Journal of Mathematics and Statistics 6 (2): 116;2010
ISSN 1549-3644
© 2010 Science Publications

Prediction in Complex Dimension Using Kolmogorov’'sSet of Axioms
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Abstract: Problem statement: The five basic axioms of Kolmogorov define thelgability in the real
set of numbers and do not take into consideratienmaginary part which takes place in the complex
set of numbers, a problem that we are facing inynergineering systemépproach: Evaluate the
complex probabilities by considering supplementaw imaginary dimensions to the event occurring
in the “real” laboratory. The Kolmogorov's systerh axioms can be extended to encompass the
imaginary set of numbers and this by adding toathginal five axioms of Kolmogorov an additional
three axioms. Hence, any experiment can thus beugee in what is now the complex set C which is
the sum of the real set R with its correspondirg probability and the imaginary set M with its
corresponding imaginary probabilitiResults: Whatever the probability distribution of the rando
variable in R is, the corresponding probabilitytiie whole set C is always one, so the outcomeef th
random experiment in C can be predicted tot&lynclusion: The result indicated that, the chance and
luck in R is replaced now by total determinism in This is the consequence of the fact that the
probability in C is got by subtracting the chaoféctor from the degree of our knowledge of the
system.

Key words: Kolmogorov’'s axioms, random variable, probabilitgal set, imaginary set, complex set,
complex number, probability norm, degree of knowkedf the system, chaotic factor,
Bernoulli experiment, binomial distribution, Gawssior normal distribution, density
function, Young’'s modulus

INTRODUCTION (A) + Pop (B); Hence, we say that A and B are
disjoint; Otherwise, we haveR(A O B) = By (A)
Original Kolmogorov's set of axioms: The simplicity + Piob(B) = Pob (ANB)
of Kolmogorov’'s system of axioms may be surprising.
Let E be a collection of elements {EF,,...} called And we say also that, 8 (A n B) = Py (A) X P

elementary events and let F be a set of subseBs of (B|A) = R, (B) x P, (AB) which is the conditional
called random events. The five axioms for a fisé¢ E  probability. If both A and B are independent, tHg,

(Benton, 1966, Montgomery and George, 2003;A  B) = P, (A) x Py (B). An example of probability

Walpoleet al., 2002; Bell, 1992) are: would be the game of coin tossing. Lat denote the
. ] probability of getting head H and,Pdenote the
« Fisafield of sets probability of getting tail T. Then we have:

* F contains the set E
* A non-negative real numberpP(A), called the E={H,T}
probability of A, is assigned to each set A in F F ={® {H}{T}, {H, T}
* Prob (E) equal 1 Prob(q)) =0, l:?ob(E) = Pop ({H,T}) =1
« If A and B have no elements in common, the Poo({H}) = P, and R, ({T}) = P>
number assigned to their union igRAOB) = Ry, Poy({H}or {TH=P 1+ P,=1
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Prob({H} and {T}):O Where,?zixi:_l and%=—i '

And this according to the original Kolmogorov's  This is coherent with the axioms already defined
set of axioms. and especially axiom 8. Similarly, if we calculd®, |
ADDING THE IMAGINARY PART M for the event of getting Tail, we get:

— 2 H
Now, if we can add to this system of axioms an!Z = P&+ (Pm /if

imaginary part such that: =p,2+(q, /i)’ =p,2+ (1- p,)
+ Let P, =i (1-RP) be the probability of an associated =1+2p,(p,- 1=+ 2p (x p
event in M (the imaginary part) to the event Ain R
(the real part). It follows that, P P,/i = 1 where This implies that:
i = -1 (the imaginary number)
* We construct the complex number Z =PR,, = 1=|Z F+2p - px |23~ 2ip i@ p3¥ |Z°F 2iBr Py
P, +i(1-R) having a norm Zf=PR*+ (R, /if =Pr2+ (Pm, /if - 2iPs Pm= (PF Pm /)= P}

» Let Pc denote the probability of an event in the
universe C where C = R + M. We say that Pcisthe  This is also coherent with the axioms already
probability of an event A in R with its associated defined and especially axiom 8.

event in M such that:
P& = (P+ P /if=|Z}- 2iPP and is always equal ROLE OF THE IMAGINARY PART
tol

It is apparent from the set of axioms that the taldi

We can see that the system of axioms defined b@f an imaginary part to the real event makes the

consideration the set of imaginary probabiliiesoga  if We begin to see the universe as divided into pads,
Jaoude Abdo, 2004; 2005; 2007). one real and the other imaginary, understandind wil

follow directly. The event of tossing a coin and of

Example 1: Coin tossing (Bernoulli experiment):lf ~ 9getting a head occurs in R (in our real laboratoitg)
we return to the game of coin tossing, we defire th correspondent probability is,.POne may ask directly

probabilities as follows: what makes that we ignore the output of the expemtm
(e.g., tossing the coin). Why should we use the

Output R M probability concept and would not be able to deteem

Getting Head Pr=p, Pm=q =i(l-p,) surely the output? After reflection one may ansthet:

Getting Tail pr = Pm, = ¢ =i (1-p,) if we can know all the _forces acting upon the caimd
9 =P =G P2 determine them precisely at each instant, we can

Sum Zpi =1 Zqi =i calculate their resultant which will act upon thaing
‘ i according to the well known laws of dynamics and

. determine thus the output of the experiment:
If we calculate| z, f for the event of getting Head,

we get: > F=ma
|z, f= PP+ (P /if where:
. F = The force
=p’+(q, /i) =p’+ 1 py m = The mass
=1+2p(p-D=12 2p (+ p a = The acceleration
This implies that: Hence, taking into consideration the effect of all

hidden (i.e., unknown and undetermined) forces or

_ 5 A i 2 . variables, the experiment becomes deterministad,ith

1_|212F+2H (1' 9):_ 147- 2lp & p¥ |£F 2BrPy it becomes possible to know the output with a
=P+ (Pm /iy - 2iPr Pm= (B¢ Pm /f)= Pt probability equal to 1. This is plausible if we ster
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the simple experiments of dynamics like of a fglin Meaning of the last relation: According to an
apple or a rolling body experiments where the hidde experimenter tossing the coin in R, the game iarae
variables are totally known and determined and kvhic of luck: the experimenter doesn’'t know the output i
are: Gravitation, air resistance, friction and seice of the sense already explained. He will assign to each
the material. But when the hidden variables become@utcome a probability Pand say that the output is not
difficult to determine totally like in the examplef  deterministic. But in the universe C = R + M, an
lottery-where the ball has to be chosen mechayitgll observer will be able to predict the outcome of the
the machine in an urn of hundred moving bodies&!-w game since he takes into consideration the cotititbu
are not able in the latter case to determine pebcis of M, so we write:
which ball will be chosen since the number of ferce
acting on each ball are so numerous that the kitesna p¢&= (P+ P /if
study is very difficult indeed. Consequently, tlitian of
hidden variables on the coin or the ball makesé¢salt So in C, all the hidden variables are known aiisi th
what it is. Hence the complete knowledge of theaset 15545 10 a deterministic experiment executed iright
hidden variables makes the event deterministiet  gimensional universe (four real and four imaginary;
is, it will occur surely and thus thprobability \yhere three for space and one for time in R arebtfor
becomes  equal to one, (Boursin, 1986; Dacunhaspace and one for time in M) (Balibar, 1980; Greene
Castelle, 1996; Dahaet al., 1992; Ekeland, 1991, 5000: 2004; Hoffmanet al., 1975). Hence Pc is always
Gleick, 1997; Kuhn, 1970; Poincare, 1968; Prigegi equal to 1. In fact, the addition of new dimensitmsur
1997; Prigogine and Isabelle, 1992; Dahan and ét¢iff oyneriment resulted to the abolition of ignorancel a
1986). . ) ) non-determination. Consequently, the study of thass

Now, let M be the universe of the hidden variablesyf phenomena in C is of great usefulness since ibav
and let |Zf be the degree of our knowledge of this gple to predict with certainty the outcome of eipents
phenomenon. P is always and according to conducted. In fact, the study in R leads to non-
Kolmogorov’s axioms, the probability of an event. A predictability and uncertainty.
total ignorance of the set of variables in M makes: So instead of placing ourselves in R, we place

ourselves in C then study the phenomena, because in

. - ; - ; ; the contributions of M are taken into consideratoml

Pr = P (getting Head) = 1/2 anddp(getting Tail therefore a deterministic study of the phenomena
becomes possible. Conversely, by taking into
consideration the contribution of the hidden forees
place ourselves in C and by ignoring them we retstri
our study to non-deterministic phenomena in R
Conversely, a total knowledge of the set in R(Srinivasan and Mehata, 1988; Stewart, 1996; 2002;

makes: Ry (getting Head) = 1 and.P= P, (imaginary ~ Van Kampen, 2006; Weinberg, 1992).
part) = 0. Therefore, we hajg, f=1- (2x x (- 1 !
because the phenomenon is totally known, thattss, i

laws are determined; hence, our degree of our
knowledge of the system is 1 or 100%. It follows from the above definitions and axioms

Now, if we can tell for sure that an event wilvee  that:
occur i.e. like ‘getting nothing’ (the empty sei), the
game of Head and Tail, B accordingly = 0, that is the 2iRP, = 2ix Px ix (- P =
event will never occur in R.;Pwill be equal to i(1-P = 2°xPx(1-P)=-2P(* P¥ Ch
i(1-0) = i and |Z f=1- (2x O (= 0)= 1, because we
can tell that the event of getting nothing surelyl w 2iPP, will be called the chaotic factor in our
never occur thus our degree of knowledge of theesys experiment and is denoted by ‘Chf ‘. We will seeywh
is 1 or 100%. we have called this term the chaotic factor, irt:fac
It follows that we have always:/2<|Z° <1 since

1Z?=P?+ (P, /i} and0<P,P < 1. And in all cases we ° In case P= 1, that is in the case of a certain event,
the chaotic factor of the event of getting Head or

have:Pc = (P+ B /if=| ¥ - 2iPp= . getting Tail is equal to -& 1x (1-1) = 0.
118
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e In case P= 0, that is in the case of an impossible The second law of dynamics will enable us to

event: determine the exact position of the body aftemeett,
in condition that the sum of all the forces is ligta
Chf=-2x0x (1-0) = 0. known. Suppose that F=mg+ R+ F+ f, that is
« Incase P=1/2, Chf = -2x 1/2x (1-1/2) = -1/2 gravitation, reaction, the force of friction and an

unknown force f, are acting on the body. We notd th
We notice that -1/2<Chf<0 and hence, May be positive (with the motion) or negative (aghi
) , the motion). One can see that the chaotic factaiuis
Pc =[Z" - Chf. Then we can conclude that (Fig. 1): 5 t and when the Chf = 0 then the probability ttist
body will be in a calculated position at time eigual to
P¢ = Degree of our knowledge of the system-chaoticl. The study could easily lead to a probabilisticig of
factor = 1 therefore Pc = 1 the trajectory of the body when f is ignored andemwit
is a random variable (hence the Chf is differeoifr
This means that if we succeed to eliminate thezero). A good illustration of this is the study mdrfect
chaotic factor in an experiment, the output wilvays gases in thermodynamics, (Gleick, 1997; Stewart,
be with the probability = 1, (Gleick, 1997; Orluand  1996; 2002).
Herve, 2005; Ducrocq and Warusfel, 2004).
THE DEVELOPMENT OF TWO STATISTICAL
A moving body: If a set of forces is acting upon a body DISTRIBUTIONS
of mass m, the resultant law of dynamics would be:
We will develop below two statistical
> F=ma distributions which are the binomial distributionda
i the normal distribution to illustrate the use of
imaginary probabilities. The binomial law is the

Where: following (Walpoleet al., 2002):
F = The force
m = The mass . P.op[event] = CXpt g
a = The acceleration
A7 o Nt (N
1z where,CN—k!(N_k)!—(kJ— nCi -

It is the probability to get an event k times frdNn
repeated experiments, like in the game of tossiogim
N times. This law is discrete by nature.

The continuous law that we will illustrate here is
the Gauss-Laplace distribution or the normal
distribution (Benton, 1966):

: Pr 1 -x
H . dF=p(x,t).dx= exp— | .
: : > PO ot ‘E4Dt]
| i Where:
E : P, p(x,t) = The density function of diffusion
0 i 1/2 i % D = The diffusion factor
! ' ' X = The displacement of the particle
: : t = The time of displacement
i i X = 0 = mean value of x
-12r T - ! 0=+/2Dt = The standard deviation

This density function has been taken from
_ . _ thermodynamics and statistical mechanics and ihas
Fig.1: The graphs of [Zand Chf in function of P normal law of Karl Friedrich Gauss and Pierre Sirden
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Laplace. This density function is the continuousrfaf This is coherent with the axioms that we have
the discrete binomial theory that we have mentioned  already defined.
All our study is to compute probabilities. The new
idea is to add new dimensions to our experimenttiaisd Second distribution: The Gaussian distribution: To
will make the work deterministic. In fact, the patliity = find the probability of an event following the noaim
theory is a non-deterministic theory by nature;t thadistribution, we use the density function. We sidoul
means that the outcome of the events is due ta lack
adding new dimensions to the event, we make thé wor1aVe Zk:pk
deterministic and hence the game of tossing awdin 0 jntegration over the whole domain equal tcké In
have a certain outcome in the complex set Cdt ggeat ;g way (Benton, 1966; Chetal., 1997):
importance that the game of luck becomes totally
predictable since we will be totally knowledgealte .. +
].dx:
x4/41Dt =1

=1, or in continuous form we should have

o v 2
predict the outcome of statistical events that pdou J' dF= p(x,t).dx=.[;ex;{_x
nature like in thermodynamics. Therefore the wdrktt = o 4TDt 4Dt
should be done is to add the contributions of Mtha 1 *¢ —x2 1
make the event in C = R + M deterministic. If tids /3 5 .[ex 4Dtde: Jarot
found to be fruitful, then a new theory in statati -

sciences will be elaborated and this to understand

deterministically those phenomena that used to be Now, the probability .OT finding the particle ineth
random phenomena in R. Interval between-« and L is:

First distribution: The Binomial distribution: JL- 1 ox -x
Getting Head k times from N trials (Montgomery and ! \/4rpDt 4Dt
George, 2003):

dx= Ry, [x< L]=Pr=p

and the associated probability in M is:

R M
Pr=p=CGpgd* Pm =i(l- Pp)=il-p) . . g 2
. . Pm =i~ Pr)= iR, > L= |!m 'ex{4DJ >
ummation: = i.Pgp[to find the particle in the interval L anek]
N N N
DPL=>p=> g4 = (pr qf=1=" Now, if we compute the norm of the complex
k=0 k=0 k=0 numberz, =Py + Pm we get:
and )
|Z.[ =Pr*+ (Pm /if=p°+ (- p f=
N N N N 1+2p (R -1)=+ 2p
dPm =Y i@-Pr)= D (1 PJF(Zl—Z Ff(rJ= R(R-1 e p)
k=0 k=0 k=0 k=0 k=0
i.[(N +1) -1] =iN This implies that:

If we compute the norm of the complex number

1=|z|"+2p @-p )= Z["- 2f p .&
Z, =Pr+Pm, we get: 20+ 28 0= R )= 2 p.EpF

|z, [ -2ip i@-p )=|Z[*- 2iPr Pm=
|Z,[? =Pr2+ (Pm /if = g2+ (- R*F Pr?+ (Pm /if - 2iPr Pm=
1+2p,(R-1)=1+ 2p (t p) (Pr+Pm /if=Pg?’= Pc= 1
This implies that: L s
where, Z =Pr+Pm = _[p (x,1).dx+ |:|' p (x,1).dx
o L
1=|z)*+2p, - R )=| |- 2iR iE p F
|z,|*-2i.Py Pm = RF+ (Pm /H- 2i.pr Ppr
(Pr+Pm /if = Pg= Pg= 1 We deduce from the above that:
120

L +oo
written for shortz, :J +ij :
—00 L



J. Math. & Stat., 6 (2): 116-124, 2010

o )2 We can compute from the statistical tables that:

L
= (Pr+ Pm /=] [ +— P.p[28000 Ksi<E< 29000 Ksi] = 0.3332,
L Prop [-0<E<29000 Ksi] = 0.3520 and,3 [29000 Ksi
<E<+o] = 0.6480

[f +| ]{J J =r'=1 As well By, [E < 0]= 0

-t We can see thatrJE[ a< E<b] = o(u,)-d(u,),

This is also coherent with the axioms already b-E a—E

defined. where u, = andu, = ot
. . E E
Now the chaotic factor is: If a = 28000 and b = 29000, then the probability =
oo 29000~ 2957 28000 295
0] - 0.3332
Chf, = 2i.Py Pm_zxj xxj ( 1507 j ( 1507 j
" - Note that:

2% X =-2x x| 1-

Ief =] (o] |

Uy 2
®(uy) = J'\/;_nex;{;] du= B [’ y
One can directly see thathf = 0 if L - —wor -
L - +wo, that means that we will not find the particle in
no place or we will find always the particle somewer  Where,u=

. . (o}
respectively. Finally, we say that: E .
In the real domaln R we have:

E-E

1 T Tl

Pc?=|Z| - 2i.Pr Pm=Degree of our knowledge- dF=f.(u).du=—=— ex dt and[dF=[—=—

“l2f ! = e =] T

Chaotic factor = 1
, _ o] i [ ep-J E i
where, |Z,| is the norm ofz, that combines here both I 2o, o,
the contributions of R and M; hence, we can ndtied
Z, is a complex number. It is the chaotic factor thatNow:
makes the study of an event in R a random process.
Hence, any event in C is deterministic. This is theP [-» <E< 29000F Py=
advantage of working in C. 2000 4 E- 2957
icati Jerasor | 2l w07 ) |

Example: Application to Young's modulus (Khaled, o Vel
2002) Let E be the Young's modulus in a material =0.3520
domain as it is shown in the Fig. 2 and we assurae t _ o _ _
it follows a Gaussian distribution. L& be the mean The corresponding probability in the imaginary

value of E and is taken to be equal to 29575 Ket. L domain M is:
o. be the standard deviation of E and is equal to7150

Ksi. Let the coefficient of variaton be P =iA-Pg)= iR, [E> 29000F
0. _ 1507 L 1 1( E- 2957'?
cv=—= 00.051. i exp ——| —— dE=
E 29575 2Q[X]O\/znlsm P72 1507
i x0.6480

If we compute the norm of the complex number
Z,=Pr+ Pm, we have:

|Z,|* = Pr2+ (Pmy 1if = Pg*+ (& Pyj=
Fig. 2: The Young’s modulus E in a material domain 1+ 2Pg (Pg- 1 ¥ 2Rr (& Rr);
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This implies that:

1=|z,[ +2Pg - Py )| 4"~ 23 .Pyr (& Rr3
|z, - 2i.Py .Pm= Pf+ (Prg /- 2iRr .Pgr
P+ Pm, /if = P¢= Pg= 1

We note that:

Z,=Pr+ Pm =

Ey +00
jfE(u)du+ ij f.(u)du= 0.3520+ 10.648
L. c

where E, = 29000.
We have also:

Eq +00

[ +]

2
oo Eo ]

And the chaotic factor is:

Pg? = (Pg+ Pm /iﬁz[

+00

!

E
Chf, = 2i.Py Pm= 2k [ x K

—o0

E &
=—xf x| ¥
E, - -« hencePr, =0

or .
E, - +o hencePr, =1

Therefore, we say that:

where, Chf, =0 if

Pc? =|z|* - 2i.Py Prg=Degree of our knowledge-
Chaotic factor = 1. And ifchf, =0= | Z =1, in other

words, if the chaotic factor is zero, then the éegof
our knowledge is 1 or 100%

Numerically, we write:

| Z, = (0.3520} + (0.648G)=
0.123904+ 0.419904 0.543868

|Z, | 0.737433> Chf# 0, Notice tha%s L 2<]

Hence:

Chf, =0.543808 E

-0.456192, Notice that—%s Cphk

122

. 116-124, 2010

£=(E)

v

A J

Fig. 3: The graphs ot(E) and Chf in function of E

Consequently, we can say that: The degree of our
knowledge |g°= 0.543808 and the chaotic factor
Chfy = -0.456192.What is interesting here is thus we
have quantified both the degree of our knowledgg an
the chaotic factor of the event.

Notice that:

The degree of our knowledge 0.543808—  0.456192
- the chaotic factor 0.543808 0.456192=1

Conversely, if we assume that:
Chfy=0= |Z, f= 1= Pf{+ (Prg /ij)=
Pr=0

or =
1

E0_>—oo

or

E — t«

=2Py(1- Py )= 0=

P

1 — 1
Chf,=—-== E,=E and ==
=75 0 [Z1 >

If E,increases to become30,000 then both| z, f
and Chf, increase.
Therefore:

lim (Chf;)=0 and where

Ep - +o0

im ( 12) =1

Eg - +oo
Pg2=|Z|" - Chf = 1, for every E, in the real set R
(Fig. 3 and 4).

NUMERICAL SIMULATIONS

We have used the programming language C++ to
simulate the two Bernoulli and Binomial discrete
probability distributions. Table 1 shows the sintiga
of the Bernoulli distribution and Table 2 shows the
simulation of the Binomial distribution.
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Table 1: Simulation of the Bernoulli distributioRandom draw of f{p, = 1- p)

P P2 >pr % > Pm lzf Chfy P
Simulation #1 0.402 0.598 1 0.598i 0.402i i 0.519  0.481 1
Simulation #2 0.250 0.750 1 0.750i 0.250i [ 0.625  0.375 1
Simulation #3 0.327 0.673 1 0.673i 0.327i [ 0.560  0.440 1
Simulation #4 0.269 0.731 1 0.731i 0.269i [ 0.607  0.393 1
Simulation #5 0.312 0.688 1 0.688i 0.312i [ 0.570  0.43 1
Simulation #6 0.906 0.094 1 0.094i 0.906i [ 0.829 0.171 1
Simulation #7 0.463 0.537 1 0.537i 0.463i [ 0.503  0.497 1
Table 2: Simulation of the Binomial distributionofsider N = 10 and k = 3
N N
Py o Pr Pm > Py, > Pm, [ Chf Pa
k=0 k=0
Simulation #1 0.608 0.392 0.038 0.962i 1 10i 0.9270 -0.073 1
Simulation #2 0.553 0.447 0.072 0.928i 1 10i 0.8660 -0.134 1
Simulation #3 0.012 0.988 0.0002 0.9998i 1 10 99  -0.0005 1
Simulation #4 0.319 0.681 0.265 0.735i 1 10i 0.6110 -0.389 1
Simulation #5 0.157 0.843 0.141 0.859i 1 10i 0.7580 -0.242 1
Simulation #6 0.442 0.558 0.175 0.825i 1 10i 0.7120 -0.288 1
Simulation #7 0.461 0.539 0.155 0.845i 1 10i 0.7370 -0.263 1
Y onf order to have a certain prediction of any evenisit
necessary to work in the complex universe C in twhic
0 1/2 1 72 the chaotic factor is quantified and subtractednfrie
, > degree of knowledge to lead to a probability inqQa to
i one. Thus, the study in the complex universe resnlt
i replacing the phenomena that used to be randombiyn R
I . . . . .
! deterministic and totally predictable ones in C. dn
-1/2 '

Fig. 4: Graph of the linear functidd® - Chf =1

future work, we will more develop the concept of
complex probabilities and this by determining the
characteristics (expectation, variance, and standar
deviation) of what we called the complex random
vectors. Moreover, we will prove using this key qex

In the simulations, the values of gre taken from the concept the very well known law of large numbers.

computer system by using the C++ predefined functio
rand( ) which is a pseudorandom number generator

(Deitel and Deitel, 2003). The other values likgpa,
are deduced from;pHence, Monte Carlo simulation Abou Jaoude Abdo, M., 2004. Numerical methods and

method proves numerically what has been found above
theoretically (Cheney and Kincaid, 2004; Gentle dam
2003; Gerald and Wheatley, 2000; Liu, 2001; Muller,

2005; Robert and George, 2004).

CONCLUSION
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