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Abstract: Problem statement: The most successful applications of Kalman filtering are to linearize about 
some nominal trajectory in state space that does not depend on the measurement data. The resulting filter is 
usually referred to as simply a linearized Kalman filter. Approach: This study introduced mainly indirect 
Kalman filter to estimate robot’s position. A developed differential encoder system integrated 
accelerometer is experimental tested in square shape. Results: Experimental results confirmed that indirect 
Kalman filter improves the accuracy and confidence of position estimation. Conclusion: In summary, we 
concluded that indirect Kalman filter has good potential to reduce error of measurement data. 
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INTRODUCTION 

 
 Kalman’s study of the early 1960s was recognized 
almost immediate as new and important contributions 
to least-squares filtering. As a result, there was a 
renewal of research interest in this area. Research study 
in this area still continues and new applications and 
extensions continue to appear regularly in the technical 
literature (Aggarwal et al., 2005). Some of the most 
successful applications of Kalman filtering have been in 
sit nations with nonlinear dynamics or nonlinear 
measurement relationships. One is to linearize about 
some nominal trajectory in state space that does not 
depend on the measurement data. The resulting filter is 
usually referred to as simply a linearized Kalman filter. 
The other method is to linearize about a trajectory that 
is continually updated with the state estimates resulting 
from the measurements. This filter is called an extended 
Kalman filter. Its use in the analysis of visual motion 
has been documented frequently. The standard Kalman 
filter derivation is given here as a tutorial exercise in 
the practical use of some of the statistical techniques 
(Elfes, 1987; Borenstein and Feng, 1996). 
Documenting this derivation furnishes the reader with 
further insight into the statistical constructs within the 
filter. The filter is constructed as a mean squared error 
minimization, but an alternative derivation of the filter 
is also provided showing how the filter relates to 
maximum likelihood statistics. The purpose of filtering 
is to extract the required information from a signal, 
ignoring everything else. How well a filter performs 
this task can be measured using a cost or loss function.  
Indeed we may define the goal of the filter to be the 
minimization of this loss function (Norsuzila et al., 
2008; Gao et al., 2007). 

MATERIALS AND METHODS 
 
 The Kalman filter has long been regarded as the 
optimal solution to many tracking and data prediction 
tasks (Flgueroa and Mahajan, 1994; Gelb, 1974; 
Haykin, 1996).  
 
Indirect Kalman filter concept: The process to be 
estimated and the measurement relationship is written 
in the form: 
 

d (t)x f  [x,u ,t] w= +ɺ  (1) 

 

(t)z h [x,t] v= +   (2) 

 
Where: 
f and h = Known function  
ud = A deterministic forcing function  
w and v = White noise with zero cross-correlation 
 
 From the truth trajectory Ref

(t)x  is referred to as the 

nominal or reference trajectory and the actual trajectory 
x(t) can write as:  
 

Ref
(t) (t) (t)x  = x  + δx   (3) 

 
 From Eq. 1-3, then become: 
 

Ref Ref
(t) (t) d (t)x δx f (x δx,u ,t) w+ = + +ɺ ɺ   (4) 

 
Ref

(t)z h(x δx,t) v= + +   (5) 
 
and with Taylor’s series expansion, then the result, 
retaining only the first-order terms is: 
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Ref

Ref
d (t)

x x

f
x δx  f (x,u ,t) ∆x + w

x =

∂ + ≈ + • ∂ 
ɺ ɺ  (6) 

 

Ref

Ref
(t)

x x

h
z h(x ,t) ∆x + v

x =

∂ ≈ + • ∂ 
  (7) 
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 From the truth trajectoryRef

(t)x  to satisfy the 

deterministic differential equation: 
 

Ref Ref
dx = f (x , u , t)ɺ  (8) 

 
 Substituting this into Eq. 6 then leads to the 
linearized model:  
 

Ref
(t)

x x

f
δx ∆x w

x =

∂ = • + ∂ 
ɺ  (9) 

 

Ref

Ref
(t)

x x

h
(z h [x , t])  ∆x + v

x =

∂ − + • ∂ 
 (10) 

 
 From Eq. 9 and 10 may be written in the discrete-
time form. For process state equation is written as:  
 

k+1 k k kδx  = Fδx  w+ Γ   (11) 

 
and measurement equation as: 
 

k k k kδz  = H δx  + vΛ   (12) 

 
 From the basic linearized measurement equation, 
Eq. 10 the measurement presented to the Kalman filter 

is Ref(z h [x ,t])− . Then the incremental estimate update 
equation at time tk is considered as: 
  

( )Ref
k k k k k k kˆ ˆ ˆδx  = δx  + K z h [x ,t] H δx+ − −• − −   (13) 

 
 From above equation can consider 
term Ref

k kz h [x ,t]−  as kδz  then the equation become: 

 

( )k k k k k kˆ ˆ ˆδx δx K δz H δx+ − −= + • −   (14) 

 
 The term ( )k k kˆδz H δx−−  is named as Residual and 

the matrix Kk is Kalman gain. It can minimize the 
posteriori covariance of the error estimate. The matrix 
Kk is calculated by:  
 

T T T 1
k k k k k k k k kK P H (H P H Λ R Λ )− − −= +   (15) 

 
Rk is the measurement noise covariance at step k. The 
covariance of the priori estimate of δx is calculated as:  
 

( )( )T

k k k k kˆ ˆP E δx δx δx δx− − − = − −
  

  (16) 

 
 The posteriori estimate is: 
 

( )( )T

k k k k kˆ ˆP E δx δx δx δx+ + + = − −
  

  (17) 

 
 The equation of extend Kalman Filter for 
“Measurement update” are: 
 

T T T 1
k k k k k k k k kK P H (H P H Λ R Λ )− − −= +   (18) 

 

( )k k k k k kˆ ˆ ˆδx δx K δz H δx+ − −= + • −   (19) 

 

k k k k kP P K H P+ − −= −   (20) 
 

 
 
Fig. 1: Step of measurement update 
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and the equation of extend Kalman-Filter for “Time 
update” with the assumption the projection equation is 
not affected by the cross-correlation between system 
noise and measurement noise because of the whiteness 
property of each: 
 

k+1 k kˆ ˆδx F δx− +=   (21) 

 
T

k+1 k k k k k kP F P F Γ Q Γ
− += +   (22) 

 
Generally for the measurement and time update step in 
the literature start at time tk first the “Time update” and 
then the “Measurement update” shown in Fig. 1.  

 
RESULTS 

 
 The experiment is carried out and presented in to 
demonstrate the feasibility, accuracy and performance 
using Kalman filter algorithm. The experiment 
focused  on  the  observation of the position accuracy.  

 

 
 

Fig. 2: Simulation of mobile robot’s position proposed 
system in X-coordinate with MATLAB software 

 

 
 

Fig. 3: Simulation of mobile robot’s position proposed 
system in Y-coordinate with MATLAB software 

We made the experiment by using mobile robot driven 
by the differential encoders system and run mobile 
robot in square shape. In the first round the mobile 
robot only run by the differential encoders system. And 
in the second round the mobile robot run by the 
differential encoders system integrated with 
accelerometer and using indirect Kalman filter to 
reduce position error. The simulation of mobile robot’s 
position results is shown in Fig. 2 and 3 in X and Y 
coordinates. 
 

DISCUSSION 
 
 The results will be compared and discussed. We 
start with calibration the accelerometer and controlled 
the vehicle along a square shape for 3×3 m2 with start 
point (0, 0). The trajectory was estimated based on shaft 
encoders from start point (0, 0) → point (0, 3) → point 
(3, -3) → point (0, -3) → end point (0, 0). The 
estimation error from fusion algorithm between 
encoders and accelerometer at end point in the X-
coordinate is 23.5 cm and in Y-coordinate is 32 cm. We 
see that the estimation with sensor fusion can improve 
performance of mobile robot‘s localization. 
 

CONCLUSION 
 
 We have now presented the basics of Kalman 
filtering and looked at a few examples of how the 
technique can be applied in physical situations.  
 The Kalman filter is intended to be used for 
estimating random processes. The Kalman filter is a 
linear estimator. The filter is optimal in the minimum 
mean-square-error sense within a class of all estimators, 
linear and nonlinear. Under certain special 
circumstances, the Kalman filter yields the same result 
obtained from deterministic least squares. Kalman 
filtering is especially useful as an analysis tool in off-
line error analysis studies. The optimal filter error 
covariance equation can be propagated recursively 
without actual measurement data. 
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