATLAB. The fitted
values and estimates dfandv are provided in Table 1.
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Table 1: Fits of the insurance claims under esedhavalue of  Jahangeer, C., N. Mamode Khan and M. Heenaye

AMGQL =1.241, VMGQL=0.521 and AJGQL= 1.252, Mamode Khan, 2009. Analyzing the factors
vIGQL= 0.527 influencing exclusive breastfeeding using the
No. of accidents No. of claims MGQL JGOL generalized Poisson regression model. Int. J. Math.
0 81,714 81,719.2 81,719.5 Stat. Sci., 1: 107-110.
1 11,306 11,295.1 11,295.7 http://lwww.waset.org/journals/ijmss/v1/vl-2-
2 1,618 1622.1 1623.2 19.pdf
s+ 297 286.5 2871 johnson, N.L., S. Kotz and AW. Kemp, 1993.
. . . . Univariate Discrete Distributions. Wiley, New
Table 2: FItSA of the |nsuranf:e claims under esAemat/alue ’of York, 2nd Edn., John Wiley and Sons, ISBN: 0-
AMGQL =5.241, VMGQL =0.3112 and AJGQL= 5.237, 471-54897-9pp: 163
vJGQL= 0.312: Jowaheer, V. and N. Mamode Khan, 2009. Estimating
No. of accidents No. of claims MGQL JGQL regression effects in Com-Poisson generalized
0 7,840 7842.10 7843.00 linear model. Int. J. Math. Comp1&ci., 3: 169-174.
; 1’23%; 1’5’322_'528 123‘,'231_'22(? http://www.waset.org/journals/ijcms/v3/v3-4-
3 42 43.10 43.10 35.pdf
4 14 13.10 13.30 Kadane, J., G. Shmueli, G. Minka, T. Borknd
g 2 g-gg ‘3‘-%8 P. Boatwright, 2006. Conjugate analysis of the
7 1 099 110 Conway Maxwell Poisson distribution. Bayesian
8+ 0 0.20 0.21 Anal., 1: 363-374.

Klugman, S.A., H.H. Panjer and G.E. Willmot, 2008.
Loss Models: From Data to Decision. 3rd Edn.,

The second set of data is taken from Klugnearal.
USA., ISBN: 10:

(2008) and provides information on 9,461 automobile ~ John Wiley and Sons,
insurance policies. The methods JGQL and MGQL are 0470187816, pp: 101-159. _
implemented in MATLAB. The fitted values and Lord, D., S. Guikema and S. Geedipally, 2008.

estimates of andv are provided in Table 2. Application -~ of the Conway-Maxwell-Poisson
generalized linear model for analyzing motor

vehicle crashes. Accident Anal. Prev., 40: 11234113
Shmueli, G., T. Minka, J. Borle and P. Boatwright,
2005. A useful distribution for fitting discretetda
revival of the  Conway-Maxwell-Poisson
distribution. J. R. Stat. Soc. Ser. C., 54: 127:142
DOI: 10.1111/j.1467-9876.2005.00474.x
Wedderburn, R., 1974. Quasi-likelihood functions,
generalized linear models and the Gauss Newton

CONCLUSION

The Table 1 and 2 show the fitted values of the
insurance claims. It is clear that under both MG&id
JGQL, CMP vyields suitable fits and when compared
with the analysis of Zamani and Ismail (2010), veten
there is no huge difference in the value of theveses.
Thus, the Com-Poisson model is a very suitable mode . . .
to analyze actuarial counts and the quasi-likelthoo method. B|ometr|cs, 61: 439-447.
estimation technique is an efficient estimation DOI:10.1093/biomet/61.3.439

procedure in terms of both computational and siedils Zama_”i' H. a_nd_N._IsmaiI, 2.010' Ngga_tive binomial-
Lindley distribution and its application. J. Math.

performance. Stat. 6 4-9.
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