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Indirect Kalman Filter in Mobile Robot Application
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Abstract: Problem statement: The most successful applications of Kalman fittgrare to linearize about
some nominal trajectory in state space that doedepend on the measurement data. The resultiagifl
usually referred to as simply a linearized Kalmitarf Approach: This study introduced mainly indirect
Kalman filter to estimate robot's position. A dewetd differential encoder system integrated
accelerometer is experimental tested in squareesRagults. Experimental results confirmed that indirect
Kalman filter improves the accuracy and confideotposition estimationConclusion: In summary, we
concluded that indirect Kalman filter has good ptiéé to reduce error of measurement data.
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INTRODUCTION MATERIALSAND METHODS

Kalmans _study of the early .19605 was reC(_)gm_zed The Kalman filter has long been regarded as the
almost immediate as new and important contributions__.. : ; L
N optimal solution to many tracking and data predicti
to least-squares filtering. As a result, there veas . . i
) S tasks (Flgueroa and Mahajan, 1994; Gelb, 1974;
renewal of research interest in this area. Resestaly .
) : . : oo Haykin, 1996).
in this area still continues and new applicatiomsl a
extensions continue to appear regularly in thenet
literature (Aggarwalet al., 2005). Some of the most
successful applications of Kalman filtering haverté
sit nations with nonlinear dynamics or nonlinear
measurement relationships. One is to linearize 1::1bou),(_f[xu 4w (1)
some nominal trajectory in state space that doé¢s no ~ "¢ ®
depend on the measurement data. The resulting iilte
usually referred to as simply a linearized Kalmitert z=h[xt+ v, (2)
The other method is to linearize about a trajectbat
is continually updated with the state estimatesltieg) Where:
from the measurements. This filter is called ameded fand h = Known function
Kalman filter. Its use in the analysis of visualtioo = A deterministic forcing function
has been documented frequently. The standard Kalmag and v = White noise with zero cross-correlation
filter derivation is given here as a tutorial exsecin
the practical use of some of the statistical tegphes From the truth trajectorkg” is referred to as the
(Elfes, 1987, Borenstein and Feng, 1996).nominal or reference trajectory and the actuaktiajry
Documenting this derivation furnishes the readethwi X can write as:
further insight into the statistical constructs hiit the
filter. The filter is constructed as a mean squaggdr  x, = xg" +5x,, 3)
minimization, but an alternative derivation of thiger
is also provided showing how the filter relates to From Eq. 1-3, then become:
maximum likelihood statistics. The purpose of filbg

Indirect Kalman filter concept: The process to be
estimated and the measurement relationship isemnritt
in the form:

is to extract the required information from a signa Xg *8%q =X +3x,uy,t)+ w, (4)
ignoring everything else. How well a filter perfesm

this task can be measured using a cost or lossidanc ~ z=h(X**' +8x,t) + v, (5)
Indeed we may define the goal of the filter to he t

minimization of this loss function (Norsuzilet al., and with Taylor's series expansion, then the result
2008; Gacet al., 2007). retaining only the first-order terms is:
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R _ Ref ; ;
P 4B~ (XUt + of o ©6) is(z h[x ,t]). Then thg mcreme.ntal estimate update
OX o yre equation at timgtis considered as:
Rt v, | ON 8%, = 0%, + K, *(z,—h D7 - H3%,) (13)
z=h(xX**" 1)+ ai 'AX+V® (7) k k k k Ko KOk
X |y =yRet
Where: From above equation can consider
' termz, - h [x*t] asdz, then the equation become:
of, oy ]
ox, 0x, X, 5%; = 8%, +K, * (6, - H,3%,) (14)
x| P e X, The term 5z, - H,3%,) is named as Residual and
: ' : the matrix K is Kalman gain. It can minimize the
o .. . posteriori covariance of the error estimate. Therima
L 9%, X, | Kyis calculated by:
[oh, oh  oh | K, =P HI (H, B H +ARAT)™ (15)
ox, 0xX, 0X
ah oh, oh, .~ oh, Ry is the measurement noise covariance at step k. The
Vi 0x,  0X, 0X p, covariance of the priori estimate & is calculated as:
oh, . oh, Py = E[ (6%, 8% (o %) | (16)
| 0%, 0X, |

. i The posteriori estimate is:
From the truth trajectoryf" to satisfy the

deterministic differential equation: P =E [(Sxk —6)?;)(6xk _SRE)T] (17)
XRef: f(X REf: ud , t) (8)
The equation of extend Kalman Filter for

Substituting this into Eq. 6 then leads to the Measurement update” are:
linearized model:

Kk =Pk_HI(HkF?<_|_||I +AkRkA-l|<-)_l (18)
X = o s AX+W 9) ot _ so- o-
OX Jyoyret © X, = 8X, + K * (Szk - Hksxk) (19)
-
dh R =R - KHFR (20)
Z-h X )+ — o AX+ Vv (10)
OX Jyoyrer | ]
. . ) Measurement Update. (“Correct™) Time Update. (“Predict™)
t- Ffrom iq 9 and 10 {T]tay be V\{rltten In ttTe dlscrete- 1. Kalman Gain Calculation 1. Project the state ahead
Ime Torm. FOr process state equation Is written as K, —EH (HEH +AR AT o, —Eax
_ 2. Update estimate with 8z, 2. Project the error covariance ahead
6Xk*-il - FkSXk + er (11) o% = o%, + K, o o7, —H,b%; | B :Fl«PI:FkT TLLQT,
a.nd measurement e uatlon as: 3. Update the error covariance
q : E-E -KHE
— Hox, + t
5z, = HoxX, + AV, (12) I o

Initial estimates for P, and ax;

From the basic linearized measurement equation,
Eqg. 10 the measurement presented to the Kalman filt Fig. 1: Step of measurement update
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and the equation of extend Kalman-Filter for “Time We made the experiment by using mobile robot driven
update” with the assumption the projection equatton by the differential encoders system and run mobile
not affected by the cross-correlation between syste robot in square shape. In the first round the neobil
noise and measurement noise because of the whitena®bot only run by the differential encoders systé&mnd

property of each: in the second round the mobile robot run by the
differential encoders system integrated  with
3%, = ROk} (21) accelerometer and using indirect Kalman filter to

reduce position error. The simulation of mobile ati®
position results is shown in Fig. 2 and 3 in X and

P..= RR E+TQT, (22) coordinates

k1 —
Gen_erally for the measurement and_time updateistep DISCUSSION
the literature start at time first the “Time update” and
then the “Measurement update” shown in Fig. 1. The results will be compared and discussed. We
start with calibration the accelerometer and cdletto
RESULTS the vehicle along a square shape for 3>%3with start
The experiment is carried out and presented in t®0int (0, 0). The trajectory was estimated baseslrit
demonstrate the feasibility, accuracy and perforrean €ncoders from start point (0, 6) point (0, 3)- point
using Kalman filter algorithm. The experiment (3, -3) - point (0, -3) -~ end point (0, 0). The

focused on the observation of the position amcyr ~ estimation error from fusion algorithm between
encoders and accelerometer at end point in the X-

T coordinate is 23.5 cm and in Y-coordinate is 32 ¢ve.
see that the estimation with sensor fusion can ongr
— rusion algonthm

performance of mobile robot's localization.
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I *' """""" - A We have now presented the basics of Kalman
: ‘ : { ! : filtering and looked at a few examples of how the
technique can be applied in physical situations.
i i { The Kalman filter is intended to be used for
----- . - estimating random processes. The Kalman filter is a
5 i linear estimator. The filter is optimal in the mimim
J ® * e £ 9” 52 mean-square-error sense within a class of all estirs,
T fpes) linear and nonlinear. Under certain special

Fig. 2: Simulation of mobile robot's position pregesl ~ Circumstances, the Kalman filter yields the sansailte

system in X-coordinate with MATLAB software Obtained from deterministic least squares. Kalman
filtering is especially useful as an analysis toobff-

10w T T T T T ; line error analysis studies. The optimal filter osrr
' covariance equation can be propagated recursively
without actual measurement data.

X-con

' O S S Only encoders

. : Encoders + Ace. !
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