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Abstract: Problem statement: By means of the Hadamard product (or convolution), new class of 
function of power order was formed. This class was motivated by many authors namely MacGregor, 
Umezawa, Darus and Ibrahim and many others. The class indeed extended in the form of integral 
operator due to the work of Bernardi, Libera and Livingston. Approach: A new class of multivalent 
analytic functions in the open unit disk U was introduced. An application of this class was posed by 
using the fractional integral operator. The integral operator of multivalent functions was proposed and 
defined. The previous well known integral operator was mentioned. Results: Having the integral 
operator, a class was defined and coefficient bounds established by using standard method.  These 
results reduced to well-known results studied by various authors. The operator was then applied for 
fractional calculus and obtained the coefficient bounds. Conclusion: Therefore, new operators could 
be obtained with some earlier results and standard methods. New classes were formed and new results 
of special cases were obtained. 
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INTRODUCTION 
 

 Let Σp, α denote the class of functions of the form: 
 

p n p
n

n 2

f (z) z a z ,(0 1)
∞

+α + +α

=

= + ≤ α <∑  (1) 

 
which are analytic in the unit disk U: = {z∈ℂ, |z|<1}. 

For the Hadamard product or convolution of two   
power series f defined in (1) and a function g where:  

 
p n p

n
n 2

g(z) z b z ,(z U)
∞

+α + +α

=

= + ∈∑  

 
is: 
 

p n p
n n

n 2

f (z) *g(z) z a b z ,(z U)
∞

+α + +α

=

= + ∈∑  

 
 Also denote by Tp,α  the subclass of Σp,α consisting 
of functions of the form: 
 

p n p
n

n 2

f (z) z | a | z ,(0 1)
∞

+α + +α

=

= − ≤ α <∑  (2) 

which are analytic in the unit disk U. For the Hadamard 
product or convolution of two power series f defined in 
(2) and a function g where: 

 

p n p
n

n 2

g(z) z | b | z ,(z U)
∞

+α + +α

=

= − ∈∑  

 
is: 
 

p n p
n n

n 2

f (z) *g(z) z | a || b | z ,(z U)
∞

+α + +α

=

= − ∈∑  

 
 Note that the authors defined and studied some 
classes of analytic functions take the form (1) and (2) 
(Darus and Ibrahim, 2008). 
 A function f ∈Σpα is said to be in the class P α(p,µ), 
(0<µ<p+α) if and only if it satisfies the inequality: 
 

p 1

f (z)
{ } , (z U)

z +α−

′
ℜ > µ ∈  (3) 

 
 The classes P0(1, 0) and P0(p, 0) were investigated 
by MacGregor (1962) and Umezawa (1957), 
respectively. 
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MATERIALS AND METHODS 
 

    In this study, we need to introduce a new integral 
operator such that certain classes can be defined by 
means of this integral operator. The previous operators 
will also be mentioned to highlight the importance of 
simple operator which then can be extended to a 
complicated ones and yet interesting to study. 
 For a function f∈Σp,α given by (1), we define the 

integral operator Jα,p,c, (p, c∈ℕ) and (0≤α<1) by: 

 
z c 1

,p,c, c 0

p n p
n

n 2

c p
J f (z) t f (t)dt

z

c p
z a z

c p n

−
α

∞
+α + +α

=

+ + α=

 + + α= +  + + + α 

∫

∑
 (4) 

 
 Note that the operator J0,1,c was introduced by 
Bernardi (1969). In particular, the operator J0,1,1 was 
studied by Libera (1965) and Livingston (1966). Reddy 
and Padmanabhan (1982) defined the integral operator 
J0,p,c. 
 Clearly, (4) yields: 
 

p, ,p,c p,f Jα α α∈ ⇒ ∈∑ ∑  

 
 Thus, by applying the operator Jα,p,c successively, 
we can obtain the multiplier transformation: 
 

k 1
k ,p,c ,p,c
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p k n p
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J [J f (z)], (k )
J f (z)

f (z) (k 0)
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α α
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 Cho (1993) defined and studied some subclasses 
involving the operator k0,p,cJ . 

 A function  f∈Σp,α  is said to be (p+α)-valent 
starlike of order 0≤µ<p+α if and only if: 
 

zf (z)
{ } , (z U)

f (z)

′
ℜ > µ ∈  

 
 We denote by Sp,α (µ) the class of all such 
functions.  A function f ∈Σp,α is said to be (p+α)-valent 
convex of order 0≤µ<p+α if and only if: 
 

zf (z)
{1 } ,(z U)

f (z)

′′
ℜ + > µ ∈

′
 

 
 Let Cp,α (µ) denote the class of all those functions. 

 Note that S1,0(µ) and C1,0(µ) are, respectively, the 
usual classes of univalent starlike functions of order µ 
and univalent convex functions of order µ, 0≤µ<1. And 
S1,0(0) = S* and C1,0(0) = C respectively which are the 
classes of univalent starlike (w.r.t. the origin) and 
univalent convex functions. 
 In the present study we define the subclass 
Sp,α(µ,ν)  of Σp,α consisting of functions of the form (1) 
and satisfying the analytic criterion: 
 

( ) ( )k k
,p,c ,p,c

k k
,p,c ,p,c

z J f (z) ' z J f (z) '
(p ) ,(z U)

J f (z) J f (z)

α α

α α

 
 ℜ − µ > ν − + α ∈ 
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(5) 

 
for 0≤µ <p+α, ν≥0. 
 The main aim of this work is to study coefficient 
bounds and extreme points of the general subclass of 
Σp,α. Furthermore, we obtain special results. 
 

RESULTS 
 
 Here we obtain a necessary and sufficient condition 
and extreme points for functions f ∈Σp,α.  
 
Theorem 1: Let f∈Σp,α  A sufficient condition for a 
function of the form (1) to be in  Sp,α(µ,ν)  is that: 
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for 0≤µ<p+α, ν≥0. 
 
Proof: Let f be of the form (1). It suffices to show that: 
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Yields: 
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 This last expression is bounded by p+α−µ if: 
 

k

n 2

n

c p
[n(1 ) p ]

c p n

| a | p ,(z U)

∞

=
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and the proof is complete. 
 
Corollary 1: Let the assumptions of Theorem 1 hold. 
Then: 
 

( )k
,p,c

k
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z J f (z) '

J f (z)

α

α

 
 ℜ > µ 
 
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Proof: By letting ν = 0. 
 Next we introduce some well known results which 
were studied by different authors. 
 
Corollary 2: Let the assumptions of Theorem 1 hold. 
Then: 
 

( )z f (z) '

f (z)

  ℜ > µ 
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Proof: By setting k = 0, ν = 0. 
 
Corollary 3: Let the assumptions of Theorem 1 hold. 
Then: 
 

( )k
p,c

k
p,c

z J f (z) '

J f (z)

 
 ℜ > µ 
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Proof: By assuming α = 0, ν = 0 
 
Corollary 4: Let the assumptions of Theorem 1 hold. 
Then: 
 

( )z f (z) '
0

f (z)

  ℜ > 
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Proof: By setting k = 0, µ = ν = 0. 
 Now we prove that the above condition is also 
necessary for f∈Tp,α. 
 
Theorem 2: A necessary and sufficient condition for f 
of the form (2) namely: 
 

p n p
n n

n 2

f (z) z b z ,b 0,(z U)
∞

+α + +α

=

− − ≥ ∈∑  

 
to be in TSp,α (µ,ν) := Tp,α ∩ Sp, α(µ,ν), 0≤µ<+α, ν≥0 is 
that: 
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Proof: In view of Theorem 1 we need only to prove the 
necessity. If f∈TSp,α(µ,ν) and z is real then: 
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where, z→1 along the real axis, we obtain the desired 
inequality: 
 

k

n
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c p
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c p n

∞

=
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Hence the proof. 
 
Theorem 3: The extreme points of TSp,α (µ,ν) are the 
functions given by: 
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where, n = 2, 3, …, 0≤µ<p+α, ν≥0. 
 

DISCUSSION 
 
 The class Σp,α can further be applied in fractional 
calculus. For that reason, we need to the following 
definition. 
 
Definition 1: The fractional integral of order α is 
defined, for a function f Srivastava and Owa (1989): 
 

z
1I

z ( ) 0
I f (z) : f ( ) d ; 0α α−

Γ α= ζ ζ α >∫  

 
where, the function  f  is analytic in simply-connected 

region of the complex z-plane (ℂ) containing the origin 

and the multiplicity of (z−ζ)α−1 is removed by requiring 
log(z−ζ) to be real when (z−ζ)>0. 
 Note that (Srivastava and Owa, 1989; Miller and 
Ross, 1993): 
 

( 1)I
z ( 1 )

I z z ,( 1)Γ µ+α µ µ+α
Γ µ+ +α= µ > −  

 
 And some of its current properties can be found in 
(Ibrahim and Darus, 2008). For this purpose, let us 
denoted by Σp the class of functions F of the form: 
 

( 2)p n p
1 n 1 (2)

n 2

F(z) z z ,( )
∞

Γ α ++
Γ

=

= φ + φ φ =∑  (9) 

 
which are analytic in the unit disk U. Let denoted by Tp 
the class of functions F of the form: 
 

( 2)p n p
1 n 1 (2)

n 2

F(z) z z ,( )
∞

Γ α++
Γ

=

= ϕ + ϕ ϕ =∑  (10) 

 
ϕn≥ 0 which are analytic in the unit disk U. 
 Then in view of Definition 1, the fractional integral 
operator becomes: 
 

P n P a
z n

n 2

I F(z) z a z ,(z U)
∞

α +α + +

=

= + ∈∑  (11) 

 
where, ( n 1)I

p n n(n 1)F ,a : Γ +
Γ +α+∈ Σ = φ  That is for F ∈Σp implies 

z p,I F(z) ,(z U)α
α∈ Σ ∈ . 

 Similarly for functions F∈Tp we have: 
 

p n p
z n

n 2

I F(z) z b z ,(z U)
∞

α +α + +α

=

= − ∈∑  (12) 

where, ( n 1)I
p n n(n 1)F(z) ,b : 0Γ +

Γ +α+∈Σ = ϕ ≥ . 

 Thus in the similar manner of the proof of 
theorems 1 and 2 respectively, we can show the 
following results. 
 
Theorem 4: Let F∈Σp. A sufficient condition for a 
function of the form (11) to be in  Sp,α (µ,ν) is (6). 
 
Theorem 5: Let F∈Tp, A necessary and sufficient 
condition for a function of the form (12) to be in 
TSp,α(µ,ν)  is (8). 
 
Remark 1: For the above application, an inequality (5) 
becomes: 
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J I F(z) J I F(z)

α α
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α α
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  ℜ − µ > ν − + α ∈ 
  

 

 
for 0≤µ<p+α, ν≥0. 
 

CONCLUSION 
 
 The work here concern mainly on multivalent 
analytic functions. This is not the only type of functions 
we are interested in. Recently, the meromorphic of 
fractional power has been studied as well. Many other 
results can be obtained through this fractional power by 
introducing different types of classes. Other problems 
to be considered include the coefficient estimates and 
the subordination problems. 
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