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Abstract: Problem statement: Modify the equations associated with image theorgrder to account

for perfect and imperfect conductoispproach: A novel approach for describing the application of
image theory for an imperfect conductive surface meesented. The method presented here purposely
downplays the physics of how image theory was eymulato account for a charge which is in the
presence of an imperfect conductive surface. In,titradopted an approach which focused on the
geometry that existed between the charged pardiote surface ground. In doing so, the proposed
method formulated a solution that had minimized twenplexity of the original problem while
providing an approximation founded upon a geometilationship.Results: The equations derived
had elicited the concept of using plane geometumgment image theorgonclusion: A method for
evaluating image theory for the imperfect condutiad been presented. As the results had shown, the
equations derived had provided an augmented apprm@ccount for surfaces which were both
perfect and imperfect.
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INTRODUCTION MATERIALSAND METHODS

Image theory, in its current form, assumes that an  The electric field E is defined as the force peit u
imaged charge is in the presence of perfect conduct charge. Equation 1 describes the electric fielditas
By assuming the material is a “perfect conductor’would be experienced by the small stationary chagge
allows one to account for all of the charge counstits.  (Jackson, 1999):

Therefore, one can assume that a charge over an

infinitely conductive ground has a perfect mirroraige. ¢ _F (1)
This “mirror image” can be quantified by taking the o

charge’s spatial coordinates which are perpendidola

the surface and rotating or projecting them by 180%Where:

(Balanis, 1989). Taking the cosine of this angleegi F = The force experience by the stationary testgeha
rise to an image charge that is equal in magnituste E = The field wherein the particle is located

opposite in polarity. However, in reality the sadain

the presence of a charged particle is not a perfect A conductor by definition, contain charges capable
conductor. With this in mind, one must presume thabf moving freely under the action of an appliedceie
formulas which leverage this “perfect conductor”field. In principle, this states that the strengththe
assumption will loss accuracy as the surface besomeslectric field dictates the speed at which the goar
increasing non-conductive. For the purposes of thigarticles will travel within the conductive matdria
study, we introduce and modify an approach origynal Furthermore if charged particles can no longer be
proposed by Meredith and Earles (2010) to developccelerated, then the electric field must equab.zer
equations which account for both perfect and ingerf Given a basic expression between an electric field
surfaces. In doing so, this approach has downpl#yed particle has been described, one can now expasd thi
physics of image theory in order to develop a $ofut dea to consider the effects of multiple charges.

which has minimized the complexity of the original Coulombs law states that the magnitude of the
problem. electrostatic force between two point charges risodly
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proportional to the product of the magnitudes afheaf  field. In the literature, image theory has been leygd
the charges and inversely proportional to the sjoér to describe the relationship between a chargedcfeart
the total distance between them. We can now expanand a perfectly conductive ground. We can illusttae
(1) to include more than one charge such that: method of images as shown in Fig. 1 by considettieg
problem for a point charge q located at y relato/¢he
F= i %l @ origin, around which is centered a grounded cordgct
%2 sphere of radius a (Jackson, 1999).
One could think about image theory this way. Let’s

where, K, known as Coulombs constant, is aSuppose you have a coherent light source and yioe sh
proportionality constant whose value is determibgd it upon a dingy piece of metal. Some of the lighil w
the medium that the charged objects are immersed if€flect back towards you but much of it will betlasie
and x is the distance between the chargesrgl q. to refraction and/or absorption. Now take the same
When the medium is air, this value is approximatelycoherent light source and shine it towards a highly

2 ~-2 P : -1 reflective mirror. You'll notice that most of théght,
8.987>10 Nm" C™, which s calculated usingre) about 99%, will reflect back while only ~1% is lakie

where g, =1/p.c, with the permeability of free space to refraction and/or absorption. Using the highly
uo, the permittivity of free space, and the speed of reflective mirror allowed you to account for the
light c. majority of light. That is, you're cognizant of wieethe

One can expand Eq. 1 to derive an expression thdight went because it reflected back towards yau. |
equates the potential as a function of charge. Byssence, by assuming we have a perfectly conducting
rearranging (1) in terms of F and equating it tpq@e  material that acts like a mirror allows one to patja
would obtain: particles image 180° (Balanis, 1989) from the rhadia
position where the original particle lies with respto
the conductive surface. This idea is illustratedrig. 2
(Jackson, 1999).

=X @3)

With the electric field being written in terms tbie
potential as:
=2 (4)
X

One can use Eg. 3 and 4 to solve for the potential
in terms of charge such that:

@ (x)= (5)

Conducting sphere of radius a, with chagge

, . ig. 1:
However, let's consider the case of a chargecl: and image charge, q’

particle which is located above a conductive surféc
order to describe the magnitude of the electritd fag z z
some arbitrary point P, one must develop an equatio
which describes the relationship between the cliarge q ae
particle above a conductive surface.

From Fig. 1 we can expand (5) to account for the eT0 @

distance between the charge g and vector x suth tha l _ I
7T 77T
kg
D(x)=—2=- (6)
X =555

As previously noted, a conductor contains charges
capable of freely moving in the presence of antdfec Fig. 2: Solution by method of images
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Fig. 4: Application of the degraded image
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Fig. 3: The magnitude of the distances associatéd w
the incident charge and image charge

z

az)
Figure 2 assumes that we're taking a very small
slice of the spherical surface which houses thegeda T
charge as shown in Fig. 1. If this slice is smategh it l z=0
can be modeled by a flat surface. L
Given Fig. 3, we can expand (6) to account for the
image charge q’ such that: u(za) ™ 9p(Ze) C0S(Y)
qp(z,)

®(x) = kg keQ'l )

Fig. 5: The projection of a perfect image’s maguétu

_ i Figure 4 illustrates the how the degraded image
x-y| and[x-y| are the distances that exists charge, gwill change with respect to the perfect image
between the charge g and image charge q’ with céspecharge, g as the conductivity,c of the surface
to the unit vector x. decreases. As the surface becomes a perfect imsulat

In order to augment the approach used from imagéhe magnitude of the degraded image charge
theory, this study will introduce the idea of the approaches zero. This methodology has purposely
degraded image. This ideology accommodates botHownplayed the physics of how image theory is
perfect and imperfect projected images. With tiaddl  employed to account for a charge which is in the
image theory, it assumes that a charge in the pcese presence of an imperfect conductive surface. Imgloi
of a perfect conductor has a mirror image. Howeasr, so, this model formulates a solution that has mizeéh
the surface below this charged particle becomes leghe complexity of the original problem while proirid
conductive, one can no longer assume that its imagen approximation founded upon a geometric
remains unchanged. In fact, one must concede to thelationship. Knowing how the image charge is aédc
idea that the entire image can no longer be preject by the surface conductivity allows one to develop a
the same fashion as the image of a charge in thequivalency between the two by exploiting the
presence of a perfect conductor. With the adoptibn geometry of Fig. 4. Since the contribution from the
this idea in place, it's logical to presume thatths  magnitude of the perfect image charge is generally
surface below the charged particle becomes lesknown, this value can be scaled to account for a
conductive, the image charge will become degraded achanging conductivity as shown in Fig. 5.
shown in Fig. 4. Given the image charge has become As Fig. 5 illustrates, the contribution from the
degraded, some of the charge constituents have noglegraded charge can be quantified by taking the
become displaced. Since the conservation of chargmagnitude of the perfect image charge and scaliby i
must be preserved, these dislocated constituerts wia factor which accounts for the loss. This can be
now collect along the surface of the conductiverealized by taking the projection of the perfecaga’s
material. magnitude and rotating it along the z = 0 axis luti
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shares the same z component as the degraded imagenstituents who have now collected along the sarfa
Do so will allow one to associate the perfect imagi@  of the conductive material. The inclusion of thisface

the degraded image by multiplying the scaling facto charge now brings the needed symmetry to the emuati
cosfy). Therefore, we can write the degraded charge iand thus preserves the conservation of charge. The
terms of the perfect charge such that: potential of the perfect image charge can be writie

gy = q'cogy) (8) q)(x,z:zp):d)(x, z=7)+®(x, = 2) (12)

where, g is the degraded image charge and the cosinghere, ®(x,z=z)and ®(x,z=2) are the potentials
of the angle,y accounts for the loss. In order to

maintain the conservation of charge, one must amiv
the notion that the image charge constituentsatano
longer present within the degraded image must new b
present elsewhere. With this in mind, we can irifet

located at the degraded charge and surface charge
respectively. Therefore, one can now re-write (®)
include the additional terms from (10) with:

these image charge constituents will now colleohgl ®(x,2=0)=0=0(x,z= 2)+®( x, = 7) (13)
the surface. Although these surface charge coastitu +®(x,z2=2)

spread out radially, their contributions can be

approximated by formulating two distinct chargescte As with (11), an alternative form of this expressi

of which lie on opposite sides of the z-to-grouti@ne  can pe derived by simply substituting the equations
interface. In principle, these two surface chargegssociated by the potential terms at their given z

radial constituents, thus formulating a viable gxpression which describes both perfect and imperfe
approximation to those present. We can describe thgonquctive surfaces with the following:

total surface charge with the following:

I T !
g, = q(1- cogy)) 9) ®(x,2=0) X -9 +\* v +\* v (14)
RESULTS In principle, if it is assumed the conductivity the

o . surface approaches infinity, the charge-to-ground
In order to maintain symmetry, we can write adjstance y and perfect image charge-to-ground riista

general expression for the potential at z = 0 shah y’ are equivalent. However as the surface becoess |
conductive, a portion of the image charge now bexom
®(x,2=0)=0=0(x, 2= 7)+( x, = z) (10)  distributed along the surface as indicated in (S®)ce

a charge located at the surface no longer relies tipe
vector y’', one should presume its contribution ® b
negligible. With this in mind, one can now re-wrffiet)
located at the incident charge and perfect imagegeh to include this change along with (8) and (9) tealibe
respectively. An alternative form of this express@an  the final expression written as:

be written to include the equations associated thiéise

where, ®(x,z=z)and ®(x,z=z,) are the potentials

charges at their respective z coordinates. Thus,can 'co (1= co
now update (10) to include these equivalent terms t ®(x,z= O):\i?*\ +q‘y _s(y) +q( N ) (15)
yield: Y y

q' DISCUSSION

d(x, z=0)=‘yﬁy‘ +

—— (11)
x=v1 In Eq. 15, we utilized a novel approach to augment
image theory. Surmising the image charge vertical
However, as the potential located at the imageosition can vary as a function of surface conditgti
charge becomes degraded, Eq. 10 is no longer Valid. aided in the development of this formula. This
order to validate this expression, one would havadd methodology has greatly simplified how image theory
a form of potential to the right hand side of thecould be employed for surfaces which are no longer
equation. This term is made up of the dislocateatgd  consider perfect conductors. In doing so, an @étéve
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