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Imbedding the Multiplier in a Discretized Optimal Control Problem
With Real Coefficients Via the Penalty and Multiplier Methods
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Abstract: Problem statement: Many earlier schemes, particularly the Function cgpalgorithm
(FSA) which sidetracks the knowledge of operator, dolving quadratic optimal control problems
have been computationally involving and iterativelgh. Approach: Though, some of these earlier
schemes developed operators consisting of complicattegrals still very difficult to evaluate.
Here, objectively, a new scheme, Discretized Camtirs Algorithm (DCA), is proposed with
developed associated operator consisting of assefisummation replacing the integrals of the earli
schemes, thus enhancing much more feasible resudtdower iterationsResults: Methodologically,
the new scheme uses the penalty-multiplier hogt to obtain an unconstrained formulation
whose bilinear form expression leads to the constya of operator amenable to the Conjugate
Gradient Method (CGM)Conclusion/Recommendations. An hypothetical example is considered
and results, tabulated per cycle, are more feasibké less iterative than some of the existing
methods.
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INTRODUCTION MATERIALSAND METHODS

The objective of this research is to develop aGeneralized problem 1:
Discretized Continuous Algorithm (DCA), using the .
combination of the penalty and multiplier methods Minj'(axz(t)+bu2(t))dt
(Rockafellar, 1974), for solving quadratic constes 0
continuous control problems with real coefficiens
order to reduce the cumbersome calculations inh@men Subject to:
earlier schemes such as Function Space Algorithm
(FSA) which sidetrack the construction of operator, .\ _ _
Extended Conjugate Gradient Method (ECGM) andx(t)_cx(t)+du(t)’ XOF %, 0T @)
Imbedded Extended Conjugate Gradient Method
(MECGM). The last three did develop operatorsWhere, x(t), U(ER, a, b>0, c and d are any cdstent
consisting of a series of integral evaluations uely ~ necessarily positive.

adapted to their schemes. To numerically achiege th ~ 1he constrained problem (1) can be turned into
development of DCA, we used the finite difference unconstrained problem via the penalty method aed th

method and discretization of the differential comst ~ Multiplier method (Flgtcher and Reeves, 1964; MioPi
and time interval (Di Pillo and Grippo, 1982; Desini nd Grippo, 1982) as:

and Schnable, 1983) respectively to obtain a dize :

constrained formulation of the problem. Using Rietc 7 a7 =Min(xuw)f{ax2(t)+bu2(t)

and Reeves’s method (Fletcher and Reeves, 1964) on RS

function minimization and modified Ibiejugba and A _ 2

Nnumayi's method (lbiejugba and Onumanyi, 1984) on +uHX(t) ox(t) = duf t)H 2)
function operator, an operator was constructed +A >.<(t)—cx(t)—du(t)>} dt

ameniable to the discretized scheme. Consequeatly, '

conjugate gradient method was applied to the
constructed operator which serves as a framewark fowhere, u>0 the penalty constant arid the multipler
the generalized scheme given in materials and rdetho (parameter.
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Discretization: By discretizing (2) and subdivide [0,T]
into n equal intervalsJit «.1] at meshpoints:

X0<X1<Xx2< X3< ...<X n-1<xn

where, n-1 is the number of partition points chosen«

arbitrarily, thus having (n+1) partition paniwith

Xj = j*4j, j = 0,1,2,...,n and\j = Ak is the fixed length
of each subinterval for j = k or not By4f, it means j
multiplied by4j let:

k-1
t,=0 and t=)Aj k=123..,n, t= ~

=1

x(k)=x(t). (k)= u(t),

k=012,..,r1
By Euler’'s scheme or finite difference method:
%(k) =(x(k+1)-x(k)) /ak k=0, 1, 2,

%, (t,) = cx, (t.) +du ()

Where:
Yie(te) = X (tis)s

o  SHH2pACHASU+ A,
By =bA, +A,d
=-20- A, c
m, =-2uA.d
P =—2pAd- 22 cd

The bilinear from expression associated with §6) i
given by:

<Zkl(tk)’AZk2(tk)> =
k";{amtk)x ot +Bua(t Ju(ty)

+ykl(tk)yk2(tk)u + nkykl(tk) sz(tk) + nkyk2( tk) Xkl( tk)
+mkyk1(tk) ukz( tk) +my ykz( tk) Uk1( tk) + P X (B U () (7)
P X2 (B Ui (8 + A () Yo (B A () Y ()
“AatidXio(t) = At )X () = A (t)X (L)AL

A (L)Xt )AL= A (LU (8 A A=A 5 (E Uy (B A d

(x(k+2)=x(K)) /A, = cx () + du (1) (3) And
() X (t) = X (B) —ex (K ) —du (1), % (0)= C An A A (X
AZKZ(tk): A21 A22 A 23 u k2
We then have the generalized problem (1) in the Ay, A, AN, ®)

form: A11Xk2 +Aly k2+A lg\ k2

n = A21X k2 +A Zy k2+A Zg\ k2
minJ, ) = Zﬂk( ax?( )+ by?( ﬁ)) AsXia P AH o+ A N,

k=0

subject to (X kr 3= X §) b= cx(f)+ du( 9 4
x(0)=0

Application of the penalty and multiplier
parameters. Applying the penalty function and the
multiplier method to (4) by Olotu and and Olorurgsol
(2006), we have:

B, (a2 (8) + buP( 1)) + H Xear ()
X, (te) = Beex, (t) - ddu (t) P
+<)\k’ Xk+1(tk+1) - Xk(tk) _Akcxk(xk)
-Adu, (t )

Mind(x,up A)=>" (5)

n
k=0

= 30, A Y LI Y, 1)

+ MU (6 )Y () + Poxe (B U GO+ A (GO% (&)
_)\k(tk)xk(tk) _)\k(tk)AkCXk (tk) _)\k (tk )Akduk (tn )}

(6)
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Where,zk (t) = (X (8w (&) A (1))

Using Euler's scheme (Olotu and and Olorunsola,
2006; Rockafellar, 1974) and simplifying (8), wevlha
the following:

<ZK1 (tk ) ' AZKZ (tk)>H =

;){O‘»?( ka (ti X o (E) + B o (t Juea ()

+HUA Ky (tk)XKZ (tk ) ~HA Xy (tk )XKZ (tk ) ~HA X (tk )XKZ (tk )
+“XK1(tk)XKz (tk) + nKXKl(tk);(kz (tk)Ak =Mk X (tk ) X2 (tk)
K (1) %z (8) = AXes (6% G0+ M ()X (4B,
_mKXKl(tk)uKZ(tk)+mKAKuKZ(tk)XKl(L)_ me q<1(t<) )ﬁz(l)
+pKuK2(tk)XK1(tk)+ P %2 (U ( )+)\k1(tk).x‘<2Ak
AaltX,, (6 + At Xucon, = alt )X, (1)
_}\kl(tk)xkz(tk)_}\kz(tk)x“(tk)_}\ki(tk)xkz

(t)AcC—A,, (tk)xk1 (tk)AkC_}\kl(tk)ukz (tk)Akd_)‘kz(tk)ukl (t)Ad}

9)
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Now, we shall state the theorem establishing th
operator A with partial proof and for the purpode o
simplicity to minimize lengthiness, henceforth, shell
adopt the following notations for the remaining tpair

evll(tk) :An(t k) =-=sinh(T)f(0) + j"fl(s wecosh(t— s )ds

—JT'Ql(tk)sinh(T— 5 )ds+Q, (1 )cosh(t (13)

the proof: +1,sinh(T)
Xig =X (), Ug = Ug (£ ) A =Ag (1 ) fori=1,2,3 And:
However, f or full detail of the proof (Ibiejugba 1,=— ! {=sinh(T)f (0)
and Onumanyi, 1984; Omolehéal., 2006), involving sinh(T)
penalty method only. +[fs)cosh(t— 3 )ds=[0, (s )sinh(¥ s )0 (14)
Theorem 1: Let the initial guess of the conjugate  —u(0)cosh(T)}+Q, (T)}

algorithm bez,(t,) so that:
In Eq. 7, setting:

ZT = ’ 0')\0
0 (tk) (XU u ) XKz(tk):)‘kz(tk):O—> XkZ(tk):o

Then the control operator a associated with the o
generalized problem 1.satisfying,, is given by: And collecting like-terms we have:

<ZK1’AZK2 (tk)>H =

Z{X K1 (t k)[u kP My +X (A m,u ] (15)
. . k=0
Proof of theorem 1: Setting u,,(t,)=A., =0, in (9) U [U B ]+ A U A ]
and collecting like-terms, we have:

Zsz (tk) = (sz(tk)' ukZ(tk)’)\ kz(tk))

Now define:
<ZK1(tk)'AZK2 (tk)>H =
i{xklx kz(ak+u_2nk)+Xk2‘(_uAk+Aknk)] (10) Qz(tk :ukz(tk)(pk_ mk)andg (§< ): q(Z (L Zkk nl
R X (B = HA) + XA T+ U [X o Py = M)+ X8 my] Which are continuous functions on [0,T]. Now
Ao X (1 A0+ XA ] letting Eq. 15 be:
Define: 2 . ;
zxkl(tk)vlz FX UV +u LIV + A (Vo (16)
k=0
Q, (1) =X (0 = 2N )+ X CHA + AN, ) We have:
And: sz :ukz(t k)Bk (17)
fl(t k) = XkZ(Akn kK~ “Ak) + Xy HA k2 Vg =U k2(t k)(_Akd) (18)
So Eg. 10 becomes. Where: Vi (t,) = -sinh(T)f,(0)
+[f,(s,)cosh(t - $ )ds-[Q, (t )sinh(F s )¢t (19)
N . 0 0
;Xkl'vll XVt Vot A (Vg +Q,(0)cosh(Tx 5 sinh(T)

. where, [ = r, with the exception that £ f, andQ;=Q
Vo =X (P = M) + X A M, (11) £= o P A ! 2

as in Eq. 14.
Again setting X, (t) = Ue(ty) = 0 implying that x
V() =X (1= A L) + X, (t A, (12) | ,(t) = 0in (7) and collecting like-terms, we have:
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(20)

Table 1: Shows the numerical solutions of all athons compared to
DCA with analytic solution 1.0647

3 X[ 2h o =BT+ KA (A +U A A dla
k=0

Penalty/multiplier No. of iterations Objective ~Grained

Define:
Qy(t) =M (2-B,0)and § (1 )= A A,
Now, setting Eq. 7 to:

S XlVod +X [V Y L OV

Then we have:
Voa(t) = A Adand V,(t,)= 0

Parameters Algorithm iterations funct. satisfaction
H=s5)1=-2.88 DCA 20 1.1904 8.90625
FSA 50 1.6517 11.62270
ECGM 7 1.0956 0.45440
MECGM 10 0.0715 1.12490
H=11r=-0.6 DCA 3 1.5370 11.12500
FSA 50 1.6251 11.29900
ECGM 7 1.4834 0.13810
MECGM 4 0.7073 0.95020
p=1529.11 DCA 3 1.1686 8.32750
FSA 50 1.6001 10.98840
ECGM 6 1.5570 0.08650
MECGM 3 0.8686 1.16160
u=2,A=-10.57 DCA 2 1.1746 8.36210
FSA 50 1.5768 10.69020
ECGM 7 1.4686 0.03530
MECGM 3 0.9386 1.04770
u=25x=-10.37 DCA 3 1.1774 8.37820
FSA 50 1.5550 10.40200
ECGM 6 1.5521 8.12620
MECGM 2 1.0178 1.63130

Vy5(t, ) = =sinh(T)f,(0)
T T
+[fy(s)cosh(t - § )ds=[Q, (t)sinh(F s )g(21)
0 0
+Q,(0)cosh(T) ¥ sinh(T)
where, r, =r, except thatf= { and2,=Q, asin (L.
Having constructed operator A, with entries given
above as Wi, Via, Vis Va1, Voo, Vo3, Vay, Vs Va3 we

now consider Example 1, below, to test the sucoéss
the scheme.

Example:
1
Minj(xz(t) +u?(t)dt
0
Such that:
X =2.095x( 1) + 1.904¢ }
A = The step size

p = The penalty constant
A =The multipliera=1,b =1, c =2.095 and d3fu

We apply QBasic programming
execute the developed algorithm,
Continuous Algorithm (DCA).

language to

RESULTSAND DISCUSSION

Discretized

DCA, converges much faster in at most 3 iteratidns.
is observed that the objective value per cycle getser

to the analytic solution much faster than any o th
other methods in the Table 1 for each penalty fanct
and the number of iterations. The DCA, ECGM and
MECGM converge at low iterations while the FSA
converges at comparatively high iteration in alesat
the 50" iteration. The constraint satisfaction is beshwit
the ECGM algorithm though its computational results
deviate from the analytic result.

CONCLUSION

The results, obtained with DCA, show that it is a
feasible method that compares favorably with theeot
existing methods. The convergence profile results
reveal that it is a great improvement over the fiamc
space Algorithm. The reason is that the knowledige o
operator which FSA sidetrack is made availablehim t
new method.

It is recommended that the reasons for the faster
convergence of the penalty-multiplier method ovey a
of the other methods can algebraically be examined
through the spectrum of the matrix operator assedia
with the bilinear form expression. It is also
recommended that the choice of the optimal value of
the penalty function can be obtained by equatirg th
gradient of the Lagrangian to zero.
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