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Abstract:  Problem statement: Actuarial science has grown much popularity in the recent years due 
to the growth of insurance companies.  In practice, the data involved in actuarial science are mostly 
counts which may be over-,equi-or under-dispersed.  Many probability distributions were proposed to 
model such data such as the mixed Poisson distributions. However, the estimation methodologies 
based on such mixed Poisson distributions may be complicated and may not yield consistent and 
efficient estimates. Approach: In this study, we consider a recently introduced model known as the 
two-parameter Com-Poisson distribution that is flexible in modeling both over-,equi-and under-
dispersed data. Results: The estimation of parameters is carried out using a quasi-likelihood estimation 
technique based on a joint estimation approach and a marginal approach via Newton-Raphson iterative 
procedure. Conclusion: The Com-Poisson distribution is applied on two samples of insurance data and 
we compare the estimates with the estimates based on the Negative-Lindley distribution. Based on the 
results, it is shown that both Com-Poisson and Negative Lindley yield almost equally efficient 
estimates of the parameters with fitted values almost close to the actual values under both the joint and 
marginal quasi-likelihood approaches. 
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INTRODUCTION 
 
 The modeling of count data is one of the most 
important issues in actuarial theory. Various probability 
distributions have been proposed to model these data 
but the fundamental question is which model yields the 
best fits. These distributions comprise of the Poisson 
distribution, the negative binomial distribution, the 
Generalized Poisson distribution and mixed 
distributions (Johnson et al., 1993). However, actuarial 
data may be over-, equior under-dispersed. Poisson and 
negative binomial distributions may not be suitable to 
model such data because of the restriction on the mean-
variance ratio. The Generalized Poisson distribution 
may not also be suitable when the data is under-
dispersed (Jahangeer et al., 2009). To overcome these 
problems, Shmueli et al. (2005) have recently re-
introduced a discrete model known as Com-Poisson. 
This model has the ability to account for over-, equi- 
and under-dispersion irrespective of the type of 
dispersion of the count data. In this study, we provide 
an overview of the Com-Poisson model and discuss its 
statistical properties. We then apply a quasi-likelihood 

estimation equation to estimate the parameters of the 
model using an iterative procedure. Ultimately, we 
apply the Com-Poisson model to two insurance claim 
data collected by Klugman et al. (2008). Moreover, we 
compare the fits based on the Com-Poisson model with 
the fits based on the Negative-Lindley distribution 
(Zamani and Ismail, 2010). 
 

MATERIALS AND METHODS 
 
Com-Poisson model (CMP): Recently, Shmueli et al. 
(2005) proposed the Conway Maxwell Poisson (Com 
Poisson) distribution to model counts which may be 
equi-, over- and under-dispersed. Kadane et al. (2006) 
and Shmueli et al. (2005) studied the basic properties of 
this distribution and the fitting of this distribution to 
over -and under -dispersed cross sectional count data. 
To estimate the parameters, Shmueli et al. (2005) has 
used the Maximum-likelihood estimation technique 
while Lord et al. (2008) used Bayesian techniques. 
Following, Jowaheer and Mamode Khan (2009), we use 
a Joint Quasi-Likelihood technique (JGQL) to estimate 
the parameters of the model. The JGQL approach 
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provides consistent and equally efficient estimates as 
the maximum likelihood approach. The Com-Poisson 
model is given by: 
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where, yi is the value of the insurance claim 
corresponding to the ith accident. In Eq. 1, ν 
corresponds the dispersion index. More specifically, the 
values ν>1 correspond to equi-,over- and under- 
dispersion. Since Eq. 1 does not have closed form 
expressions, we use an asymptotic expression for 
Z(λi,ν) proposed by Shmueli et al. (2005) given by: 
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 Shmueli et al. (2005) derive the following moment 
expressions: 
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To estimate the parameters λ and ν, we consider the 
Quasi-likelihood Equation (QLE) developed by 
Wedderburn (1974). We extend his approach and 
review the joint quasi-likelihood estimating equations 
and develop marginal quasi-likelihood estimating 
equations. The joint quasi-likelihood equation is given 
by: 
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 The matrix components are as follows: 
 

i i
i

i i

/ /
D

m / m /

 ∂θ ∂λ ∂θ ∂ν
=  

∂ ∂λ ∂ ∂ν 
 

 
Where: 
 

1

i
i /

νλ∂θ ∂λ =
ν

 (6) 

 
1

i
i 2 2

1 1 1
/

2 2 2

νν − λ∂θ ∂ν = − −
ν ν ν

  (7) 

 
1 2 1

i i i
i 2

2 2
m /

ν ν ν
 

λ + νλ − νλ ∂ ∂λ =  ν 
 

 (8) 

 
1

i i
i 3 2 1 1

i i i i i

2 ln( ) 11
m /

2
4 ln( ) 4 4 ln( )

ν

ν ν ν

 
λ ν λ + ν − ∂ ∂ν =  ν

 − λ λ ν − λ ν − λ λ 

 (9) 

 
 The covariance matrix of fi is expressed as: 
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 The elements in Vi are derived iteratively from the 
moment generating function of yit which is given by: 
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 By deriving the moments for 2iY , 3

iY  and 4
iY , we 

obtain: 
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 The QL estimates of λ and ν are obtained by 
solving Eq. 7 iteratively until convergence using 
Newton-Raphson technique. At rth iteration: 
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Where: 

rλ̂  = The value of ̂λ  at the rth iteration 

[.] r = The value of the expression at the rth iteration 
 
 The estimators are consistent and under mild 
regularity conditions, for I→∞, it may be shown that 
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 The marginal quasi-likelihood equations under the 
Com-Poisson regression model is as follows: The first 
QLE is to estimate λ while the second QLE is to 
estimate the dispersion index ν. The QLE to estimate λ 
is given by: 
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 The QLE to estimate ν is given by: 
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V i,ν is the variance of Yi
2 and is calculated using: 

 
V i,ν = E(Yi

4)−E(Yi
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where the moments are derived iteratively from the 
moment generating function. The Newton-Raphson 
technique is then applied to the two estimating 
equations. The iterative equations are given as follows: 
At the rth iteration: 
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Where: 

rλ̂  and rν̂  = The values of ̂λ  and rν̂  at the rth iteration 

[.] r = The value of the expression at the rth 
iteration 

 
 The estimators are consistent and under mild 
regularity conditions, for I→∞, it may be shown that 

1
T2 ˆI (( ) ( ))λ − λ  has an asymptotic normal distribution 

with mean 0 and covariance matrix 
1I IT 1 T 1 T 1

i, i, i, i, i, i i i i i, i,i 1 i 1
I D V D D V (y )(y ) V D

−
− − −

λ λ λ λ λ λ λ= =
   − θ − θ
   ∑ ∑

1I T 1
i, i, i,i 1

D V D
−

−
λ λ λ=

 
 ∑  and 

1
T2 ˆI (( ) ( ))ν − ν  has an asymptotic 

normal distribution with mean 0 and covariance matrix 
1I IT 1 T 1 T 1

i, i, i, i, i, i i i i i, i,i 1 i 1
I D V D D V (y )(y ) V D

−
− − −

ν ν ν ν ν ν ν= =
   − η − η
   ∑ ∑

 
1I T 1

i, i, i,i 1
D V D

−
−

ν ν ν=
 
 ∑ . The algorithm to estimate the 

parameters works as follows: For an initial estimate of 
λ and ν, we iterate Eq. 14 until convergence, then use 
the updated λ to update ν in Eq. 17. We then replace 
the updated λ and ν in Eq. 14 and iterate until 
convergence. Having obtained the new λ, we replace in 
Eq. 17 to obtain a new ν and the cycle continues until 
both values converge. 
 

RESULTS AND DISCUSSION 
 
 The first set of insurance claim data is taken 
from Klugman et al. (2008), whereby it was 
collected by Dropkin in 1956-1958 and analyzed in a 
paper in Dropkin (1959). The methods JGQL and 
MGQL are implemented in MATLAB. The fitted 
values and estimates of λ and ν are provided in Table 1. 
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Table 1: Fits of the insurance claims under estimated value of 
ˆMGQL 1.241λ = , ˆMGQL 0.521ν =  and ˆJGQL 1.252,λ =  

ˆJGQL 0.527ν =  

No. of accidents No. of claims MGQL JGQL 
0 81,714 81,719.2 81,719.5 
1 11,306 11,295.1 11,295.7 
2 1,618 1622.1 1623.2 
3+ 297 286.5 287.1 

 
Table 2: Fits of the insurance claims under estimated value of 

ˆMGQL 5.241λ = , ˆMGQL 0.3112ν =   and ˆJGQL 5.233λ = , 

ˆJGQL 0.3125ν =  

No. of accidents No. of claims MGQL JGQL 
0 7,840 7842.10 7843.00 
1 1,317 1,322.20 1321.20 
2 239 242.50 243.20 
3 42 43.10 43.10 
4 14 13.10 13.30 
5 4 3.80 4.10 
6 4 3.40 3.60 
7 1 0.99 1.10 
8+ 0 0.20 0.21 

 
The second set of data is taken from Klugman et al. 
(2008) and provides information on 9,461 automobile 
insurance policies. The methods JGQL and MGQL are 
implemented in MATLAB. The fitted values and 
estimates of ν and ν are provided in Table 2. 
 

CONCLUSION 
 
 The Table 1 and 2 show the fitted values of the 
insurance claims. It is clear that under both MGQL and 
JGQL, CMP yields suitable fits and when compared 
with the analysis of Zamani and Ismail (2010), we note 
there is no huge difference in the value of the estimates. 
Thus, the Com-Poisson model is a very suitable model 
to analyze actuarial counts and the quasi-likelihood 
estimation technique is an efficient estimation 
procedure in terms of both computational and statistical 
performance. 
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