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Abstract: Problem statement: In this study, a numerical method for direct solutof general second
order differential equations was considered in prgecircumvent the problems of computational
burden and computer time wastage associated witthateof reduction to system of first order
equations. The issue of zero stability of higheteormethods is considered in the development of the
method Approach: The method was developed based on collocatiorirdarpolation approach using
power series as the basis function to the solutiothe problem. The basic properties of the method
were considered. A consistent symmetric and zeablestmain predictor of order five was also
developed for the evaluation of the implicit scheffike accuracy of the developed method is tested
with test problemsResults. The method was zero-stable, consistent and naredhliThe order of
accuracy was found to be optimal. Both the mainheétand the predictor were obtained to be
normalized and zero-stabl€onclusion/Recommendations. Comparison of theélerived method with

an existing method of the same order of accuraoywstl a higher accuracy of the derived method. In
the later research, this accuracy will be improlgdieveloping the main predictor of the same order
of accuracy with the main method.
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INTRODUCTION burden and wastage in computer time (Awoyemi and
Kayode, 2002). To avoid these shortcomings, methods
Higher order (linear and non-linear) ordinary for directly solving special equations without tfiest
differential equations of the form: derivative of the form:

F Y. Y ¥ V" Y F 09 @ Fig, y™m=f(ty), m=2 3)

m=12,..., {t yJO R @)
have been considered (Awoyemi and Kayode, 2002;
2005; Badmus and Yahaya, 2009). Some efforts have
equally been made to develop numerical methods
capable of solving general second order of Eqmil=(
2), without paying attention to the property of aer
stability, (Awoyemi and Kayode, 2005; Kayode and
) Awoyemi, 2005), an essential ingredient to guamante
convergence.

In this study, the development of an optimal order
) numerical method of Adams Moulton type with
When the reduced equations are not SOIVablestepnumber k = 5 and three function evaluationsafor

analytlgally numerlcal methods are adopted ©girect solution of general second order equatiohs o
approximate the solution. Numerical methods deeop type:

for such reduced equations abound in literature
(Abhulimen and Otunta, 2006; Ademilugi al., 2002;
Ademiluyi and Kayode, 2001; Awoyemi and Kayode, ¥ =f(t. ¥, Y).¥" (6)=H,, M= 0, , (4)
2005; Charet al., 2004).

Reduction of equations of type (1) to a system okatisfying the zero stability property is considerghe
first order equations leads to serious computaltionamethod is consistent, optimal and normalized.

367

are of special interest to scientists and engin€ens
results of their field-work are most often modelatb
equations of type (1) which are conventionally estl
to system of first order equations of the type:

Ft,y,y)=0, yt)F ¥, Olab

before seeking appropriate solutions to the eqgmstio
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MATERIALSAND METHODS K k
Vi) = 20,0y, + 2B (OF, (11)
Derivation of the method: The proposed numerical a a

method for direct solution of general second ordefyhere the coefficients: /() and B,(t) are obtained to
differential equations of type (4) was developed byb

adopting a partial sum of power series:
o) =@1+1)
$ax a,(t) = -t

Yy = Y ax (5) 2
0 B =20 h (—£t+1689+175f+£27f+ 148+ T
as an approximate solution, wherea's, , (1552t+ 2520t + 91Gt-
j=0,1,..., (k+ 2), are real coefficients of x and k is the B4(t)=504 525, _525:_sos_ gy
step number of the method. 2 2
The first and second derivatives of Eq. 5 yielded: 2
4>y B(0) = h 1680t- 70t+ 3574 115 10t
2(k-1) )
y(x) =Y jax™ (6) Bz(t)_ (83t+84of+ 245t - 23ft- 98t 106t
j=1
2
B,(t) = (2—77t 280 — 105¢ + 2/ f+ 428+ 5t
. 2(k—1). . " 50 0 2 2
y')= 2 i(i-Dax @)
i=2 Bo(t)— ( -20t+ 42?+7f‘——f’ 7¢-1)
respLeJcFiveI{i i (7) broduced: To determine the first derivativey,,, in f, ., the
sing (4) in (7) produced: first differentials of a,(t) and B,(t) in (11) were
2(k-1) obtained as shown below:
2 ii-Dax?=f(xy.y) (8)
i=2 o, () = 1 (132+ 196t 378t~
0 1680h| 420¢ - 35¢ + 42t+ 7t
In order to make the method to be zero stable, 272+ 6160 168t
Equation (5) was interpolated at two grid points o (1) = -1 [ 72+ 616t~ 168t~ J
x=x,,, i=k-2, k-1. Equation 8 was collocated at 420h\ 420f - 35t + 42t + 7%
grid points x=x,,,,i=0, 1, .., k ; The interpolated o '(t)— 1 (552+13168% 4%-
and collocated equations are of the form: z 280h{ 420¢ - 35¢ + 428+ 7%
- . o (m=-1 1392+ 22964 257t-
D -Dax =1, i=012 ..} 9) 420h| 420¢ — 35¢ + 42F+ 7§
j=4
a '(t) 3212+ 3556t 4672t—
2k . ¢ 1680h 420¢f - 35t + 428+ 7°
Dax =y, i=k-2,k-1 (10)
=0 B/t = -240+ 56t+ 1890t +
177 20160N 1680F + 175t - 168t- 35t
Where:
fo=f(x..,y") r=0,1 B/ (t) = {1824+ 7820t 84471+ ]
Yoo =YX 10080N 2940f - 70t — 210t- 28t
B ( )= 1 48+ 392t+ 882t +
The values of a's, j=0,1,.., k- 2z were ° 20160H 840¢ + 385¢ + 84t+ 7t
determined, taking k = 5. Substituting these valnés
Eq. 5 and using the transformation A particular discrete scheme may be generated
x=th+x.,,,t0(0, 1], produced the continuous method: from the continuous method (11) by taken any value
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t in the interval | = (0, 1]. In this work, Eq. 1% these starting values, the approach described irbEq
evaluated at t = 1 to yield a zero-stable discseteeme: 10 was adopted, except that collocation was noecn
the end grid pointx =x,,,. Zero stable and consistent

2
yn+5:2yn+4—ym+%(18fm5+ 209f, , (12) explicit methods for k = 5 and 4 were obtained as

shown below:
+ 4f1+3+ l4t\+2_ 6t»2+ fn)

k-1 k-1
The first derivative of (12) is obtained to be: () = ;Gi(t)yﬂﬂ' +§,Bj Of k=54 (16)
1
Yi.s =—{853y,,,-1767y,, ,+ 1128y, ,— 157y, h?
210h =2 - +——(299f  ,—176f_ .
y (13) Yors = €Yna ™ Youa 240( w4 "3 (17)
-57y, +E(1319p+5+ 20738f, .+ 1679f, ) + 194f,, - 96f,,+ 19f )

p=5,C,,=75x10°
Definition: Let the numerical method (12) be expressed
as Y., =0t Ynifnsh)i=0,1..5 and the local

1 h
= - + 4169f  ,—3928f
truncation error of the method be given by: Yoss =W mes Y nd * 724 e "3 (18)
+ 4950f,, - 2432f,+ 481f )}

ho_ . . TR o
6n+k - (D(tl‘l+k’y(tn+i)’f(t n+i)’ h) y(tn+ k) (14) p = 5, Cp+2 =~ 3.19246( lOl-

oo o L :
and if lim—tk =0 (implication for consistency (Chou h
hlm’ h ( P y ( yn+4=2yn+3_ym2+ﬁ(14fn+3 (19)
and Ding, 2004; Aruchunan and Sulaiman, 2010), the _5 B
H H . t1+2+ 4fn+1 fn)
method is said to be of order p if:
p=4,C,,=7.916% 10°

.. =0(h"?) ash - 0 (15)
o1 h
Applying the definition above in (12), the orddr o Yn+s ‘F{y maTY i +¥(§922f ERLE Y (20)
accuracy of the method is 6 and its error constamnt + 516f,, - 127f )

is 3654k 10, The method is consistent and zero stablep = 4, ¢, = 3.340¢ 10°
satisfying the necessary and sufficient conditiéms

the convergence of Linear Multistep '\./_'et_hOdS (LMM) The minimum value of k for the development of
(Chou and Ding, 2004; Parand and Hojjati, 2008). any LMM must be equal to the order of the diffeiaint
Implementation of the method: The continuous €duation it is meant to solve. For each of
method (11) was designed to solve general linedr anYos: Youi Yauir i =1...k, k<2, Taylor series expansion
nonlinear differential equations of type (1) whéhe  was adopted to have:

collocated functiorf,,, has been defined as:

. . ih)?
“=y(x. +ih) = y(x. ) +ihy®(x +('_ @ (x
fn+i :f(xn+i’ yn+i' y’n+i): | =O, 1, 2, seay l yn+| y( n ) y( n) y ( n) 2| y ( n)

+(ih)3 O ) + (ih)4f . (ih)Sf(l)Jr (ih)ef oy
3! " 4 " 51 " "

By definition, a method of type (11) is implicit i Y

B, #0 and explicit if otherwise. The sample discrete

method (12) and its derivatives are implicit. and:
Implementation of these requires additional explici

starting values foy,,,, y©.,i=1,2 ..., k. Y =y (x, +ih) Oy®(x,) +ihy@(x,)
Badmus and Yahaya (2009) developed an order six , (ih)’ v (x.)+ ()’ ¢ L () e, (0,
Block Method for general second order differential 2! SRR | R | L T A

equations in which all the starting values are inifpl

These implicit starting values are not suitableugioto vy, y, are the initial values as given in the problem.

implement the implicit method. There is need for

explicit starting values. In this study expliciagfng  sample tests and results: The accuracy of the method

values are developed foy,., ., i>2. To obtain  (12) was tested with two test problearsl their results
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compared with existing method (Awoyemi and Kayode, DISCUSSION
2005) as shown in the Table 1 and 2.

The accuracy of the new method is higher as

Test problem 1: show in the Table 1 and 2. The above results did no
show any superiority of the block method over the

, 6, 4 , 1 derived predictor corrector method.

y'+=y'+—y=0, yO)=1=y (@), » ( h=——+ P

X X 320
CONCLUSION
. Lo _b5x*-2 .

Analytic solution:y(x) = o An order six zero stable method of Adams
Moulton type has been considered for direct sofutio
of linear and non-linear general second order @ngin

Test problem 2: differential equations directly. The method is
consistent and zero stable, satisfying the basic

v pom2 L 1 1 requirements for convergence of Linear Multistep

y' =) =0 y(0)=1, y(o)zi ’h:% Methods (LMM). All the predictors and their

derivatives are consistent and zero stable. Effoete
made to ensure that the orders of the predictods an

Analytical solution:y(x) :1+1|n[2+ XJ their derivatives are close to the order of thehodt
2 \2-x in order to reduce the effects this could have on
accuracy. While the order of accuracy of the new
RESULTS method its derivative are each 6, the orders of the

main predictor and its derivative are each 5.

. A comparison of the maximum absolute errors of
The accuracy of the derived method (12) Wa%he new mgthod show a higher superiority of the new

examined with two test problems. Table 1 aﬂd 2 ShoV\t(nethod existing method (Badmus and Yahaya, 2009) as
the results of problems 1 and 2 respectively. Thgshown in Table 1 and 2

maximum errors of the new method are compare
with those of the block method of Badmus and
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