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Abstract: Problem statement: The five basic axioms of Kolmogorov define the probability in the real 
set of numbers and do not take into consideration the imaginary part which takes place in the complex 
set of numbers, a problem that we are facing in many engineering systems. Approach: Evaluate the 
complex probabilities by considering supplementary new imaginary dimensions to the event occurring 
in the “real” laboratory. The Kolmogorov’s system of axioms can be extended to encompass the 
imaginary set of numbers and this by adding to the original five axioms of Kolmogorov an additional 
three axioms. Hence, any experiment can thus be executed in what is now the complex set C which is 
the sum of the real set R with its corresponding real probability and the imaginary set M with its 
corresponding imaginary probability. Results: Whatever the probability distribution of the random 
variable in R is, the corresponding probability in the whole set C is always one, so the outcome of the 
random experiment in C can be predicted totally. Conclusion: The result indicated that, the chance and 
luck in R is replaced now by total determinism in C. This is the consequence of the fact that the 
probability in C is got by subtracting the chaotic factor from the degree of our knowledge of the 
system. 
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INTRODUCTION 

 
Original Kolmogorov’s set of axioms: The simplicity 
of Kolmogorov’s system of axioms may be surprising. 
Let E be a collection of elements {E1, E2,…} called 
elementary events and let F be a set of subsets of E 
called random events. The five axioms for a finite set E 
(Benton, 1966; Montgomery and George, 2003; 
Walpole et al., 2002; Bell, 1992) are: 
 
• F is a field of sets 
• F contains the set E 
• A non-negative real number Prob (A), called the 

probability of A, is assigned to each set A in F 
• Prob (E) equal 1 
• If A and B have no elements in common, the 

number assigned to their union is Prob (A∪B) = Prob 

(A) + Prob (B); Hence, we say that A and B are 
disjoint; Otherwise, we have Prob (A ∪ B) = Prob (A) 
+ Prob (B) – Prob (A∩B) 

 
 And we say also that Prob (A ∩ B) = Prob (A) × Prob 

(B|A) = Prob (B) × Prob (A|B) which is the conditional 
probability. If both A and B are independent, then Prob 

(A ∩ B) = Prob (A) × Prob (B). An example of probability 
would be the game of coin tossing. Let P1 denote the 
probability of getting head H and P2 denote the 
probability of getting tail T. Then we have: 
 
E = {H,T}  
F = T}}{H,{T},H},{,{Φ    

Prob( Φ) = 0, Prob (E) = Prob ({H,T}) = 1 
Prob ({H}) = P 1 and Prob ({T}) = P 2 
Prob ({H} or {T}) = P 1 + P2 = 1 
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Prob ({H} and {T}) = 0 
 
 And this according to the original Kolmogorov’s 
set of axioms. 
 

ADDING THE IMAGINARY PART M 
 

 Now, if we can add to this system of axioms an 
imaginary part such that: 
 
• Let Pm = i (1-Pr) be the probability of an associated 

event in M (the imaginary part) to the event A in R 
(the real part). It   follows that Pr + Pm/i = 1 where 
i2 = -1 (the imaginary number) 

• We  construct  the complex number Z = Pr + Pm = 
Pr + i(1-Pr) having a norm 2 2 2

r m| Z | P (P / i)= +  

• Let Pc denote the probability of an event in the 
universe C where C = R + M. We say that Pc is the 
probability of an event A in R with its associated 
event in M such that: 

2 2 2
r m r mPc (P P / i) | Z | 2iP P= + = −  and is always equal 

to 1 
 
 We can see that the system of axioms defined by 
Kolmogorov could be hence expanded to take into 
consideration the set of imaginary probabilities (Abou 
Jaoude Abdo, 2004; 2005; 2007). 
 
Example 1: Coin tossing (Bernoulli experiment): If 
we return to the game of coin tossing, we define the 
probabilities as follows: 
 
Output R M 
Getting Head 1 1Pr p=  1 1Pm q=  = i (1– 1p ) 

Getting Tail 2 2Pr p=  2 2Pm q=  = i (1– 2p ) 

Sum i
i

p 1=∑  i
i

q i=∑  

 
 If we calculate 2

1| Z |  for the event of getting Head, 

we get:  
 

2 2 2
1 1 1

2 2 2 2
1 1 1 1

1 1 1 1

| Z | Pr (Pm / i)

p (q / i) p (1 p )

1 2p (p 1) 1 2p (1 p )

= +

= + = + −
= + − = − −

 

 
 This implies that: 
 

2 2 2
1 1 1 1 1 1 1 1 1

2 2 2 2
1 1 1 1 1 1 1

1 | Z | 2p (1 p ) | Z | 2.i.p .i(1 p ) | Z | 2iPr Pm

Pr (Pm / i) 2iPr Pm (Pr Pm / i) Pc

= + − = − − = −

= + − = + =
 

where, i2 = i × i = -1  and 
1

i
i

= − . 

 This is coherent with the axioms already defined 
and especially axiom 8. Similarly, if we calculate 2

2 |Z|  

for the event of getting Tail, we get: 
 

2 2 2
2 2 2

2 2 2 2
2 2 2 2

2 2 2 2

| Z | Pr (Pm / i)

p (q / i) p (1 p )

1 2p (p 1) 1 2p (1 p )

= +

= + = + −

= + − = − −

 

 
 This implies that: 
 

2 2 2
2 2 2 2 2 2 2 2 2

2 2 2 2
2 2 2 2 2 2 2

1 | Z | 2p (1 p ) | Z | 2.i.p .i(1 p ) | Z | 2iPr Pm

Pr (Pm / i) 2iPr Pm (Pr Pm / i) Pc

= + − = − − = −

= + − = + =
 

 
 This is also coherent with the axioms already 
defined and especially axiom 8. 
 

ROLE OF THE IMAGINARY PART 
 

 It is apparent from the set of axioms that the addition 
of an imaginary part to the real event makes the 
probability of the event in C always equal to 1. In fact, 
if we begin to see the universe as divided into two parts, 
one real and the other imaginary, understanding will 
follow directly. The event of tossing a coin and of 
getting a head occurs in R (in our real laboratory), its 
correspondent probability is Pr. One may ask directly 
what makes that we ignore the output of the experiment 
(e.g., tossing the coin). Why should we use the 
probability concept and would not be able to determine 
surely the output? After reflection one may answer that: 
if we can know all the forces acting upon the coin and 
determine them precisely at each instant, we can 
calculate their resultant which will act upon the coin, 
according to the well known laws of dynamics and 
determine thus the output of the experiment: 
 

i
i

F ma=∑  

where: 
F = The force 
m = The mass  
a = The acceleration 
 
 Hence, taking into consideration the effect of all 
hidden (i.e., unknown and undetermined) forces or 
variables, the experiment becomes deterministic, that is, 
it becomes possible to know the output with a 
probability equal to 1. This is plausible if we consider 
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the simple experiments of dynamics like of a falling 
apple or a rolling body experiments where the hidden 
variables are totally known and determined and which 
are: Gravitation, air resistance, friction and resistance of 
the material. But when the hidden variables become 
difficult to determine totally like in the example of 
lottery-where the ball has to be chosen mechanically by 
the machine in an urn of hundred moving bodies!!!-we 
are not able in the latter case to determine precisely 
which ball will be chosen since the number of forces 
acting on each ball are so numerous that the kinematics 
study is very difficult indeed. Consequently, the action of 
hidden variables on the coin or the ball makes the result 
what it is. Hence the complete knowledge of the set of 
hidden   variables   makes the event deterministic; That 
is,   it   will   occur   surely   and thus   the   probability 
becomes   equal to one, (Boursin, 1986; Dacunha-
Castelle, 1996; Dahan et al., 1992; Ekeland, 1991; 
Gleick, 1997; Kuhn, 1970; Poincare,   1968; Prigogine, 
1997; Prigogine and Isabelle, 1992; Dahan and Peiffer, 
1986). 
 Now, let M be the universe of the hidden variables 
and let 2| Z | be the degree of our knowledge of this 
phenomenon. Pr is always and according to 
Kolmogorov’s axioms, the probability of an event. A 
total ignorance of the set of variables in M makes: 

  
• Pr = Prob (getting Head) = 1/2 and Prob (getting Tail) 

= 1/2 (if they are equiprobable) 
• 2

1| Z |  in this case is equal to 

1 11 2p (1 p ) 1 (2 1/ 2) (1 1 / 2) 1 / 2− − = − × × − =  

 
 Conversely, a total knowledge of the set in R 
makes: Prob (getting Head) = 1 and Pm = Prob (imaginary 
part) = 0. Therefore, we have 2

1| Z | 1 (2 1) (1 1) 1= − × × − =  

because the phenomenon is totally known, that is, its 
laws are determined; hence, our degree of our 
knowledge of the system is 1 or 100%. 
 Now, if we can tell for sure that an event will never 
occur i.e. like ‘getting nothing’ (the empty set), in the 
game of Head and Tail, Pr is accordingly = 0, that is the 
event will never occur in R. Pm will be equal to i(1-Pr) = 
i(1-0) = i and 2

1| Z | 1 (2 0) (1 0)= − × × − = 1, because we 

can tell that the event of getting nothing surely will 
never occur thus our degree of knowledge of the system 
is 1 or 100%. 

 It follows that we have always: 2
1 / 2 Z 1≤ ≤

 
since 

2 2 2
r mZ P (P / i)= +  and r m0 P ,P 1≤ ≤ . And in all cases we 

have: 22 2
r m r mPc (P P / i) Z 2iP P 1= + = − = . 

Meaning of the last relation: According to an 
experimenter tossing the coin in R, the game is a game 
of luck: the experimenter doesn’t know the output in 
the sense already explained. He will assign to each 
outcome a probability Pr and say that the output is not 
deterministic. But in the universe C = R + M, an 
observer will be able to predict the outcome of the 
game since he takes into consideration the contribution 
of M, so we write: 
 

2 2
r mPc (P P / i)= +  

 
 So in C, all the hidden variables are known and this 
leads to a deterministic experiment executed in an eight 
dimensional universe (four real and four imaginary; 
where three for space and one for time in R and three for 
space and one for time in M) (Balibar, 1980; Greene, 
2000; 2004; Hoffmann et al., 1975). Hence Pc is always 
equal to 1. In fact, the addition of new dimensions to our 
experiment resulted to the abolition of ignorance and 
non-determination. Consequently, the study of this class 
of phenomena in C is of great usefulness since we will be 
able to predict with certainty the outcome of experiments 
conducted. In fact, the study in R leads to non-
predictability and uncertainty.  
 So instead of placing ourselves in R, we place 
ourselves in C then study the phenomena, because in C 
the contributions of M are taken into consideration and 
therefore a deterministic study of the phenomena 
becomes possible. Conversely, by taking into 
consideration the contribution of the hidden forces we 
place ourselves in C and by ignoring them we restrict 
our study to non-deterministic phenomena in R 
(Srinivasan and Mehata, 1988; Stewart, 1996; 2002; 
Van Kampen, 2006; Weinberg, 1992). 
 

THE CHAOTIC FACTOR CHF 
 
 It follows from the above definitions and axioms 
that: 
 

r m r r2iP P 2i P i (1 P )= × × × − = 
2

r r r r2i P (1 P ) 2P (1 P ) Chf× × − = − − =  
 

r m2iP P  will be called the chaotic factor in our 

experiment and is denoted by ‘Chf ‘. We will see why 
we have called this term the chaotic factor, in fact: 
 
• In case Pr = 1, that is in the case of a certain event, 

the chaotic factor of the event of getting Head or 
getting Tail is equal to -2 × 1× (1-1) = 0. 
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• In case Pr = 0, that is in the case of an impossible 
event:  
 
Chf = -2× 0×  (1-0) = 0. 
 

• In case Pr = 1/2, Chf = -2 × 1/2 × (1-1/2) = -1/2 
 
 We notice that 1/ 2 Chf 0− ≤ ≤  and hence, 

22Pc Z Chf= − . Then we can conclude that (Fig. 1):  

 
Pc2 = Degree of our knowledge of the system-chaotic 

factor = 1 therefore Pc = 1 
 
 This means that if we succeed to eliminate the 
chaotic factor in an experiment, the output will always 
be with the probability = 1, (Gleick, 1997; Orluc   and    
Herve, 2005; Ducrocq and Warusfel, 2004). 
 
A moving body: If a set of forces is acting upon a body 
of mass m, the resultant law of dynamics would be: 
 

i
i

F ma=∑  

 
Where: 
F = The force 
m = The mass  
a = The acceleration  
 

 
 
Fig.1: The graphs of |Z|2 and Chf in function of Pr 

 The second law of dynamics will enable us to 
determine the exact position of the body after a time t, 
in condition that the sum of all the forces is totally 
known. Suppose that: i

i

F mg R F f= + + +∑ , that is 

gravitation, reaction, the force of friction and an 
unknown force f, are acting on the body. We note that f, 
may be positive (with the motion) or negative (against 
the motion). One can see that the chaotic factor is due 
to f and when the Chf = 0 then the probability that the 
body will be in a calculated position at time t is equal to 
1. The study could easily lead to a probabilistic study of 
the trajectory of the body when f is ignored and when it 
is a random variable (hence the Chf is different from 
zero). A good illustration of this is the study of perfect 
gases in thermodynamics, (Gleick, 1997; Stewart, 
1996; 2002). 
 
THE DEVELOPMENT OF TWO STATISTICAL 

DISTRIBUTIONS 
 
 We will develop below two statistical 
distributions which are the binomial distribution and 
the normal distribution to illustrate the use of 
imaginary probabilities. The binomial law is the 
following (Walpole et al., 2002): 
 
Prob [event] = K k N k

NC p q −  

 

where, k
N N k

NN!
C C

kk!(N k)!

 
= = = −  

. 

 It is the probability to get an event k times from N 
repeated experiments, like in the game of tossing a coin 
N times. This law is discrete by nature. 
 The continuous law that we will illustrate here is 
the Gauss-Laplace distribution or the normal 
distribution (Benton, 1966): 
 

21 x
dF (x, t).dx .exp .dx

4Dt4 Dt

 −= ρ =  
π  

 

 
Where: 

(x, t)ρ  = The density function of diffusion 
D = The diffusion factor 
x = The displacement of the particle 
t  = The time of displacement 
x  = 0 = mean value of x 

2Dtσ =  = The standard deviation 
 
 This density function has been taken from 
thermodynamics and statistical mechanics and it is the 
normal law of Karl Friedrich Gauss and Pierre Simon de 
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Laplace. This density function is the continuous form of 
the discrete binomial theory that we have mentioned. 
 All our study is to compute probabilities. The new 
idea is to add new dimensions to our experiment and this 
will make the work deterministic. In fact, the probability 
theory is a non-deterministic theory by nature; that 
means that the outcome of the events is due to luck. In 
adding new dimensions to the event, we make the work 
deterministic and hence the game of tossing a coin will 
have a certain outcome in the complex set C. It is of great 
importance that the game of luck becomes totally 
predictable since we will be totally knowledgeable to 
predict the outcome of statistical events that occur in 
nature like in thermodynamics. Therefore the work that 
should be done is to add the contributions of M that 
make the event in C = R + M deterministic. If this is 
found to be fruitful, then a new theory in statistical 
sciences will be elaborated and this to understand 
deterministically those phenomena that used to be 
random phenomena in R. 
 
First distribution: The Binomial distribution:  
Getting Head k times from N trials (Montgomery and 
George, 2003): 
 
 R M 

k k N k
k k NPr p C p q −= =   k k kPm i(1 Pr ) i(1 p )= − = −  

 
Summation: 
 

N N N
k k N k N N

k k N
k 0 k 0 k 0

Pr p C p q (p q) 1 1−

= = =

= = = + = =∑ ∑ ∑  

 
and  
 

N N N N N

k k k k
k 0 k 0 k 0 k 0 k 0

Pm i.(1 Pr ) i (1 Pr ) i 1 Pr

i.[(N 1) 1] iN
= = = = =

 = − = − = − = 
 

+ − =

∑ ∑ ∑ ∑ ∑  

 
 If we compute the norm of the complex number  

kkk PmPrZ += we get: 

 
2 2 2 2 2

k k k k k

k k k k

Z Pr (Pm / i) p (1 p )

1 2p (p 1) 1 2p (1 p )

= + = + − =
+ − = − −

 

  
 This implies that: 
 

2 2

k k k k k k

2 2 2
k k k k k k k

2 2
k k k k

1 Z 2p (1 p ) Z 2.i.p .i.(1 p )

Z 2.i.Pr .Pm Pr (Pm / i) 2.i.Pr .Pm

(Pr Pm / i) Pc Pc 1

= + − = − − =

− = + − =

+ = ⇒ =

 

 This is coherent with the axioms that we have 
already defined. 
 
Second distribution: The Gaussian distribution: To 
find the probability of an event following the normal 
distribution, we use the density function. We should 

have k
k

p 1=∑ , or in continuous form we should have 

the integration over the whole domain equal to 1 like in 
this way (Benton, 1966; Chen et al., 1997): 
 

1Dt4
Dt4

1
dx.

Dt4

x
exp

Dt4

1

dx.
Dt4

x
exp

Dt4

1
t).dxx,(dF

2

2

=π×
π

=






 −
π

=






 −
π

=ρ=

∫

∫ ∫∫
∞+

∞−

+∞

∞−

+∞

∞−

+∞

∞−  

 
 Now, the probability of finding the particle in the 
interval between −∞ and L is: 
 

L 2

rob L L

1 x
exp .dx P [x L] Pr p ;

4Dt4 Dt−∞

 − = ≤ = = 
π  

∫  

 
and the associated probability in M is: 
 

2

L L rob

L

1 x
Pm i.(1 Pr ) i.P [x L] i. .exp .dx

4Dt4 Dt

+∞  −= − = > =  
π  

∫  

 = i.Prob [to find the particle in the interval L and ]+∞  
 
 Now, if we compute the norm of the complex 
number L L LZ Pr Pm= +  we get: 

 
2 2 2 2 2

L L L L L

L L L L

Z Pr (Pm / i) p (1 p )

1 2p (p 1) 1 2p (1 p )

= + = + − =
+ − = − −

 

 
 This implies that: 
 

2 2 2
L L L L L L

2 2

L L L L L L

2 2
L L L L

2 2
L L L L

1 Z 2p (1 p ) Z 2.i .p .(1 p )

Z 2.i.p .i.(1 p ) Z 2.i.Pr .Pm

Pr (Pm / i) 2.i.Pr .Pm

(Pr Pm / i) Pc Pc 1

= + − = − − =

− − = − =

+ − =

+ = ⇒ =

 

 

where, 
L

L L L

L

Z Pr Pm (x, t).dx i. (x, t).dx;
+∞

−∞

= + = ρ + ρ∫ ∫  

written for short ∫∫
+∞

∞−

+=
L

L

L iZ . 

 We deduce from the above that: 
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2

L
2 2 L

L L L

2L
2

L

i.

Pc (Pr Pm / i)
i

1 1

+∞

−∞

+∞ +∞

−∞ −∞

 
 
 = + = + =
 
  
 

   
+ = = =      

   

∫
∫

∫ ∫ ∫

 

 
 This is also coherent with the axioms already 
defined. 
 Now the chaotic factor is: 
 

L

L L L

L

L L L

L

Chf 2.i.Pr .Pm 2.i i

2 2 1

+∞

−∞

+∞

−∞ −∞ −∞

= = × × × =

 
− × × = − × × −  

 

∫ ∫

∫ ∫ ∫ ∫

 

  
 One can directly see that LChf  = 0 if L → −∞ or 

L → +∞ , that means that we will not find the particle in 
no place or we will find always the particle somewhere 
respectively. Finally, we say that: 
 

22
L L L LPc Z 2.i.Pr .Pm= − = Degree of our knowledge-

Chaotic factor = 1 
 

where, LZ is the norm of LZ  that combines here both 

the contributions of  R and M; hence, we can notice that 

LZ  is a complex number. It is the chaotic factor that 

makes the study of an event in R a random process. 
Hence, any event in C is deterministic. This is the 
advantage of working in C. 
 
Example: Application to Young’s modulus (Khaled, 
2002): Let E be the Young’s modulus in a material 
domain as it is shown in the Fig. 2 and we assume that 
it follows a Gaussian distribution. Let E  be the mean 
value of E and is taken to be equal to 29575 Ksi. Let 

Eσ  be the standard deviation of E and is equal to 1507 

Ksi. Let the coefficient of variation be 

E 1507
c.v 0.051

E 29575

σ= = ≅ . 

 

 
 
Fig. 2: The Young’s modulus E in a material domain 

 We can compute from the statistical tables that: 
 
Prob [28000 Ksi ≤E≤ 29000 Ksi] = 0.3332,  
Prob [-∞<E≤29000 Ksi] = 0.3520 and Prob [29000 Ksi 
≤E<+∞] = 0.6480  
 

As well Prob [ E ≤  0] ≈ 0. 
 We can see that Prob[ a E b≤ ≤ ] = b a(u ) (u )Φ − Φ , 

where b
E

b E
u

−=
σ

 and a
E

a E
u

−=
σ

. 

 If a = 28000 and b = 29000, then the probability = 

 
29000 29575 28000 29575

0.3332
1507 1507

− −   Φ − Φ =   
   

  

 Note that: 
 

ou 2

0 rob 0

1 u
(u ) exp .du P [u u ]

22−∞

 −Φ = = ≤ 
π  

∫  

 

where, 
E

E E
u

−=
σ

.  

 In the real domain R we have: 
2

E

1 u
dF f (u).du exp .du

22

 −= =  
π  

 and
1

dF
2

+∞ +∞

−∞ −∞

=
π∫ ∫  

22

EE

u 1 1 E E
exp du exp dE 1

2 22

+∞

−∞

   − −
 = − =   σπσ      

∫ . 

 
Now: 
 

r ob 0

229000

P [ E 29000] Pr

1 1 E 29575
exp .dE

2 15072 .1507

0.3520

−∞

−∞ < ≤ = =

 − −  π    

=

∫  

 
 The corresponding probability in the imaginary 
domain M is: 
 

0 0 rob

2

29000

Pm i(1 Pr ) i.P [E 29000]

1 1 E 29575
i. exp .dE

2 15072 1507

i 0.6480

+∞

= − = > =

 − − =  π    

×

∫  

 
 If we compute the norm of the complex number 

0 0 0Z Pr Pm= +  we have: 

 
2 2 2 2 2

0 0 0 0 0

0 0 0 0

Z Pr (Pm / i) Pr (1 Pr )

1 2Pr (Pr 1) 1 2Pr (1 Pr );

= + = + − =
+ − = − −
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 This implies that: 

 
2 2 2

0 0 0 0 0 0

2 2 2
0 0 0 0 0 0 0

2 2
0 0 0 0

1 Z 2Pr (1 Pr ) Z 2.i .Pr .(1 Pr )

Z 2.i.Pr .Pm Pr (Pm / i) 2.i.Pr .Pm

(Pr Pm / i) Pc Pc 1

= + − = − − =

− = + − =

+ = ⇒ =

 

 
 We note that: 
 

0

0

0 0 0

E

E E

E

Z Pr Pm

f (u)du i f (u)du 0.3520 i 0.6480
+∞

−∞
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 Therefore, we say that: 
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0 0 0 0Pc Z 2.i.Pr .Pm= − = Degree of our knowledge-

Chaotic factor = 1. And if 2
0 0Chf 0 | Z | 1= ⇒ = , in other 

words, if the chaotic factor is zero, then the degree of 
our knowledge is 1 or 100% 
  
Numerically, we write: 
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Fig. 3: The graphs of fE(E) and Chf in function of E 
 
 Consequently, we can say that: The degree of our 
knowledge  |Z0|

2 =  0.543808  and the chaotic factor 
Chf0 = 0.456192− .What is interesting here is thus we 
have quantified both the degree of our knowledge and 
the chaotic factor of the event. 
 Notice that: 
 

 ( )
0

The degree of our knowledge 0.543808 – 0.456192

 the chaotic factor 0.543808 0.456192 1 Pc

= −
− = + = =

 

 
 Conversely, if we assume that: 
  

2 2 2
0 0 0 0Chf 0 | Z | 1 Pr (Pm / i) 1= ⇒ = ⇒ + =  
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0 0
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Pr 0 E
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2
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1 1
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2 2
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 If 0E increases to become30,000=  then both 2

0| Z |  

and 0Chf  increase. 

 Therefore: 
 

0

0
E

(Chf ) 0lim
→+∞

=  and ( )
0

2

0
E

Z 1lim
→+∞

=  where 

22
0 0 0Pc Z Chf 1,= − =  for every 0E  in the real set R 

(Fig. 3 and 4). 
 

NUMERICAL SIMULATIONS 
 
 We have used the programming language C++ to 
simulate the two Bernoulli and Binomial discrete 
probability distributions. Table 1 shows the simulation 
of the Bernoulli distribution and Table 2 shows the 
simulation of the Binomial distribution.
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Table 1: Simulation of the Bernoulli distribution: Random draw of p1 (p2 = 1- p1) 

 p1 p2 Pr∑  q1 q2 Pm∑  
2

1Z  Chf1  Pc1 

Simulation #1 0.402 0.598 1 0.598i 0.402i i 0.519 -0.481 1 
Simulation #2 0.250 0.750 1 0.750i 0.250i i 0.625 -0.375 1 
Simulation #3 0.327 0.673 1 0.673i 0.327i i 0.560 -0.440 1 
Simulation #4 0.269 0.731 1 0.731i 0.269i i 0.607 -0.393 1 
Simulation #5 0.312 0.688 1 0.688i 0.312i i 0.570 -0.43 1 
Simulation #6 0.906 0.094 1 0.094i 0.906i i 0.829 -0.171 1 
Simulation #7 0.463 0.537 1 0.537i 0.463i i 0.503 -0.497 1 

 
Table 2: Simulation of the Binomial distribution: Consider N = 10 and k = 3 

 p1 q1 Prk Pmk 
N

k
k 0

Pr
=
∑  

N

k
k 0

Pm
=
∑  

2

kZ  Chfk Pck 

Simulation #1 0.608 0.392 0.038 0.962i 1 10i 0.9270 -0.073 1 
Simulation #2 0.553 0.447 0.072 0.928i 1 10i 0.8660 -0.134 1 
Simulation #3 0.012 0.988 0.0002 0.9998i 1 10i 0.9995 -0.0005 1 
Simulation #4 0.319 0.681 0.265 0.735i 1 10i 0.6110 -0.389 1 
Simulation #5 0.157 0.843 0.141 0.859i 1 10i 0.7580 -0.242 1 
Simulation #6 0.442 0.558 0.175 0.825i 1 10i 0.7120 -0.288 1 
Simulation #7 0.461 0.539 0.155 0.845i 1 10i 0.7370 -0.263 1 

 

 
 

Fig. 4: Graph of the linear function 2
Z Chf 1− =  

 
In the simulations, the values of p1 are taken from the 
computer system by using the C++ predefined function 
rand( ) which is a pseudorandom number generator 
(Deitel and Deitel, 2003). The other values like p2,q1,q2 
are deduced from p1. Hence, Monte Carlo simulation 
method proves numerically what has been found above 
theoretically (Cheney and Kincaid, 2004; Gentle James, 
2003; Gerald and Wheatley, 2000; Liu, 2001; Muller, 
2005; Robert and George, 2004). 
 

CONCLUSION  
 
 The degree of our knowledge in the real universe R 
is unfortunately incomplete, hence the extension to the 
complex universe C that includes the contributions of 
both the real universe R and the imaginary universe M. 
Consequently, this will result in a complete and perfect 
degree of knowledge in C. This hypothesis is verified in 
this study by the mean of many examples encompassing 
both discrete and continuous domains. Moreover, we 
have proved a linear proportional relation between the 
degree of knowledge and the chaotic factor. In fact, in 

order to have a certain prediction of any event it is 
necessary to work in the complex universe C in which 
the chaotic factor is quantified and subtracted from the 
degree of knowledge to lead to a probability in C equal to 
one. Thus, the study in the complex universe results in 
replacing the phenomena that used to be random in R by 
deterministic and totally predictable ones in C. In a 
future work, we will more develop the concept of 
complex probabilities and this by determining the 
characteristics (expectation, variance, and standard 
deviation) of what we called the complex random 
vectors. Moreover, we will prove using this key complex 
concept the very well known law of large numbers. 
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