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Abstract: Variables whose distributions achieve the boundary value of Chebyshev’s inequality are 
characterized and it is found that non-constant variables with this property are symmetric discrete with 
at most three values. Nevertheless, the bound of Chebyshev’s inequality remains optimal for the class 
of continuous variables. 
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INTRODUCTION 
 
 The familiar inequality of Chebyshev encountered 
in most elementary statistics courses affirms that for 
every random variable x with mean µx and standard 
deviation σx and for every k 1≥ , the probability that x 
lies strictly within k standard deviations of the mean is 

at least 
2

1
1

k
− . Equivalently: 

 

( )x x 2

1
P x k

k
− µ ≥ σ ≤  

 
 The inequality is trivial if k 1≥  so a proof for k>1 
suffices. Elegant short proofs of this inequality can be 
found in standard texts such as Hogg and Craig (1995) 
and Larson and Farber (2009). The proof given below 
and found in (Rui, 1973) does not require separate cases 
for discrete and continuous variables. 

 
Proof: Define a new variable by: 
 

2
x, x x

x x

k if x k
y

0, if x k

 σ − µ ≥ σ =  
− µ < σ  

 

 
Then: 

 
2

x

2 2 2 2
x x x x x

y (x ) E(y) yP(y)

k ( x k ) E((x ) )

≤ − µ ⇒ = =

σ − µ ≥ σ ≤ − µ = σ
∑

 

 Dividing by 2 2
xk σ  yields the result. 

 To show that the bound in Chebyshev’s inequality 
cannot be improved, the following example is provided 
in (Hogg and Craig, 1995).  

 
Example 1: Let x have the following distribution: 

 
P(x)x

1

81
3

0 4
1

81

−
 

 
 It is evident (by symmetry) that µx = 0 and that 

2 2
x

1
x P(x)

4
σ = =∑  so that x

1

2
σ = . Thus, for k = 2, 

xk 1σ =  and x x 2

3 1
P( x k ) P( x 1) 1 .

4 2
− µ < σ = < = = −  

 The following questions arise: 
 
• What other variables might satisfy Chebyshev’s 

boundary condition?  
• Must all such boundary variables have unimodal 

distributions as in the example above?  
• Can infinitely many distributions satisfy the 

boundary condition for the same k?  
 
 These questions are answered in the next section 
where k-boundary variables are introduced. 
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k--BOUNDARY VARIABLES 
 
Definition 2: For a fixed k 1,≥ , a variable x is k- 

boundary if x x 2

1
P( x k ) .

k
− µ ≥ σ =  

 The 2-boundary variable given above has a 
unimodal distribution. We now give an example of a 
uniform k-boundary variable suggesting that the shape of 
a k-boundary variable may depend upon the value of k. 
 

Example 3: Let 
6

k
2

=  and let x have the given 

distribution: 
 

P(x)x

1

31
1

0 3
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31

−
 

 
 By symmetry, 

2 2
x x

2
0 x P(x)

3
µ = ⇒ σ = = ⇒∑ x

6

3
σ = .  Thus, xk 1σ =  

and x 2

2 1 1
P( x 1) .

33 k
2

− µ ≥ = = =
 

 The following example shows that Chebyshev’s 
bound cannot be improved for any k 1.≥  
 
Example 4: Let k 1.≥  and let xx  have the following 
distribution: 
 

2

2

2

P(x)x

1

1 2k
1

1
0 k

1

1 2k

−

−
 

 

 Then, x x

1
0,

k
µ = σ =

 
and 

x x 2

1
P( x k ) P( x 1) 1

k
− µ < σ = < = − . If k = 1, we may 

assume that  the  variable is two-valued since then 
P(0) = 0. 
 In this general example the distributions are 
symmetric and U-shaped and hence bimodal for 

6
0 k

2
< <  and are symmetric and cap-shaped and thus 

unimodal for 
6

k .
2

<  These shapes remain unchanged 

under linear transformation of the variable. It is a 
consequence of the Lemma below that the k-boundary 
condition is invariant under linear transformation, 
confirming that indeed, infinitely many examples of k-
boundary variables exist for each k 1≥ . In particular, z-
transforms of k-boundary variables yield standard k-
boundary variables. Our characterization of k-boundary 
variables will follow from the fact that there is a unique 
non-constant standard k-boundary variable for each 
k 1≥ . Constant variables and those with infinite 
standard deviation must be separately considered 
because they do not have a z-transform. We note that 
constant variables are 1-boundary since they have 
standard deviation 0 and variables with infinite standard 
deviation cannot be k-boundary for any finite k. It 
follows that non-constant k-boundary variables for 
k 1≥  have z-transforms. We continue with the simple 
but important probability invariance for linear 
transforms. 
 
Lemma 5: If y mx b= +  with m 0,≠  then for each 

x x y yk 0,P( x k ) P( y k )> − µ < σ = − µ < σ . 

 
Proof: For the linear transform y of x, y = mx+b, 

y xm bµ = µ +  and 2 2 2 2 2
y mx b mx x y xm m+σ = σ = σ = σ ⇒ σ = σ . 

Now, y y x xP( y k ) P( mx m k m )− µ < σ = − µ < σ =
 

x x x xP( m x m k ) P( x k )− µ < σ = − µ < σ .  

 It follows immediately that any linear transform of 
a k-boundary variable is also a k-boundary variable and 
in particular, linear transforms of the two and three-
valued discrete k-boundary variables exhibited above 
are k-boundary variables. In fact, the converse is true. 
Every non-constant k-boundary variable is a linear 
transform of one of the variables from the example 
above. For each k>1, every variable with a k-boundary 
distribution is a linear transform of the variable whose 
k-boundary distribution is given in Example 4 above. 
Also, it may be shown that the only 1-boundary 
variables are the constant variables and the two-valued 
uniform discrete variables. Evidently, all variables with 
asymmetric distributions or having at least four values 
including continuous variables, do not satisfy the 
boundary condition for Chebyshev’s inequality. To 
establish this claim we first show that for each k≥1, 
the standard non-constant k-boundary variable is 
unique. 
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Theorem 6: For each k≥1, there is a unique non-constant 
k-boundary variable z having µz = 0 and σz = 1. 
 
Proof: For each k≥1, the existence of such a standard k-
boundary variable has already been established since z-
transforms are linear transforms and hence preserve the 
k-boundary condition. For the uniqueness, we consider 
the discrete and continuous variable cases separately. 
Firstly, assume that z is a non-constant discrete k-
boundary variable for some k≥1 with µz = 0 and σz = 1. 
Then: 
 

2 2 2 2 2
z

z k z k z k

2 2 2 2
2

z k z k z k

1 z P(z) z P(z) z P(z) z P(z)

1
k P(z) z P(z) k z P(z) 1 1

k

< < <

≥ < <

= σ = = + ≥ +

 = + = + ≥ 
 

∑ ∑ ∑ ∑

∑ ∑ ∑
 

 
 It follows that 2

z k

z P(z) 0
<

=∑  so that in particular, 

0 z k P(z) 0.< < ⇒ =  Also then, 2 2

z k z k

1 z P(z) k P(z)
≥ ≥

= =∑ ∑  

implies that P(z 0)=  if z k> . So, the only possible 

values for z are –k, 0 and k. But, 0 cannot be the only 
value since z 1 0σ = > . And, since z 0µ = , both values-k 

and k must be assumed. Further, the distribution must 
be symmetric since: 
 

z0 kP( k) 0p(0) kP(k) k(P(k) P( k))= µ = − − + + = − −  
 
with k 0 P( k) P(k)> ⇒ − = . 

 Then, 2 2 2 2 2
z1 ( k) P( k) 0 P(0) k P(k) 2k P(k)= σ = − − + + =  

implies that 
2

1
P(k) P( k)

2k
= − = . It also follows that 

2

1
P(0) 1

k
= − . Further, if k = 1, -k and k are the only 

values of z each with probability 1

2
.  

 We now show that no continuous variable has a k-
boundary distribution. To evoke a contradiction 
suppose that k≥1 and z is a continuous variable with k-
boundary distribution and that µz = 0 and σz = 1. Let 
f(z) be the probability density function for z and assume 
that f has at most finitely many points of essential 
discontinuity. (Less stringent assumptions on f could be 
made.) Firstly: 
 

2 2 2 2
z

z k z k

2 2 2 2
2

z k z k z k

2 2

z k z k

1 z f (z)dz z f (z)dz z f (z)dz

1
z f (z)dz k f (z)dz z f (z)dz k

k

z f (z)dz 1 1 z f (z)dz 0 f (z) 0

+∞

+∞
≤ ≥

≤ ≥ ≤

≤ ≤

= σ = = + ≥

 + = + = 
 

+ ≥ ⇒ = ⇒ =

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

 

for z k≤  except on a finite set (or a set of measure 0) 

z k

f (z)dz 0
≤

⇒ =∫ . Then, 
z k

f (z)dz f (z) 0
≥

⇒ −∫  

2

z
z k

1 z f (z)dz f (z)dz
≥

= = =∫ ∫  for z k≥  except at finitely 

many points (or a set of measure 
z k

0) 1 f (z)dz 0
≥

⇒ = =∫ . 

This contradiction shows that continuous k-boundary 
variables do not exist. 
 
Corollary 7: If k>1 and x and y are each k-boundary 
variables,  then  y = mx + b for some m>0 and for 
some b. 
 
Proof: By the uniqueness of standard k-boundary 
variables, x and y have the same z-transform. In 

particular, yx

x y

yx
y mx b

− µ− µ = ⇒ = +
σ σ

 with y

x

m 0
σ

= >
σ

 

and x y

x yx

1
b

σ σ
=

µ µσ
.  

 Technically, the corollary fails for k = 1 since then, 
x could be a constant variable while y is a two-valued 
variable. It also follows from the theorem above that for 
k>1, the distribution for each k-boundary variable is 
uniquely determined by its shape. 
 Now that k-boundary distributions have been 
completely determined, in the next section we briefly 
consider the dual problem. To what extent can the 
bound in Chebyshev’s inequality be wrong for a given 
distribution? In other words, for which distributions 
will 100% of a population lie within k standard 
deviations of the mean? 
 

k--CONDENSED VARIABLES 
 
Definition 8: For k>0, a variable x  is k-condensed if 

x xP( x k ) 1− µ < σ = , or equivalently, if 

x xP( x k ) 0− µ ≥ σ = . 

 Firstly, there are variables having 100% of all 
values within k standard deviations for each k>1. In 
particular, if x is the symmetric variable with two 
values -1 and 1, then x 0µ =  and x 1σ = , so that 

x xP( x k ) P( x 1) 1− µ < σ = ≤ = . The case for k = 1 is 

different. We leave it to the reader to show that it is 
impossible for any variable with finite variance to have 
all values strictly within one standard deviation from 
the mean. However, in this case, the probability that a 
variable is strictly within even a fraction of a standard 
deviation of the mean can be arbitrarily close to 1. 
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Consider the sequence of variables xn with 
distributions: 
 

n nx P(x )

1

1 2n
1

1
0 n

1

1 2n

−

−
 

 

 For each xn 1,2..., 0= µ =  and 
nx

1

n
σ =  so that for 

all 
n n

n n nx x

k 1
0 k 1,P P( x k ) P( x ) 1

nn
< ≤ = − µ < σ = < = − . 

Clearly, for all n
n

0 k 1, lim P 1
→∞

< ≤ = . Remarkably, also 

nxn
lim 0

→∞
σ = . In some sense, each variable xn is nearly 1-

condensed. 
 On the other hand, allowing the pathology of 
infinite standard deviation, yields the existence of k-
condensed variables for all 0 k 1< ≤ .  
 
Example 9: Let x be the continuous variable whose 
probability density function is given by: 
 

3

3

1
if x 1x

f (x) 0 if 1 x 1
1

if 1 xx

 − ≤ −
  = − < < 
 
 ≤
  

 

 
 Then: 
 

xf (x)dx 1, 0
+∞

+∞
= µ =∫  

 
and 
 

2 2 2
x 1t t

1
x f (x)dx 2lim dx limln(t )

x

+∞ +∞

+∞ →∞ →∞
σ = = = = +∞∫ ∫  

 
 Thus, xσ = +∞  and x xP( x k ) P( x ) 1− µ < σ = < +∞ =  

for all 0 k 1< ≤ . 
 We return now to the question of whether 
Chebyshev’s inequality can be improved if restricted 
to important subclasses of random variables. Of 
course it can! A Chebyshev type inequality for the 
subclass of all continuous uniform variables, or the 
subclass of all normal variables will have a much 

higher bound. But, such restriction thwarts the 
intended universality of Chebyshev’s inequality. As a 
compromise, can the inequality be improved if applied 
only to the broad class of all continuous variables? 
The next section is devoted to the demonstration that 
the bound of Chebyshev’s inequality, though never 
achieved by any member of the class, is still optimal 
for the class of continuous variables. 

 
NEARLY k--BOUNDARY VARIABLES 

 
 For any fixe d>0 and k 1≥ , we want to find a non-
constant continuous variable x for which: 

 

x x2 2

1 1
1 P( x k ) 1 d

k k
 − ≤ − µ < σ ≤ − + 
 

 

 
 After some experimentation and with the help of 
the Maple symbolic software program, we considered a 
family of continuous variables parametrized by a with 
0<a<1 whose symmetric continuous probability density 
functions are piecewise linear with graphs consisting of 
the x-axis except where three isosceles triangles rise 
from their bases on the x-axis. The base width of each 
triangle is 2a and 0 is the center of the base of the 
central triangle. The area of the central triangle for each 

variable of the family is 
2

1
1 d

k
− +  where it is assumed 

that 
2

1
d

k
< . The two outer triangles are congruent 

sharing an area complementary in 1 to that of the 
central triangle. The outer triangles have bases 1 unit 
removed from 0. The family of variables xa with 

probability density functions fa as described here are 
defined as follows. For a fixed k 1≥  and for each 
0<a<1, fa(xa) = 0 except that: 

 
2

a
2 2

a

2
a

2 2
a

2
a

2 2
a

a a 2
a

2 2
a

2
a

2 2
a

2
a

2 2
a

(1 dk )(x 1 2a)
1 2a x 1 a2a k

(dk 1)(1 x )
1 a x 12a k

[(d 1)k 1](a x )
a x 0a kf (x )

[1 (d 1)k ](x a)
0 x aa k

(1 dk )(x 1)
1 x 1 a2a k

(dk 1)(x 1 2a)
1 a x 1 2a2a k

 − + +
 − − ≤ ≤ − −

 − +
 − − ≤ ≤ −

 + − +
 − ≤ ≤= 

− + −
 ≤ ≤


− −
 ≤ ≤ +


− − −
+ ≤ ≤ +
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 By Maple, a a af (x )dx 1
+∞

+∞
=∫  and 

ax
0µ =  Also, by 

Maple: 
 

a

2 4 4

2 2

2 3 3

2 2

2 4 2 3

2 2 2 2

2 2 2 2
2

2 2x

2 4 2 3

2 2 2 2

2

(1 dk )[(1 a) (1 2a) ]

8a k

(1 dk )(1 2a)[(1 2a) (1 a) ]

6a k

(dk 1)[1 (1 a) ] (dk 1)[(1 a) 1]

8a k 6a k

[(d 1)k 1]a [1 (d 1)k ]a

12k 12k
(1 dk )[(1 a) ] (dk 1)[(1 a) 1]

8a k 6a k

(dk

− + − + +

− + + − + +

− − + − + −+ +

+ − − +σ = − +

− + − + −+ +

− 4 4

2 2

2 3 3

2 2

1)[(1 2a) (1 a) ]

8a k

(dk 1)(1 2a)[(1 a) (1 2a) ]

6a k

+ − + +

− + + − +

 

 
 Further, with Maple we have that 

a

2

xa 0
lim(k ) 1 dk

→
σ = −  which is real and less than 1 for 

2

1
0 d

k
< ≤ . Thus, we may choose a>0 so that 

ax
k 1σ ≤ . 

It follows that for such an 

a a
a 2x x

1
a,P( x k ) 1 d

k
 − µ < σ = − + 
 

, the area under the 

central triangle. Since d can be chosen arbitrarily near 

0, there is no bound larger than 
2

1
1

k
−  for which 

Chebyshev’s inequality will hold for all continuous 
variables. 
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