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Abstract: A closed differential ideal is constructed for a generalized Korteweg-de Vries equation. The 
ideal can be used to establish integrability for the equation. Some prolongation structures are 
determined for the equation and some larger prolongation algebras for given instances of the equation 
are found. The significance of this is that Backlund transformations can be developed based on them. It 
is shown how a Backlund transformation for a case of the equation can be formulated. 
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INTRODUCTION 

 
 The concept of integrability of certain kinds of 
partial differential equations or systems of such 
equations has generated a great deal of attention. There 
are many implications and related applications of the 
idea of integrability (Das, 1989). A Lax pair can be 
determined in theory, as well as an infinite number of 
conservation laws and perhaps more importantly, a 
Backlund transformation. A Backlund transformation 
has more important practical consequences, since it can 
be used to determine solutions to an associated 
equation, usually referred to as the potential equation, 
from solutions of the given equations. Of course, 
determining any of these in practice in a particular case 
is not easy, however, there are approaches which often 
yield results. It has been shown by Estabrook and 
Wahlquist (1975a) that by applying Cartan’s method as 
well as prolongation techniques, it is possible to 
ascertain integrability of a given equation (Estabrook 
and Wahlquist, 1975b; 1976). This was accomplished 
for the classical Korteweg-de Vries equation. The 
prolongation results can be used to determine a Lax pair 
for the given nonlinear equation. The intention here is 
to develop a way to extend that work to the case of a 
generalized Korteweg-de Vries equation (Bracken, 
2005). 
 Of course, the existence of an infinite number of 
conservation laws and the notion of integrability have 
both been connected to the existence of solitons 
associated with these equations. The study of solitons 
recently has been of interest due to their appearance in 
many physical applications (Radu and Volkov, 2008) 
and so the investigation of a new equation is of interest. 
The classical Korteweg-de Vries equation has many 
applications which extend beyond the original 

applications to solitary water waves (Bracken, 2004). It 
has become apparent that nonlinear dispersion can act 
to compatify solitary waves and generate solitons of 
finite wavelength. Such modes have been determined in 
the form of solutions to the equation which will be 
studied here (Bracken, 2005). The symmetry group for 
this equation has been determined and has allowed 
solutions to be calculated. These solutions include 
soliton solutions and solutions which can be thought of 
as having compact support (Rosenau and Hyman, 1993; 
Sivers and Takens, 1988). These equations have been of 
great interest recently due to their applications to areas 
such as coupled autonomous ocsillators and soliton 
theory. In the former instance, these have been a subject 
of interest since the discovery of their synchronization 
by Huygens (Pilovsky and Rosenau, 2006; Rosenau, 
2006). 
 It is the intention here to investigate some instances 
of the equation which admit a larger prolongation 
algebra than that discussed in (Bracken, 2007) and to 
determine the algebra explicitly. Some of the 
mathematical preliminaries of Cartan’s method as 
introduced by Estabrook and Wahlquist (1975b; 1976) 
are introduced first. It will be shown next how the 
analysis can be extended to the case of the generalized 
Korteweg-de Vries equation, essentially in the form 
given in (Bracken, 2005; 2007). An exterior differential 
system which reproduces the equation on the transverse 
manifold is presented, so integrability can be 
established. A prolongation is determined 
corresponding to this exterior differential system. 
Finally, a Backlund transformation is found based on 
the general sl(2,R) prolongation. 
 
Exterior differential systems and Cartan 
prolongations: Consider the space M = Rn(x, t, u, p, 
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q,…) in which there is defined a closed exterior 
differential system: 
 
α1 = 0; …; αl = 0 (1) 
 
and let I be the ideal generated by the set li i 1{ } =α  in (1) 

given as: 
 

l

i i i
i 1

I : (M)
=

 = ω = σ ∧ α σ ∈ Λ 
 

∑  (2) 

 
 If ideal (2) is closed, we have dI⊂I and so (1) is 
integrable by a theorem. It is important to stress that 
system (1) is chosen such that the solutions u = u(x, t) 
of an equation: 
 
ut = F(x, t, u, ux, uxx,…) (3) 
 
correspond with the two-dimensional integral manifolds 
of (1). There are the integral manifolds given by 
sections S of the projection: 
 

2: M R , (x, t,u,p,q,...) (x, t)π → π =   (4) 
 
 These sections S are given by a mapping: 
 

2S: R M, S(x, t) (x, t,u(x, t),p(x, t),q(x, t),...)→ =  (5) 
 
 Introduce the fiber bundle (M,p,M)ɶ ɶ  over M with 

M M⊂ ɶ  and pɶ  a projection of Mɶ  onto M, so points of 

Mɶ  are denoted by mɶ , those in M by m and hence  
(p)m m=ɶ ɶ . 
 A Cartan-Ehresmann connection in the fiber 
bundle (M,p,M)ɶ ɶ  is a system of one forms 

i *,i 1, ,  k in T (M)ω = … ɶɶ  with the property that the 

mapping *pɶ  from the vector space: 

 

{ }i
m mH X T | (X) 0,i 1,...,k= ∈ ω = =
ɶ ɶ

ɶ ɶɶ  

 
to the tangent space Tm is a bijection. 
 We consider in Mɶ  the exterior differential system: 
 

*
i i

j

p 0, i 1,..., l

0, j 1,..,k

α = α = =
ω = =

ɶ ɶ

ɶ
 (6) 

 
with jωɶ  a Cartan-Ehresmann connection in (M,p,M)ɶ ɶ . 
 The system (6) is called a Cartan prolongation of 
(1) if (6) is closed and whenever S is a transversal 
solution of (1), there should also exist a transversal 

local solution Sɶ  of (6) with p(S) S=ɶɶ . There is a 
theorem which states that (6) is a Cartan prolongation 
of (1) if and only if (6) is closed. A necessary and 
sufficient condition for the existence of this is given 
by: 
 

i i i *
jd , mod p (I)ω = β ∧ ωɶɶ ɶ  (7) 

 
where, I is the ideal generated by l

i i 1{ } =α  and the 

summation convention holds in (7). Consider a trivial 
bundle of the form k 1 k kM M R with y (y ,..., y ) R= × = ∈ɶ  

and use connections which have the form: 
 

i i idy , i 1,...,kω = − η =ɶ  (8) 
 
with i i iA dx B dt,η = +  where Ai and Bi are C∞ functions 

on Mɶ . Substituting into the prolongation condition (7), 
it reads: 
 

i i j j *
jd (dy ), mod p (I)− η = β ∧ − ηɶ ɶ  

 
 From this, it follows that i

jβɶ  may be chosen such 

that they do not depend on dym-ηm, m = 1, …, k, m ≠ j. 
Moreover, it is possible to show that the prolongation 
condition boils down to the following: 
 

*1
d [ , ] 0 mod p (I)

2
η + η η = ɶ  (9) 

 
 Expanding out (9), the prolongation condition 
reads: 
 

[ ] ( )i *(dA dx dB dt A,B  dx dt) p I∧ + ∧ + ∧ ∈ ɶ  (10) 

 
where, [A,B] denotes the usual Lie-bracket of the 
vector fields A and B. 
 These results can be summarized in the following 
theorem, which will be made use of in the following. A 
necessary and sufficient condition for the connection 
forms (8) to be a Cartan prolongation is the vanishing 
of its curvature form. 
 
Cartan prolongation of the generalized Korteweg-de 
Vries equation: Consider the exterior differential 
system on the space M which is defined by: 
 

n 1
1

2

s
3

nu du dt pdx dt 0

dp dt qdx dt 0

du dx dq dt pu dx dt 0

−α = ∧ − ∧ =

α = ∧ − ∧ =

α = ∧ − ∧ − γ ∧ =

 (11) 



J. Math. & Stat., 6 (2): 125-130, 2010 
 

127 

where, γ is a constant. From system (11), we calculate 
that: 
 

1 2

2 3

s 1 s
3

s n s
1 2

d dp dx dt dx

d dq dx dt dx

d spu du dx dt u dp dx dt

s
dx pu pu

n

−

−

α = − ∧ ∧ = ∧ α

α = − ∧ ∧ = − ∧ α

α = −γ ∧ ∧ − γ ∧ ∧

 = ∧ γ α + γ α 
 

 (12) 

 
 Therefore, the ideal 

{ }3

i i ii 1
I | : (M)

=
= ω ω = σ ∧ α σ ∈ Λ∑  is closed, dI⊂I and 

the system {αi} in (11) is integrable. 
 On the transversal integral manifold: 
 

* n
1 1 x

*
2 2 x

* s
3 3 t x

0 | s S ((u ) p)dx dt

0 | s S (p q)dx dt

0 | s S (u dt dx q dx dt pu dx dt)

= α = α = − ∧

= α = α = − ∧

= α = α = ∧ − ∧ − γ ∧

 (13) 

 
 The transversal integral manifolds imply the 
equations: 
 

n n s
x x xx t xp (u ) , q p (u ) , u q pu 0= = + + γ =  

 
 Let n+s ≠ 0, then substituting p and q, it can be 
seen that u must satisfy the following generalized 
Korteweg-de Vries equation: 
 

n n s
t xxx x

n
u (u ) (u ) 0

n s
++ + γ =

+
 (14) 

 
 This can be put in more familiar form by setting 
m = n + s and defining β to be the coefficient of (um)x in 
(14). Therefore, (14) takes the form: 
 
ut + (un)xxx + β(um)x = 0 (15) 
 
 Using (11), the prolongation condition (10) now 
leads to the expression: 
 

[ ] ( )
( ) ( )

t u p q

x u p q

n 1
1 2

s
3

A  dt dx A  du dx A  dp dx A  dq dx

B  dx dt B  du dt B  dp dt B  dq dt

A,B dx dt  nu  du dt p dx dt

dp dt q dx dt du dx dq dt pu  dx dt

−

∧ + ∧ + ∧ + ∧ +

∧ + ∧ + ∧ + ∧ +

∧ = λ ∧ − ∧ + λ

∧ − ∧ + λ ∧ − ∧ − γ ∧

 

 
 Comparing the coefficients of the two-forms on 
both sides of the prolongation condition produces the 
following system of equations: 

s
t x 1 2 3A B [A,B] p q pu− + + = −λ − λ − γλ  

p qu 3

n 1
p 2 q 3u 1

A 0, A 0,A ,

B , BB n u ,−

= == λ

= λ = −λ= λ
 (16) 

 
 To produce a small algebra, assume that A and B 
do not explicitly depend on (x, t) so we put Ax = At = 0 
as well as Bx = Bt = 0. System (16) can be put in the 
form: 
 

n 1 s
u p q

1
[A,B] u pB qB pu B

n
− += − − + γ  

 

x t x t

p q u q p 2

n 1
u 1

A A 0, B B 0

A 0, A 0,A B , B

B n u ,−

= = = =

= = = − = λ

= λ

 (17) 

 
 The conditions (17) imply that A = A(u, y) and B = 
B(u, p, q, y). To obtain some prolongations for this 
system, let us take the following form for the vector 
field A: 
 
A = A(u, y) = X1 + uX2, Xi = Xi(y), i = 1, 2 (18) 
 
 All of the dependence on the prolongation variable 
y resides in the Xi. Since Au = X2 from (18), then from 
(17) we obtain Bq = -X2. This implies that B is 
determined to be: 
 
B = -qX2 + C(u, p, y) (19) 
 
 Therefore, using (18) and (19), the first equation in 
(17) takes the form: 
 

n 1 s
1 2 2 u p 2

p
X uX , qX C u C qC pu X

n
− + + − + = − − − γ   (20) 

 
 Simplifying (20), it follows that: 
 

n 1 s n 1 n 1
u p 2 1 2

n 1 n
1 2

p
C qu C pu X qu X ,X

n

u X ,C u X ,C

− + − −

−

 + = −γ + − 

   −   

 (21) 

 
 Define the vector field X3 = [X1,X2], then 
whenever C is independent of q, we obtain from (21) 
that C is given by: 
 
C(u, p, y) = pX3 + D(u, y) (22) 
 
 Substituting C in (22) into (21), we have: 
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{ }
{ }

s n 1 n 1 n
u 2 1 3 3 3

n 1
1 2

p
D p u X u X ,X u X ,X

n

u X ,D u X ,D

+ − −

−

   = −γ − −   

   − −   

 (23) 

 
 Since D does not depend on p, the last term in (23) 
must vanish and there result two conditions on D: 
 

1 2

s n 1 n 1 n1
u 2 1 3 2 3n

X ,D u X ,D 0

D u X u X ,X u X ,X+ − −

   − =   

   = γ − −   

 (24) 

 
 Integrating the second equation for D in (24) with 
respect to u gives D explicitly: 
 

m n
2 1 3

n 1
2 3 4

n
D(u, y) u X u X ,X

m
n

u X ,X X
n 1

+

 = −γ − − 

  + +

 (25) 

 
where m = n + s. 
 There exists a solution such that the Xj satisfy the 
full sl(2,R) algebra, provided m, n and γ are 
interrelated in a specific way and another solution for 
the general case, but which satisfies a much smaller 
algebra. Each case will be treated in turn. 
 
• Suppose that the Xj satisfy the following algebra, 

which is isomorphic to sl(2,R): 
 
 [X1,X2] = X3; [X2,X3] = 2X2, [X3,X1] = 2X1 (26) 
 
 Then (25) takes the form: 
 

 m n 1 n
2 1

n n
D(u, y) u 2 u X 2u X

m n 1
+ = − γ + + + 

 (27) 

 
 Now D in (27) must satisfy the first equation in 

(24) and for this to hold, we must have: 
 

m n 1 n 1n 2n
u u 2u 0

m n 1
+ +γ + − =

+
 

 
 This can  hold  only if the powers of u match, so 

m = n + 1 and if γ is given in terms of n by: 
 

2

n
γ =  

 
 The components of the ηi are then given by: 
 

 1 2 2 3

n 1 n
3 2 1

A X uX , B qX pX D

C pX d,  D 2u X 2u X+

= + = − + +

= + = − +
 (28) 

 This generates the following Lax pair: 
 

ψx = -(X1 + uX2)ψ, 
ψt = -[2un -(2un+1 + q)X2 + pX3]ψ 

 
 Where: 
  

p = (un)x,q = px 

 
• Let us find another solution to (24) such that m, n 

and γ are arbitary. No assumptions whatever are 
made with regard to these parameters. Substituting 
D from (25) into the first Eq. 24 gives: 

 

 

m n
1 2 1 1 3 1 4

n 1
1 2 3 2 1 3

n 2
2 2 3 2 4

n
u X ,X u X , X ,X X ,X

m
n

u X , X ,X X X ,X
n 1

n
u X , X ,X u X ,X 0

n 1

+

+

      −γ + +      

       − +       + 

    + − =    +

 (29) 

 
 There is not much freedom in balancing powers of 

u in (29). To satisfy (29) if no assumptions are 
made with regard to m and n, we must require that: 

 
[X 1,X4] = 0, [X2,X4] = 0 

 
 To satisfy these brackets, this can be done in the 
following way. Let us take X4 = µX2 and X4 = κX1, 
from which it follows that X1 = λX2 and µ, κ and λ are 
real constants. Moreover, substituting these results into 
the definition of X3, it follows that X3 = 0. Using all of 
these results in (29), it follows that the remaining terms 
in (29) vanish. Hence (29) is satisfied identically and 
we have one solution. To summarize these results for 
the vector fields, we have: 
 
X1 = λX2, X2, X3 = 0, X4 = µX2 (30) 
 
 The prolongation structure reduces to the following 
set of vector fields: 
 

2

m
2 2

m
2

A ( u)X

n
B qX C q n µ X

m

n
C D u µ X , ,µ R

m

= λ +

 = + = − − γ + 
 

 = = −γ + λ ∈ 
 

 (31) 

 
 Consider X2 to be one of the generators of sl(2,R), 
so the solution (32) is based on a subalgebra. 
 It can be represented in matrix form as: 
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1 2 3

0 1 0 1 1 01 1 1
X ,X ,X

1 0 1 0 0 12 2 2

−     
= = =     − − −     

 (32) 

 
 To find the Maurer-Cartan algebra of GL(n,R) , we 

consider the left-invariant forms jiω  as elements of a 

matrix: 
 

( )j 1
i Y dY−ω − ω −  (33) 

 
where, Y is the natural embedding of the group into 

2nR . Then Y−1dY is the Maurer-Cartan form. The 
Maurer-Cartan algebra can be written as: 
 
d 0ω + ω ∧ ω =  (34) 
 
 In this case we take 

{ }SL(2,R) X GL(2,R)det(X) 1= ∈ = . The exponential 

map can be used to obtain the Maurer-Cartan algebra. 
To obtain a form for (34) that is more convenient, 
weintroduce the ωi by: 
 

1 2 1 3 2
1 1
1 1 3 2 1
2 1

1

2

   ω ω ω ω − ω
ω = =   

ω −ω −ω − ω −ω  
 (35) 

 
 Substituting (35) into (34), it follows that the ωi 
satisfy the Maurer-Cartan relations: 
 
dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, dω3 = ω1 ∧ ω2 (36) 
 
 Using (32), we calculate A and B to be: 
 

m

m

0 u1
A ,

u 02

n
0 q u µ

1 mB
n2

q u µ 0
m

λ + 
=  −λ − 

 − − γ + 
 =
 + γ − 
 

 (37) 

 
and the cocycle is given by: 
 

m

m

0 u1

u 02

n
0 q u µ

1 mdx dt
n2

q u µ 0
m

λ + 
σ =  −λ − 

 − − γ + 
 +
 + γ − 
 

 (38) 

 
 If we let the Maurer-Cartan form have the structure 
(35), then the σi are found to be: 

1 2

3 m

0, 0,

1 1 n
( u)dx q u µ dt

2 2 m

σ = σ =

 σ = λ + − + γ − 
 

 (39) 

 
 System (39) satisfies the Maurer-Cartan algebra if 
and only if u satisfies (14 and 15). The group SL(2,R) 
can be written as a product: 
 
SL(2,R) BL(2,R) SO(2)

Y A B

= ⋅
= ⋅

  (40) 

 
 Hence the Maurer-Cartan form is: 
 
ω = B−1(A−1 dA) · B + B−1 dB (41) 
 
where, A and B are: 
 

a 0
cos xin

A , B1
sin cosb

a

  β β  = =    − β β   
 

 (42) 

 
 Introducing the forms: 
 

1 22
da, bda a db, 2

a
τ = τ = − ψ = β  (43) 

 
ω can be written as: 
 

1 1
3 2

22

cos sin
, d

sin cos

 ω ψ ψ  τ 
= ω = τ + ψ      − ψ ψ τω    

 

 
 From the function f: R2 ω 2f : R SL(2,R)→  with 
f*(ωi) = σi, it follows that: 
 

1 1
3 3

22

cos sin
, d

sin cos

 σ ψ − ψ  σ 
= σ = σ + ψ      ψ ψ σσ    

ɶ
ɶ

ɶ

 (44) 

 
 Solving (44) for d, we get: 
 

3 1 2d sin cosψ = σ − ψσ − ψσ  (45) 

 
 Putting (49) into (45), it follows that dψ is given 
by: 
 

m1 1 n
d ( u)dx q u µ dt

2 2 m
 ψ = λ + − + γ − 
 

  (46) 

 
 From (46), a Backlund transform can be extracted: 
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( )n m
x t xx

1 1 n
( u), u u µ

2 2 m
 ψ = λ + ψ = − + γ − 
 

 (47) 

 
 To obtain the equation in terms of which goes 
along with (47), solve the first equation in (47) for u 
and then substitute u into the second equation of (47). 
Upon doing this, we find that u = 2ψx−λ and: 
 

( )( ) ( )n m

t x x
xx

1 n
2 2 µ

2 m
 ψ = − ψ − λ + γ ψ − λ − 
 

 

 
CONCLUSION 

 
 It has been shown that by applying the general 
method of Estabrook and Wahlquist (1975a), the 
integrability of a generalized Korteweg-de Vries Eq. 14 
can be established. The prolongation structures that are 
produced can be used to give a type of Lax pair for the 
system. 
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