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Abstract: Problem statement: Many earlier schemes, particularly the Function Space Algorithm 
(FSA) which sidetracks the knowledge of operator, for solving quadratic optimal control problems 
have been computationally involving and iteratively high. Approach: Though, some of these earlier 
schemes developed operators consisting of complicated integrals still very difficult to evaluate. 
Here, objectively, a new scheme, Discretized Continuous Algorithm (DCA), is proposed with 
developed associated operator consisting of a series of summation replacing the integrals of the earlier 
schemes, thus enhancing much more feasible results and lower iterations. Results: Methodologically, 
the new  scheme  uses  the  penalty-multiplier  method  to obtain an unconstrained formulation 
whose bilinear form expression leads to the construction of operator amenable to the Conjugate 
Gradient Method (CGM). Conclusion/Recommendations: An hypothetical example is considered 
and results, tabulated per cycle, are more feasible and less iterative than some of the existing 
methods.  
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INTRODUCTION 

 
 The objective of this research is to develop a 
Discretized Continuous Algorithm (DCA), using the 
combination of the penalty and multiplier methods 
(Rockafellar, 1974), for solving quadratic constrained 
continuous control problems with real coefficients in 
order to reduce the cumbersome calculations inherent in 
earlier schemes such as Function Space Algorithm 
(FSA) which sidetrack the construction of operator, 
Extended Conjugate Gradient Method (ECGM) and 
Imbedded Extended Conjugate Gradient Method 
(MECGM). The last three did develop operators 
consisting of a series of integral evaluations uniquely 
adapted to their schemes. To numerically achieve the 
development of DCA, we used the finite difference 
method and discretization of the differential constraint 
and time interval (Di Pillo and Grippo, 1982; Dennis 
and Schnable, 1983) respectively to obtain a discretized 
constrained formulation of the problem. Using Fletcher 
and Reeves’s method (Fletcher and Reeves, 1964) on 
function minimization and modified Ibiejugba and 
Nnumayi’s method (Ibiejugba and Onumanyi, 1984) on 
function operator, an operator was constructed 
ameniable to the discretized scheme. Consequently, a 
conjugate gradient method was applied to the 
constructed operator which serves as a framework for 
the generalized scheme given in materials and methods. 

MATERIALS AND METHODS 
 
Generalized problem 1: 
 

( ) ( )( )
T

2 2

0

Min ax t bu t dt+∫  

 
Subject to: 
 

( ) ( ) ( ) 0x t cx t du t , x(0) x , 0 t T
•

= + = ≤ ≤  (1) 

 
where, x(t), u(t)ER, a, b>0, c and d are any contents not 
necessarily positive. 
 The constrained problem (1) can be turned into 
unconstrained problem via the penalty method and the 
multiplier method (Fletcher and Reeves, 1964; Di Pillo 
and Grippo, 1982) as: 
 

( ) { ( ) ( )

( ) ( ) ( )

}

T
2 2

H x,u, ,
0

2

Z,AZ Min ax t bu t

x t cx t du t

, x(t) cx(t) du(t) dt

µ λ

•

〈 〉 = +

+ µ − −

+ 〈λ − − 〉

∫

ɺ   (2) 

 
where, µ>0 the penalty constant and λ the multipler 
(parameter.  
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Discretization: By discretizing (2) and subdivide [0,T] 
into n equal intervals [tk,t k+1] at meshpoints: 
  

x0<x1<x2< x3< …<x n-1<xn 
 
where, n-1 is the number of partition points chosen 
arbitrarily,  thus  having  (n+1)  partition  points, with 
xj = j*∆j, j = 0,1,2,…,n and ∆j = ∆k is the fixed length 
of each subinterval for j = k or not By j*∆j, it means j 
multiplied by ∆j let: 
 

k 1

0 k n
j 1

t 0 and t j, k 1,2,3,...,n, t T
−

=

= = ∆ = =∑  

( ) ( ) ( ) ( )k k, k kx k x t , u k u t , k 0,1,2,...,n= = =  

 
 By Euler’s scheme or finite difference method: 
  

( ) ( ) ( )( )x k x k 1 x k / k= + − ∆ɺ  k = 0, 1, 2,…..N-1  

 
( ) ( )k k k k k kx (t ) cx t du t= +ɺ  

 

( ) ( )( ) ( ) ( )k k k k kx k 1 x k / cx t du t+ − ∆ = +  (3) 

 

k k k 1 k k k k k k k 0(t ), x (t ) x (t ) cx (t ) du (t ) , x (0) 0+〈λ − − − 〉 =  

 
 We then have the generalized problem (1) in the 
form: 
 

( ) ( )( )
( ) ( )( ) ( ) ( )

n
2 2

(x,u) k k k k k
k 0

k k k k k

min J ax t bu t

subject to x k 1 x k / cx t du t

x(0) 0

=

= ∆ +

+ − ∆ = +

=

∑

 (4) 

 
Application of the penalty and multiplier 
parameters: Applying the penalty function and the 
multiplier method to (4) by Olotu and and Olorunsola 
(2006), we have: 
 

( )

( ) ( )( ) ( )
( ) ( ) ( )

2 2
k k k k k K 1 k 1

n 2
k k k k k k k k

k 0
k k 1 k 1 k k k k k

k k k

ax t bu t [x t

x t cx t d u t ]MinJ x,u, ,
, x (t ) x (t ) cx (x )

du (t )

+ +

=
+ +

 ∆ + + µ
 
 − − ∆ − ∆µ λ =  

+〈λ − − ∆ 
 −∆ 〉 

∑  (5) 

 
n
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k k k k k k k k k k k k k

k 0

k k k k k k k k k k k k k k

k k k k k k k k k k k k k k

{x (t ) u (t ) y (t ) n x (t )y (t )

m u (t )y (t ) p x (t )u (t ) (t )y (t )

(t )x (t ) (t ) cx (t ) (t ) du (t )}

=

= α + β + µ +

+ + + λ
− λ − λ ∆ − λ ∆
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Where: 
k k k 1 k 1

2 2
k k k k

2 2
k k k

k k

k k

2
k k k

y (t ) x (t ),

2 c c a

b d

n 2 2 c

m 2 d

p 2 d 2 cd

+ +=

α = µ + µ∆ + ∆ µ + ∆

β = ∆ + ∆ µ
= − µ − µ∆
= − µ∆

= − µ∆ − ∆

 

 
 The bilinear from expression associated with (6) is 
given by: 
 

( ) ( )

( ) ( ) ( ) ( )
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And 
 

( )
11 12 13 k2

K2 k 21 22 23 k2

31 32 33 k2

11 k 2 12 k2 13 k2

21 k2 22 k2 23 k2

31 k2 32 k2 33 k2

A A A x

AZ t A A A u

A A A
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A x A u A

A x A u A

  
  =   
  λ  

+ + λ 
 = + + λ 
 + + λ 

 (8) 

 
where, k k k k k k k kz (t ) (x (t ), u (t ), (t ))= λ . 

 
 Using Euler’s scheme (Olotu and and Olorunsola, 
2006; Rockafellar, 1974) and simplifying (8), we have 
the following: 
 

( ) ( )
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 Now, we shall state the theorem establishing the 
operator A with partial proof and for the purpose of 
simplicity to minimize lengthiness, henceforth, we shall 
adopt the following notations for the remaining part of 
the proof: 
 

ki ki k ki ki k ki ki kx x (t ), u u (t ), (t ) for i 1,2,3= = λ = λ =  

 
 However, f or full detail of the proof (Ibiejugba 
and Onumanyi, 1984; Omolehin et al., 2006), involving 
penalty method only. 
 
Theorem 1: Let the initial guess of the conjugate 
algorithm be 0 kZ (t )  so that: 

 
T

0 k 0 0 0Z (t ) (x ,u , )= λ  

 
 Then the control operator a associated with the 
generalized problem 1.satisfying k2Az is given by:  

 
( )T

k2 k k2 k k2 k k2 kZ (t ) x (t ),u (t ), (t )= λ  

 

Proof of theorem 1: Setting ( )K2 k k2u t 0,= λ =  in (9) 

and collecting like-terms, we have: 
 

( ) ( )K1 k K2 k H

n

k1 k2 k k k2 k k k
k 0

2
k1 k2 k k k k2 k k1 k2 k k k2 k k

k1 k2 k k2 k

Z t ,AZ t

{x [x .( 2n ) x .( n )]

x .[x ( n ) x . ] u .[x (p m ) x . m ]

.[x .( 1 c) x ]

=

〈 〉 =

α + µ − + −µ∆ + ∆

+ ∆ − µ∆ + µ∆ + − + ∆
+λ − − ∆ + ∆

∑ ɺ

ɺ ɺ ɺ

ɺ

 (10) 

 
Define: 
 

1 k k2 k k k2 k k k(t ) x ( 2n ) x .( n )Ω = α + µ − + −µ∆ + ∆ɺ  

 
And: 
 

2
1 k k2 k k k k2 kf (t ) x ( n ) x .= ∆ − µ∆ + µ∆ɺ  

 
 So Eq. 10 becomes. Where: 
 

n

k1 11 k1 11 k1 21 k1 31
k 0

x .V x .V u .V .V
=

+ + + λ∑ ɺɺ  

 

21 k2 k k k2 k kV x (p m ) x m= − + ∆ɺ  (11) 

 

31 k k2 k k k2 k kV (t ) x (t )( 1 c) x (t )= − − ∆ + ∆ɺ  (12) 

( ) ( )
T

11 k 11 k 1 1 k k k k

0

T

1 k k k 1 k

0

1

V t A t sinh(T)f (0) f (s )cosh(t s )ds

(t )sinh(T s )ds (t )cosh(T)

r sinh(T)

= = − + −

− Ω − +Ω

+

∫

∫  (13) 

 
And: 
 

( )1 1

T T

1 k k k k 1 k k k

0 0

1 1

1
{ sinh(T)f (0)

sinh T

f (s )cosh(t s )ds (s )sinh(T s )ds

(0)cosh(T) (T)}

τ = −

+ − − Ω −

− Ω + Ω

∫ ∫  (14) 

 
 In Eq. 7, setting: 
 

( ) ( )K2 k k2 k k2 kx t (t ) 0 x t 0= λ = → =ɺ  

 
 And collecting like-terms we have: 
 

( )

( )
K1 K2 k H

n

K1 k k2 k k k1 k k k2
k 0

k1 k2 k k1 k2 k

Z ,AZ t

{x t [u (p m ] x .( m u ]

u .[u ] .[ u d]
=

〈 〉 =

− + ∆

+ β + λ − ∆

∑ ɺ  (15) 

 
 Now define: 
 

2 k k2 k k k 2 k k2 k k k(t u (t )(p m ) and f (t ) u (t ) mΩ = − = ∆  

 
 Which are continuous functions on [0,T]. Now 
letting Eq. 15 be: 
 

n

k1 k 12 k1 k 12 k1 k 22 k2 k 32
k 0

x (t )V x (t )V u (t )V (t )V
=

+ + + λ∑ ɺɺ  (16) 

We have: 
 

22 k2 k kV u (t )= β  (17) 

 

32 k2 k kV u (t )( d)= −∆  (18) 

 
( )12 k 2

T T

2 k k k k 2 k k k

0 0

2 2

V t sinh(T)f (0)

f (s )cosh(t s )ds (t )sinh(T s )ds

(0)cosh(T) r sinh(T)

= −

+ − − Ω −

+ Ω +

∫ ∫  (19) 

 
where, r1 = r2 with the exception that f1 = f2 and Ω1 = Ω2 

as in Eq. 14.  
  Again setting Xk2 (tk) = uk2(tk) = 0 implying that x 
k2(tk) = 0 in (7) and collecting like-terms, we have:  
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n

k1 k2 k k1 k2 k k1 k2 k
k 0

x [ 2 c] x [ ] u [ d]a
=

− λ − ∆ + λ ∆ + −λ ∆∑ ɺ  (20) 

 
Define: 
 

3 k k2 k 3 k k2 k(t ) ( 2 c) and f (t )Ω = λ − − ∆ = λ ∆  

 
 Now, setting Eq. 7 to: 
  

n

k1 13 k1 13 k1 23 33
k 0

x [V ] x [V ] u [V ] [0]V
=

+ + +∑ ɺɺ  

 
 Then we have: 

23 k k2 k 33 kV (t ) d and V (t ) 0= −λ ∆ =  

 
( )13 k 3

T T

3 k k k k 3 k k k

0 0

3 3

V t sinh(T)f (0)

f (s )cosh(t s )ds (t )sinh(T s )ds

(0)cosh(T) r sinh(T)

= −

+ − − Ω −

+ Ω +

∫ ∫ (21) 

 
where, 3 1 1 3 1 3r r except that f f and as in (13)= = Ω = Ω . 

 Having constructed operator A, with entries given 
above as V11, V12, V13, V21, V22, V23, V31, V32, V33, we 
now consider Example 1, below, to test the success of 
the scheme.  
 
Example: 
 

1
2 2

0

Min (x (t) u (t)dt+∫  

 
Such that: 
 

( ) ( )X 2.095x t 1.904u t
•

= +  

 
∆k = The step size 
µ = The penalty constant 
λ = The multiplier a = 1, b = 1, c = 2.095 and d =1.904 
 
 We apply QBasic programming language to 
execute the developed algorithm, Discretized 
Continuous Algorithm (DCA). 
 

RESULTS AND DISCUSSION 
 
 In Table 1, the numerical problem has an analytic 
solution, 1.0647, at the optimum. The initial objective 
functional is 1.1904 and has corresponding constraint 
satisfaction  8.90625  at  the  first  cycle. The algorithm, 

Table 1: Shows the numerical solutions of all algorithms compared to 
DCA with analytic solution 1.0647 

Penalty/multiplier  No. of iterations Objective Constrained  
Parameters Algorithm iterations funct. satisfaction 
µ = s.5, λ = -2.88 DCA 20 1.1904 8.90625 
 FSA 50 1.6517 11.62270 
 ECGM 7 1.0956 0.45440 
 MECGM 10 0.0715 1.12490 
µ = 1, λ = -0.6 DCA 3 1.5370 11.12500 
 FSA 50 1.6251 11.29900 
 ECGM 7 1.4834 0.13810 
 MECGM 4 0.7073 0.95020 
µ = 1.5, λ-9.11 DCA 3 1.1686 8.32750 
 FSA 50 1.6001 10.98840 
 ECGM 6 1.5570 0.08650 
 MECGM 3 0.8686 1.16160 
µ = 2, λ = -10.57 DCA 2 1.1746 8.36210 
 FSA 50 1.5768 10.69020 
 ECGM 7 1.4686 0.03530 
 MECGM 3 0.9386 1.04770 
µ = 2.5, λ = -10.37 DCA 3 1.1774 8.37820 
 FSA 50 1.5550 10.40200 
 ECGM 6 1.5521 8.12620 
 MECGM 2 1.0178 1.63130 

 
DCA, converges much faster in at most 3 iterations. It 
is observed that the objective value per cycle gets closer 
to the analytic solution much faster than any of the 
other methods in the Table 1 for each penalty function 
and the number of iterations. The DCA, ECGM and 
MECGM converge at low iterations while the FSA 
converges at comparatively high iteration in all cases at 
the 50th iteration. The constraint satisfaction is best with 
the ECGM algorithm though its computational results 
deviate from the analytic result. 
 

CONCLUSION 
 
 The results, obtained with DCA, show that it is a 
feasible method that compares favorably with the other 
existing methods. The convergence profile results 
reveal that it is a great improvement over the function 
space Algorithm. The reason is that the knowledge of 
operator which FSA sidetrack is made available in the 
new method. 
 It is recommended that the reasons for the faster 
convergence of the penalty-multiplier method over any 
of the other methods can algebraically be examined 
through the spectrum of the matrix operator associated 
with the bilinear form expression. It is also 
recommended that the choice of the optimal value of 
the penalty function can be obtained by equating the 
gradient of the Lagrangian to zero. 
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