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A Study of Naghdi’s Shell with a Unilateral Contactof a Rigid Obstacle

Taallah Frekh and Nouri Fatma-Zohra
Department of Mathematics, Badji Mokhtar Universiynaba, Algeria

Abstract: Problem statement: In this study we considered a shell modeled by Maglequations
with a unilateral contact of a rigid bod&pproach: This model has been studied by Blouza and Le
Dret (1994b) but without contadResults: In this study, we studied the existence, uniquersesd
continuity of the deformation of this shell withspect to the dataConclusion: We proposed to
approximate the model by a finite element method.
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INTRODUCTION Naghdi’'s model: Let S be a surface oR®*defined by

_ _ _ s=¢(Q) with $:Q - R®, QOR?.0x0Q,¢(x) is a

Several problems in mechanics, physics, control . .

and those dealing with contacts, lead to the smily 9€Neric point ofS.

systems of variational inequalities (Ciarlet, 1978;

Grisvard, 1985; Haslinget al., 1996). Definition of a shell: A non deformed shell of a surface
A shell is a tridimensional continuous media, veher S of thickness e is a set ofgiven by:

one of the dimensions, namely the thickness e, is

relatively small with respect to the others, ike tength,

the width and the radius of the curvature of theliona

C={¢(x,y) =g(x)+za( ¥ ,xDﬁ}

surface of the shell. and _}e( X) < z< 1 g%
An example of a closed shell is the one formea by 2 2
plane and a part of a cylinder. According to thee of
the thickness e, a shell is said to be thick ar.tbinder The thickness of the shell is defined by the

the action of charges that are sufficiently smailtbe  applicatione:Q - R, . We have:pOC'(Q) :
linear case), the shell gets a deformation accgrdn

physical laws such as tridimensional elasticity. d9(x)
There are two different families of linear thin a(x)= 3 =0,0(x)
elastic shell models: one due to Reissner thabsed %1
on the Cosserat surface theory (Bernadou, 1994) fond
details). This has been developed by Naghdi in 1863
the sense of taking in account the effect of astrarsal _0(x) _
a,(x) = =0,9(x)

cut. The second one is based on Kircchoff-Love theo
(Blouza and Le Dret, 1994a). It has been develdped
Koiter in 1970, where he suggested a bi-dimensional
model for thin linearly elaggc shells, where the /e suppose that the vectoss(x)and a,(x) are
unknowns are the displacement field of the surfacdinearly independent in each poist of S. We define
points, with neglected cut effects (Lions andthe unitary normal vector by:
Stampacchia, 1967; Slimasgeal., 2002).

Many authors such as (Bernadou, 1994; a,(x)0a (%
Bernadouet al., 1994; Blouza and Le Dret, 1994a; a,(X) =~
Blouzaet al., 2006) have mainly studied the existence
and uniqueness of the solutions for Naghdi's madel )
an academic example. Here we focus on the sanfd the surface poing(x).
model with a unilateral contact, and this is a ipatar
case in real applications such as cars, boats Eme p Definition of a deformed shell: By taking in account
wings modeling. the transversal cut implies that the normal vector be

0X,
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deformed, i.e., there is a rotation. Thereforertbemal Remark 1: With these hypotheses, the displacement
vector a,(x) is transformed into a vectat,(x) and by  u(x) and the rotation r(x) of the normal vector at the

neglecting the effects of pinching and considetiing  point ¢(x)of the middle surface, we can define the
constraints to be approximated in the plane. Th

e ; .
deformed shell Cis described by the points: displacement of the poin(x.z) of the shell by:

C ={¢(x2)=6¢(9+za(3 09} U(x,2) = u(x) + zr( %)
and The main unknowns in Naghdi’'s model are the
1 1 displacementu(x) of the surface pointg(x) in S and
—se(x)sz= S e the normal vector of the rotatiorfx) .
C is the closure ot . Remark 2: For the Koiter’'s model this is given by:
Then the distance between a point of the shell and
the middle surface remains constant during the U(x,2) = u(x)+ %9, ua) &
deformation procesd.et ¢ (x) be a card deformation
of the middle surface defined by: where, the only unknown is(x) (the displacement of

the pointg(x) of the medium surface).
@ (x)=¢(x)+u(x) and a;(x)=a( X+ r
Classical formulation: For the unknowns:
r is the rotational transversal vector. This isiedf
vector that measures a linear variation of the m@brm u=ud andr=ra
vector a,(x) of a surface.

The parameters, are the linear components with with i =1,2,3 and a =1,2. We pose:
respect to the local basis of the normal vector of
rotation a,(x) field, where r is given by: v, :{ (VV,SG)D[H]'(Q)]S N=5=0 onro}

r=a,(x)-a(x,r=rd andra,=0
(4-a(% ¢ % with I, is a part of the boundary ¢f O R?.
The formulation of Naghdi's problem in the local

i.e., r does not have a normal component. e :
basis is given by the following:

Displacement of a shell point.The displacement of a Find:
point U(x,z) is written as:
(un)=((u)(£)OV
U(x,2)=0"(x,2) - ¢(x,2
= (x) +za( X)‘(‘P( x) + za( >§) Such that:
=g(x)+u(x)+z(a(+ &)
~(9(x) +za,( ¥) a((u) (v.9)= (v.3 B( v.p0 y
=u(x) + zr, &
i yﬂB(u)ypc(V) \/_
. . . — po 5 d
This applies that: a((u.) {v.9) i € +l*2Xap(U,r)ng(V13) a
U(x,2) = u(x)+ zr( x) +J'4epa"‘6q3( u,)8,,( V.3 adx
ThereforeU(x,z) is the displacement of the point

@(x) of S and r is the normal vector of rotatia( x) . I(v.s) =£pv\/3dx (1)
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a““p“:igd"’ef°+u( £+ %)

1
20 Bo(u.) = (0,8 + ra)

a™is the elasticity tensoh andp are The constants gare defined to be functions af (Q) that coincide with

of LaméA=0 andu>0. ) ) _the tensor of the cut when u and r are functions of
In the case of an homogeneous, isotropic materlabz(Q R3)

with  Young’s modulus E>0and Poisson’s ratio
1 ) This problem is well posed (Bernadetal., 1994).
v, 0< u<5, the contravariant components of the

Formulation in Cartesian components:We consider

elasticity tensom*° are given by: | |
a middle surface of shell S. The capis assumed to be

e = E (gog0s g &)

(oW (Q,R?)).

2(1+v
( EL? It has to be noted thaw?”(Q) - C'(Q) (with
+71_ 02 ael continuous injection). We introduce the space:

Let us denote by ds the area element. Therefore wg :[ (v.9) D[H(Q,W)T sa= 0i v 5 O,
write ds=+/adx. The tensory,x andd are the metric,
the curvature and the transversal deformation
respectively. The tensor of the transversal deftiona With the norm:

cut are given by the components: 1
0.3 = (1M #1400 @

1
yw(u)za(aau.aﬁ +0 u.@)
Theorem 1: Let uOH(Q,R?),r0 H(Q,R?) such that

ra, =0, be a displacement and a normal rotation of
a,(x) of the middle surface respectively.

1(6[,&3383 +0,ud, qj
We suppose thapo w>* (Q,R?):

Xap (U.T) P +0,r.a, +0,1.8,

6a3(u,r)=1(6au.as+ rg) .
2 + If we assume thaty,,(u)=0, then there exists a

Lemma 1: Let uDH(Q,R’),r0H(Q,R’) such that uniququDLz(Q,RS) such that:

ra, = 0and g0 W?*(Q,R?) then: d.u=y0o.0
Veo (1) :%(%u.as +0 ug) o f 3,3(u,r) = 0thend u.a, = -r.a in HY(Q)
Moreover:
are defined to be functions af (Q) that coincide with ra, =&, 0
: TR
the deformed tensor components whemand ¢ are
functions ofC?(Q,R?). We write: o If Xg(ur)=0, then ys is a vector ofR*and we

have:

Xap (U.7)

_1(04uda; +0,ud, 3
u(x)=c+ypOe(x)

2| +9,ra, +0,r.a

are defined to be functions af (Q) that coincide with ~ where c is a constant & and r(x) is given by:
the tensor of change in curvature whemrand ¢ are
functions ofC?(Q,R?). We write:

r(x) = ~(ea (x)-2 () & (¥
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Existence and uniqueness of the solution for NagHdi

not possible. This is because of the fact that)assical

model: In this study we introduce a theorem of existenceformulation, r,=0, i.e.,ra,;; =01in Q.

and uniqueness of the solution of the linear Naghdi
model for shells with a middle surface only of ass
W2e

We consider a middle surface S of the shell of

thickness€ and of constants of Lame=0 andu>0.

Therefore, we introduce a penalized version of
Naghdi’'s model to approximate the tangent vectar of

al(up) (v3)+ b= (v

If we assume that a shell is clamped in the bouyndar

r, =0Q, we have the following result:

Theorem 2: Let pOL?(Q,R°) be the resulting of force
density and€ the thickness of the shell. Then there

exists a unique solution for the variational praoile
Find (u,r)0V such that:

a((un (v.g)= (w3 B v.po

with:

al(u.) (v.3) andl v if )

The elementsa®™ of elasticity tensor satisfy a
symmetric property and are uniformly strictly posst
To prove this theorem we make use of the Lax-Milgra
lemma (Bernadou, 1994), which is based on provieg t
continuity, and V-ellipticity of the bilinear form
a((u.1) (v.9) and the continuity of(v,s)in (1).

The crucial tool in this demonstration is the leanm
of rigid movement.

To establish the V-ellipticity of the bilinear for

a((u.1) { v.9) we make use of the following lemma.

Lemma 2: These exist a constant C>0 such that:

NI

2

2

yC( V 2
= B( ) Q)
+ZB: Xap ()

+§H6q3(v,s)

2
L*(a)

>

al(u.) (v3)

L%(Q)
0(v.s)0[ H(.R)]

Mixed formulation of Naghdi's model: In this
formulation, the rotation vector is tangent to addbé
surface. With this vector constraint the implem&ata
of conforming discontinuous finite element methdsls

336

with (3):

b(A,9) = [9, (A 90, ( g ad

Q

The existence, uniqueness and the convergence of
the solution of the penalized model when the patame
of penalization converges to 0, are established in
(Blouza, and Le Dret, 1994).

Remark 3:
r=ra,d=pd=re+ se+ J¢

rOH'(Q,R?)do not ensurg@, = 0. Therefore we

assumed this condition to be fulfilled and introeldic
the space of relaxed functions (without orthogonal
constraint at’ ) to be defined by:

v, =[(V,S)D[I-I1(Q,Rﬂ2 V= &= Oorﬁo}

with the norm H? in(2).

Theorem 3: Let pOR such that O<p<land
fOL?(QR?), then there exists a unique solution of
problem (3).

Lemma 3: The bilinear form isv, -elliptic, uniformly
for 0<p<1.

Remark 4: Note that this formulation allowed us to
approximate the constraintra,=0 when the

penalization parameter tends to zero.

Mixed stability formulation: The mixed Naghdi's
problem consists of findinqu,r)0V,and a Lagrange

indicator A\ OHL (Q) satisfying:

a((un{v.9)+n4(uy( vh+ { Vo)
=1(v,s), O(v,90
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b((u.r) u)=0, DuO H,(Q) Where:
with f(z) = zs is the distance between a point of thallsh
~ where the middle surface remains at the
a((un){v.9)=[0.(ra)o.( sgv ac deforming process
Q ¢ (x) = ¢(x)+u(x)with u(x) is a displacement of a
and: point ¢(x) of the middle surface

r(x) = The rotation normal vectag, ( x)

b((v.9 A) = [0, (sa)a.\ ad:

. . o The displacement is given by:
Remark 5: This problem is well posed. This is to say:

« The Primal unknown is the unique solution of (@) +u(x)+2z(a(x+(¥)) ¢ 0in Q

a((u.){v9)= (v P(v.pa
e We know that I does not have the covariante Z:_ﬂ at the contact area then:
component with respect ta, , i.e.,ra, = 0 2
The Lagrange multiplicator Ainsured this
tangential gharacter of r o ¢(x)+u(x)_ﬂ(ag(x)+ f( X))J &> 0jn Q
e The penalization parametar is introduced for 2
stability reasons. X )
« This formulation in Cartesian components permit ~ ”(x)_7r(x)%2 ~o( X)+? a(¥ ]| 8 inQ
to consider the following statement: the general
shell with a middle surface that can admit We assume that:
discontinuous curvature is only fgrin W?>* only.
We remind that in a classical approach, the card ¢(X)_(—(p(x)+e(X)a3(X)} &
@ is of classC®

Formulation of the contact problem: Here we We denote by the reaction of the obstacle on the
consider a Naghdi's shell occupyiag op.en bounded shell. The relations leading to a unilateral contac
domainQ of a sufficiently regular boundary =9Q . (without friction) are given by:
The shell is supposed to have:
e(x) )
u(x)-—=*r(x).e,=¢(x = 0,inQ
« Adensity on the volume, of forcein Q
» Homogenous boundary conditions bn
+ Unilateral contact with a rigid obstacle of equatio _e(x) _ o
x, =0 on contact surfac®, =Q\I (U(X) 2 "(x)&=¢(x) n= 0.in0

2
n=0,inQ

The non deformed shell of middle surfa&e and with
thickness e is a set of Biven by: We use the spaced;(Q,R?) of functions in

Q {¢( ) (P( ) %( )} l(Q’ :3) equals to zero ol and we denote by
l _l(Qv 23) the space of duality.

and: Let us introduce the convex subspage for the
authorized displacements, to be defined as:

K ={(V,S)D(Ht(Q,R3))2 (v—%s} 820 irﬁ}

1 1

—Ee(x)s zsée(@

The deformed shell is given by the points:
o and let convex subspace Kf the distributionsy in

Q' ={¢' (x.2)=¢ (x)+1(2) & ()} H*(Q.R?), to be:
337



J. Math. & Stat., 6 (3): 333-341, 2010

K ={xOH* (QR?).(x,(v.9)2 0.0( v.30 §
with () the inner product of duality between:
H*(Q,R%) and H;(Q.R?)

We consider the following variationnal formulation
Find:

(wr)an)O(H(Q.R)) x H(Q)x Hi(<)

Such that:

with:

+I4q13?“6u3( U, )35, ( v.3/ adx
Q

b((v.9) A)=[0.(sa)0.A o

Q

c(n.(v.9) = [n vax

Q

I(v,s) = [ Pw/ adx

Q

and the reduced problem becomes:
Find ((u,r) A) O Kx Hj(Q) such that:

a(u) (v.9=(uj)+ K( v.p=( u)rr)=
I((v.9=(u.9)

b((v.9) #)= 0, OpO H(Q)

(R)

Theorem 4: For any solution((u,r),A,n) of problem
(P). ((u,r) ) is a solution of problenfR) .

Proof: Let ((u,r)A.n) be a solution of problenfr,)
and (u,r)0K, O(v,s)O0Kand by the definition ofk’
we have:

(n(v.9)2 0o -(n(v3)s ¢
Line three of problem (P leads to:
(x-n.(un)z0,0x0K
We assume that = 0:
=(n(un)z0- (n(up=<c

by replacing (v,s) by (v.s)-(u,) in line one of
problem (R), we get:

a((u) {(v.9=(uj)+ K( v.p=( u)rA)
~e(n.(v.9-(ud)= ((v4-(u))

where:

c(n(v.9-(ud)==(n(v$-(u)

= a((un) (v9-(u))+
)

Let ((u,r)A) be a solution of problenfR) then
((u,r).A.n) is a solution of(R,):

a((u) {v.9=(uj)+ 0 v.p=( u)rA)-

I((v,s)—(u,r))z 0,0(v,90 K

by using Green’s formula, we get:

(v.9=(u)+ 8 vp-(
ad)- ((vg-(u))z

We that (v,s)=(u,nN=*o,
¢OD(Q,R?) ,(i.e., ¢ is of a compact support), then the

urn) -
0

assume with

integral on the contour is zero:

a((u.) $)+ HoA)= (¢) .00
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The integral on a contact area leads to:

(n,(v,8)=(u,9)= 0,0( v,30 K
By assuming that:
vy = 000070

and with the property of convexity of Kwe get:

Theorem 5: For any PO H*(Q,R?), the problem(P,)
has a unique solution:

(wr)am)O(H(Q.R)) x H(Q)x Hi(<)

Proof: The existence of the solutiorf(u,r)A) of
problem is a direct application of Lions-Stampaachi

Theorem (Lions and Stampacchia, 1967).
Let us consider:

L(v.s)=a((u.d (v.3)+ K

Remark: In problem(R), we have:

vA)- (1 vE

. if (v9)=(0.0 , then:
=a((u) (ud)- H(uya)z-(u)
. if (v.8)=2(u,), then:
a(u) (ud)+ {(u)r)z-(u)
= L(ur)=o0

The Ker of the formgn(v,s)) is characterized by:

v=§<v,s>m(r%(w>r(v-;sj . }

inQ
Let (v,s)0V, then(v,s) and -(v,s) are in K from

the problem(R) andL (u,r)=0, we have:

6 (3): 333-341, 2010

We replacgv,s) by —(v,s) in L(u,r) to get:

( ) {v.9)+ §( ) (-( vp=
((ur)(vs) t( 3A)+ (v
= al(u) (vd)+ (V) (s

=3

L(u,r)=0

L is of a compact support itv and from the
following inf-sup condition:

(n.(v.s)

SUF’W 2B|n| H*

We can prove that there exis{g]H™(Q) such that:
Then ((u,r)An) satisfies line one of problem
(R,). The definition ofK and L(u,r) =0, leads to:

)y =0(ug)=(n{u.d)

1))z 0, OxO K

{(x=n,(u
{x.(u

This proves the existence of the solution.
Let (U,A)and (U,A,) be two solutions of

problem(R) . With U, =(u,,r,) and U, =(u,,r,) then:

a(U,W-U)+ b W= U})
a(Uz'_U) b(W U')‘)

(w-U),O0WOK

>
= (wW-U,) OWOK

b(U; A, =A,)=0s
b(U, A, =A,)=0
b(U,~U,A,=}A,)=0

By adding thatw =U, and W = U, we have:

a(Uy,U; — U) + (U= Ui )2 (U= U)
a(Uer ) b(U U)‘) (Ul_UZ)

>
=
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a(U,,U, - U,)+ b( U;- U A )2 (U,- U

a(U,,U - U,)+ b U-U,A,)=(U-U)
a(U, - U,,U-U,)+b(U-U,A)<0

a(U,-U,,u-U,)<0

=4

afu,-U,[’<0 - u,=u,

A, =\, by the inf-sup condition ob(x,(v.s) line three
of problem(PR,) gives us:

0(v.9)0(H (@ )" fn, (v.9)=(n, ( v.}
ind N, =N,

The discrete problem: We introduce a discrete

subspacev, of V such that:

SEILE

hn=5,=0, onoQ

JO(H K

and dimv, <, therefore there exists a basis:
{w}.i=1toN, , we can then write:

N
Vh = ZBi(’q

N
:zaiwl

i=1

Now, let us construct a closed convex subsetof

V, such thatk, should be reduced to a finite number

of constraints on th@ and q;:

(i (139528

at every vertex of each triangle |k

K, =

ThenK, OK andK, OV,.
We remark that probleniR) is equivalent to find

((uy.5) A,)OK,xM, such that:

a((u,5) (%.$)=(u.p)
+b((v8) = (u,.5) Ao) 2

1((Visn) = (up. ) O( v 5) 0 K,

b((thsh) “h) =0, Oy, 0 M,

(R)

with:
M, ={m, =r,a,n,0P( K, 050 V,}

space of the Lagrange multipliers.
We assumeJ =(u,r) and W =(v,s).

Theorem 5:Let (U,A) and (U,
problems(P) and (R,), respectively. Let us denote by
ADL(V,v') the map defined, bya(U,w)=(AU,W),
then:

\,) be the solutions of

-y, <| arlo vl + H1P- A,

HU Wth+HUh WHV

with P is the resultant of the volume force.

Proof: By the definitions ofu and W , we have:

a(U,U-W)+b(U- WA)<(P,U- W ,0WD K
a(U,, U, - W)+ b(U,- W,A)<(P,U- W),
ow, 0K,

By adding these inequalities and transposing terms
we obtain:

a(UU)+ o U )< (P We( Py~ W)
ra(U, W)+ o U W)

By subtractinga(U,U,)+ & U, ,U from both sides
and grouping terms and by using the continuity doed

coercively of the bilinear form( U,w) , we deduce:
HP_ AUHV' H U- Wth
2
afu-U,), | +[P-AU|, U, - Wi,
+ MHU _UthHU _Wth
Since:

M
MJU - U, JJlu -w < U -wi !

We obtain:
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M? 1 2

HU—U H - ?HU_WhH\zx*—aHP_AUHv‘
hilv

HU_Wth +HUh_WHv

OWOK and OW, O K,

CONCLUSION

By starting with the classical Naghdi's model &r
shell in Cartesian coordinates, we derived a méalel
the contact of this shell with a rigid body. We aals
proved the well-posedness of the resulting system f
the variational inequalities.
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