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Abstract: Problem statement: There are no simple definitions of operators for best 
multiapproximation and best one sided multiapproximation which work for any measurable function in 
Lp for, p>0. This study investigated operators that are good for best multiapproximation and best one 
sided multiapproximation. Approach: We first introduced some direct results related to the 
approximation problem of continuous functions by Hermit-Fejer interpolation based on the zeros of 
Chebyshev polynomials of the first or second kind in terms of the usual modulus of continuity. They 
were then improved to spaces Lp for p<1, in terms of the first order averaged modulus of smoothness. 
However, because this suffers from convergence problems, we improved and generalized these direct 
estimations by defining an interpolating multivariate operator Hn(f) of measurable functions, that 
operator based on the zeros of Chepyshev polynomials of the first kind and prove that for any 
measurable function defined on Lp[-1,1]d the sequence Hn(f) converges uniformly to f. Results: The 
resulting operators were defined for functions f such that f(k), k = 0,1,… is of bounded variation. Then, the 
order of best onesided trigonometric approximation to bounded measurable functions in terms of the 
average modulus of smoothness was characterized. Estimates characterizing the order of best onesided 
approximation in terms of the k-th averaged modulus of smoothness for any function in spaces Lp, p<∞ 
were obtained. In our research we also approximated one sidedly these measurable functions in Lp[-
1,1]d by defining a new operator for onesided approximation and prove a direct theorem for best one 
sided multiapproximation in terms of the first order averaged moduli of smoothness. Conclusion: The 
proposed method successfully construct operators for best multi approximation and best one sided 
multiapproximation for any measurable function in Lp for, p>0. 
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INTRODUCTION 

 
 In Jishan and Ziyu (1989), introduced some results 
related with the approximation problem of continuous 
functions by Hermit-Fejer interpolation based on the 
zeros of Chebyshev polynomials of the first or second 
kind. And they proved: 
 If f∈C[-1,1], then: 
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 is the usual modulus of 

smoothness for f’. 

 Jassim and Tahir (1996) introduced a research to 
improve the above estimation to the spaces Lp[-1,1] for 
p≥1, they proved:  
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 is the averaged modulus 

of smoothness for f of the first order. 
 But these convergence are all not uniformly and 
the right hand side may not converge to zero. For this 
reason we shall introduce an improvement and a 
generalization for the estimations above. That by 
defining an interpolating multivariate operator Hn(f) of 
the measurable functions, that operator based on the 
zeros of Chepyshev polynomials of the first kind and 
prove that for any measurable function defined on Lp[-
1,1 ]d the sequence Hn(f) converges uniformly to f. 
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MATERIALS AND METHODS 
 
Theorem 1: For any measurable function f in Lp[-1,1]d 
0<p<∞ we have: 
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n
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 

 

 
where, c(p, d) is a constant depending on p and d only. 
 The first authors on onesided approximation, Freud 
(1955) and Ganelius (1956), used operators for 
constructing polynomials of one sided approximation. 
These operators were defined for functions f such that 
f(k), k = 0,1,… is of bounded variation. Also Andreev et al. 
(1979); Popov (1977) and Popov and Andrev (1978) 
characterized the order of best onesided trigonometric 
approximation to bounded measurable functions in 
terms of the average moduli. After that Stojanova 
(1988); Popov and Andrev (1978) and Hristov and 
Ivanov (1988; 1990a; 1990b) obtained estimates 
characterizing the order of best onesided approximation 
in terms of the kth averaged modulus of smoothness for 
any function in the spaces Lp, p<∞. In this study we 
also approximate one sidedly these measurable 
functions in Lp[-1,1]d by defining a new operator for 
onesided approximation and prove the following result: 
 
Theorem 2: For any bounded and measurable functions 
in Lp[−1,1]d 0<p< ∞: 
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 Let Tn(x) = cos(ncos−1 (x)), x∈[-1,1] be the first 
kind Chebyshev polynomial and let: 
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Now for a function f∈C[-1,1]d, we denote 
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ℓ , S = 1,…,d and ℓ 

∈ Z. It is clear that H(f,.) is a polynomial of degree 

(2n−1)(ℓ+1)d. Tn(xs) = cos(ncos−1(xs)). We can easily 

prove that for each ks, 
s sk k

I (x )  and therefore: 

 
H(f, xk) = (f(xk)  (1) 
 
and 
 
DαH (f, xk) = 0  (2) 
 
Where: 
Dα = D1,D2,…Dn 
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 In the light of (1) and (2) we have this polynomial 
is uniquely characterized, so that 
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 Let k
hf (x)∆  denote the kth finite difference with 

step h of f in the point x. We denote by: 
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the local modulus of f. Two global moduli of the 
function f will be used, the usual modulus of 
smoothness: 
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k
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and the average modulus of smoothness: 

 

d dp([ 1,1] ) p ([ 1,1] )
k kL L
(f , ) (f ,...,

− −

τ δ = ω δ  

 
 The properties of ωk are assumed to be known. 
Some properties of τk are given in (Sendov and Popov, 
1991). 
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 In the sequel we denote by c an absolute constant 
which may vary from one occurrence to another even in 
the same line. Similarly c(.) will denote a constant 
which depends on a specific parameter but may change 
from one occurrence to another. 
 

RESULTS AND DISCUSSION 
 
 The first aim of this part is to prove the following 
direct theorem for best multi approximation: 
 
Theorem 3: For any measurable function f in Lp[-
1,1]d,∞<p≤1, there exists a polynomial H(f) such that: 
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 To prove our third theorem we need the following 
assertions:  
 
Lemma 1: Let 0<λt≤diamΩ, then Hristov and Ivanov 
(1988): 
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Lemma 2: See Hristov and Ivanov (1988): 
 

2 +2

r r

nv
sin

2 v dv cn , r 0,1,....2
v

sin
2

π
−

−π

 
 

≤ = 
  
 

∫

ℓ

ℓ  

 
Lemma 3: 
 

2 1 2 1
0

nv
sin1 c( )2 dv , [0,1]

vn nsin
2

π

+ +

 
  ζ≤ ξ ∈ 
  
 

∫ ℓ ℓ
 

 
Proof: The lemma is easily proved by the properties of 
the trigonometric functions and the Bonnets (Gupta and 
Rani 1989) mean value theorem. 
 
Lemma 4: Sendov and Popov (1991). For any bounded 
and measurable function f on [a,b] we have: 
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The proof of Theorem 3: 
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 Let coxθs and (cosθ1,…,cosθd) = Φ(θ), x∈[-1,1]d 
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 Lemma 1 and Lemma 2, lead to: 
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 For the case 0<p<1, we can prove theorem1 by 
follows the same lines above and using the inequality 
(Carathers, 2005): 
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 In the second result of present study we construct a 
one-sided operator using H(f, x) as follows: 
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Where: 
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 This operator is a one-sided operator, since: 
 
• The polynomials H+- (f, x) of degree (2n −1)(l +1)d 
• H− (f, x)≤f(x)≤H+(f, x),x∈[-1,1]d = η. Because of 

the positivity of ψ (xs), for each s = 1,2,…,d 
 
 Then we introduce our second result. 
 
Theorem 4: For any bounded function f in Lp [−1,1] = 
η,∞< p≤1, there exist two polynomials H+(f) and H−(f) 
such that: 
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 For the proof of this theorem we need the 
following Lemma: 
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which completes the proof. 
 
Proof of Theorem 4: 
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CONCLUSION 

 
 In this study, we successfully constructed operators 
for best multiapproximation and best one sided 
multiapproximation for the study of any measurable 
function in Lp for, p>0. 
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