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Abstract: Problem statement: High leverage points are extreme outliers in the X-direction. In 
regression analysis, the detection of these leverage points becomes important due to their arbitrary 
large effects on the estimations as well as multicollinearity problems. Mahalanobis Distance (MD) has 
been used as a diagnostic tool for identification of outliers in multivariate analysis where it finds the 
distance between normal and abnormal groups of the data. Since the computation of MD relies on non-
robust classical estimations, the classical MD can hardly detect outliers accurately. As an alternative, 
Robust MD (RMD) methods such as Minimum Covariance Determinant (MCD) and Minimum 
Volume Ellipsoid (MVE) estimators had been used to identify the existence of high leverage points in 
the data set. However, these methods tended to swamp some low leverage points even though they can 
identify high leverage points correctly. Since, the detection of leverage points is one of the most 
important issues in regression analysis, it is imperative to introduce a novel detection method of high 
leverage points. Approach: In this study, we proposed a relatively new two-step method for detection 
of high leverage points by utilizing the RMD (MVE) and RMD (MCD) in the first step to identify the 
suspected outlier points. Then, in the second step the MD was used based on the mean and 
covariance of the clean data set. We called this method two-step Robust Diagnostic Mahalanobis 
Distance (RDMDTS) which could identify high leverage points correctly and also swamps less low 
leverage points. Results: The merit of the newly proposed method was investigated extensively by real 
data sets and Monte Carlo Simulations study. The results of this study indicated that, for small sample 
sizes, the best detection method is (RDMDTS) (MVE)-mad while there was not much difference 
between (RDMDTS) (MVE)-mad and (RDMDTS) (MCD)-mad for large sample sizes. 
Conclusion/Recommendations: In order to swamp less low leverage as high leverage point, the 
proposed robust diagnostic methods, (RDMDTS) (MVE)-mad and (RDMDTS) (MCD)-mad were 
recommended. 
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INTRODUCTION 
 
 Outliers are observations which break the pattern 
shown by the majority of the data set. They can be 
classified in the following categories: (1) Good 
leverage points: Observations which follow the same 
regression line as the other data in the data set although 
they fall far from the majority of the explanatory 
variables (2) Bad leverage points: Observations not 
only deviate from the same regression line as the other 
data in the data set but also fall far from the majority of 
explanatory variables, (3) Vertical Outliers or high y 
residual outliers: Observations which are not leverage 

points but have high response variables residuals[19]. 
Generally, those leverages that are far from the rest of 
the other x variables are high leverage points. It is now 
evident that outliers have some destructive effects on 
regression fitted line. Rousseeuw and Van Zomeren[25] 

pointed out that high leverages can affect the estimated 
slope of the regression line in Ordinary Least Squares 
(OLS), thus may cause more serious problems than 
other outliers which might only affect the estimated 
intercept term. Moreover, their presence in regression 
models may make some low leverage as high leverage 
and vice versa. These two concepts are called masking 
and swamping in linear regression[23]. Furthermore, the 
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range of explanatory variables increases when they 
exist in regression analysis. Thus, the multiple 
coefficient determination statistics (R2) which is a well-
known and popular measure of goodness-of-fit in the 
regression models will increase even by any changes of 
a single x variable[26]. In addition, high leverages may 
be the prime source of collinearity-influential 
observations whose presence can make collinearity and 
can destroy the existing collinearity pattern among the x 
variables[7]. In this respect, the identification of high 
leverage points to prevent their effect on linear 
regression becomes necessary.  
 Outlier detection is one of the most important tasks 
in data analysis. The outliers describe the abnormal data 
behavior, i.e., data which are deviating from the natural 
data variability. Various methods for detecting outliers 
have been studied[1,2,5,7,8,18,21,25]. One way to identify 
possible multivariate outliers is to calculate a distance 
from each point to a center of the data. An outlier 
would then be a point with a distance larger than some 
predetermined value. For a p-dimensional multivariate 
sample xi (i = 1,.., n), the Mahalanobis Distance (MD) 
is defined as: 
 

1
iMD (X T(X)) 'C(X) (X T(X)) for i 1,...,n−= − − =  (1) 

 
Where: 
T(X) = The estimated multivariate location which is 

usually the multivariate arithmetic mean 
C(X) = The estimated covariance matrix which is 

usually the sample covariance matrix 
 
 The distribution of the MD with both the true 
location and shape parameters and the conventional 
location and shape parameters is well known[5]. If there 
are only a few outliers, large values of MD, indicate 
that the point xi is an outlier[2]. Any value of which the 

MD exceeds the cutoff 2
p,0.975χ  is considered as outliers 

where p is the number of explanatory variables[16]. Data 
sets with multiple outliers are subject to problems of 
masking and swamping[20]. Masking occurs when a 
group of outlying points skews the mean and 
covariance estimates toward these points and the 
resulting distance of the outlying point from the mean is 
small. While, swamping occurs when a group of 
outlying points skews the mean and covariance 
estimates toward these points and away from other 
inlying points and the resulting distance from the 
inlying points to the mean is large. Mahalanobis 
Distance is known to suffer from masking problems[24]. 
 Mahalanobis Distances give a one-dimensional 
measure of how far a point is from a location with 

respect to a shape. Utilizing MD, we can find the points 
that are unusually far away from a location and call 
those points outlying. A large body of diagnostic tools 
is available in the literature for detection of high 
leverage points in linear regression[4,11,12,27]. 
Mahalanobis Distance (MD) is one of these well-known 
multivariate methods for detecting high leverage points 
as well. Although it is a reliable diagnostic tool for 
detecting high leverage points, it suffers from masking 
problem. Most of the classical diagnostic methods fail 
to identify the multiple high leverage points due to their 
masking effects[14]. Problems of masking can be 
resolved by using robust estimates of shape and 
location, which by definition are less affected by 
outliers. Outlying points are less likely to enter into the 
calculation of the robust procedures, so they will not be 
able to influence the parameters used in the MD. The 
inlying points, which all come from the underlying 
distribution, will completely determine the estimate of 
the location and shape of the data. Several robust 
estimators of multivariate location and scatter have 
been proposed, such as Maronna’s pioneering paper on 
multivariate M-estimation [17], the Minimum Volume 
Ellipsoid (MVE) and the Minimum Covariance 
Determinant (MCD) estimators by Rousseeuw[22]. For a 
thorough overview of robust multivariate estimation, 
one can refer to the article by Maronna and Yohai[18].  
 The Minimum Covariance Determinant (MCD) 
method of Rousseeuw[22] aims to find h observations 
out of n whose covariance matrix C has the lowest 
determinant. In the Minimum Volume Estimator 
(MVE), proposed by Rousseeuw[22], an ellipsoid of the 
smallest volume with a subset of p objects (non-
contaminated data) is constructed. In one of the 
proposed iterative algorithms, n+1 object is selected 
iteratively at random in each of iterations and their 
mean and covariance are determined. Then, the 
ellipsoid containing exactly p data objects is found by 
deflating or expanding the data covariance. The steps of 
the algorithm are repeated until the subset of p objects 
yielding the smallest volume of the covariance ellipsoid 
is found.  
 Finally the robust MD distance can be written as: 
 

1
i R R RRMD (X T (X)) 'C (X) (X T (X)) for i 1,...,n−= − − =  (2) 

 
where, TR (X) and CR (X)  are robust location and shape 
estimate such as MCD or MVE. By using a robust 
location and shape estimate in the RMD, outlying 
points will not skew the estimates and can be identified 
as outliers by large values of the RMD. Unfortunately, 
using robust estimates gives RMDs with unknown 
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distributional properties[25]. The use of 2
p,0.975χ  quantile 

as cutoff point for RMD will prone to declare some 
good and low leverage as high leverage point-sand 
often lead to identifying too many points as outliers[25]. 
To develop robust multivariate estimators, Rousseeuw 
and Leroy[23] first proposed to detect outliers by RMD 
and then find the estimates by using the reweighted 
least squares regression when the weight function is a 
hard rejection function. Specifically, the latter proposal 
consists of discarding those observations whose RMD 
exceeds a certain fix threshold value. Previously, the 
MVE was commonly used as initial estimator for these 
procedures. In the context of linear regression, many 
estimators have been proposed that aim to reconcile 
high efficiency and robustness. Typically, these 
methods are also two-stage procedures[6,10,15,22,28,29]. 
 Let us consider a k variables regression model as: 
 
Y = Xβ + ∈ (3) 
 
 The weight matrix W = X (XT X)−1 XT is the 
orthogonal projector matrix onto the model space, or 
hat matrix which is traditionally used as a measure of 
leverage points in regression analysis. If a diagonal 
entry Wii of W is large, changing yi will move the fitted 
surface appreciably towards the altered value. 
Therefore, Wii is said to measure the leverage of the 
observation yi. Different cutoff points exist in the 
literature for the hat matrix to find high leverage points 
such as twice-the- mean-rule (2 k/n) by[11], thrice-the- 
mean-rule (3 k/n)[27] when k and n are the number of 
variables and observations respectively and three 
interval   range   of   Huber[12]  (observations    with 
0.2< Wii <0.5 are risky to consider in analysis and those 
with Wii ≥0.5 should be avoided when Wii is diagonal 
elements of hat matrix). 
 The hat matrix may fail to identify the high 
leverage points because of the effect of high leverage 
points in leverage structure[7]. Hadi[7] introduced 
another diagnostic tool as follows: 
 

ii
ii

ii

w
p

1 w
=

−
 (4) 

 
where, wii = xi

T(XT X)−1 xi is the diagonal element of W 
and the i-th diagonal potential pii can be defined as: 
 

T T 1
ii i (i) (i) ip x (X X ) x−=  

 
where, X(i) is the data matrix X without the i-th row. He 
proposed a cutoff point for potential values (pii) as 

Median (pii) +c Mad (pii) where Mad = median |pii-
median(pii)|/0.6745 and c can be taken as constant 
values of 2 or 3. Observations exceeding Hadi’s cutoff 
point is considered as high leverage points. But this 
method also can’t detect all of the high leverage points. 
 Imon[13] introduced another diagnostic tool as 
generalized potentials for the whole data set as follows: 
Let consider that D is deleted group from data set, those 
which suspected as outliers (the choice of this deletion 
group is very important since the omission of this group 
determines the weights for the whole data set). R is the 
remaining set after deleting d<(n-k) therefore it 
contains (n-d) cases. If we assume that the suspected 
data are the last d rows of X and Y so the weight matrix 
W = X (XT X)−1 XT can be written as: 
 

R
T

D

U V
W

V U

 
=  
 

 

 
where, UR = XR(XT X)−1 T

RX  and UD = XD(XT X)−1 T
DX  

are symmetric matrices of order (n-d) and d 
respectively. V = XR(XT X)−1 T

DX  is an (n-d)×d matrix. 

Now we can define: 
 

( D) T T 1
ii i R iw x (X X) x− −= , for i = 1,2,…n  

 
where, ( D)

iiw −  is the i-th diagonal element of X(XR
T 

XR) −1 XT matrix. 
 Then Imon[14] introduced generalized potentials for 
all members in a data set which are defined as: 
 

( D)
* ii
ii ( D)

ii

( D)
ii

w
p for i R

1 w

w for i D

−

−

−

= ∈
−

= ∈
 (5) 

 
 We should notice that there isn’t any finite upper 
bound for pii* ’s and the derivation of the theoretical 
distribution of them are not easy. He introduced the 
same cutoff point as potential values Median (pii

*) + c 
Mad (pii

*) for the generalized potential as well.  
 Habshah et al.[6] developed a new method for 
determining outlying points in multivariate data set by 
combining the RMD (MVE) method for detecting the 
suspected group (D group) in generalized potential 
method which is proposed by[14]. This method which is 
called DRGP (MVE) is also a two-step method for high 
leverage point detection. In their methods, the mad 
cutoff point has been used in the first and second steps.
 However, this method can identify more swamped 
low leverage points. According to Werner [28], “A 
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successful method of identifying outliers in all 
multivariate situations would be ideal, but is 
unrealistic”. By “successful”, he means both highly 
sensitive, the ability to detect genuine outliers and 
highly specific, the ability not to swamp regular points 
as outliers. Therefore a practical and efficient robust 
detection method of high leverage points (outliers in X-
direction) is the method which is sensitive to detect 
genuine high leverage points and specific, thus it 
swamps less low leverage as high leverage.  
 

MATERIALS AND METHODS 
 
 In this study, we propose a two-step diagnostic tool 
for detecting multiple high leverage points which can 
detect less swamped low leverages. In order to improve 
DRGP (MVE) performance proposed by[6], we follow 
the idea of Rousseeuw and Leroy[23] in developing 
robust multivariate estimators and propose a relatively 
new method for high leverage points identification 
which is called two-steps Robust Diagnostic 
Mahalanobis Distance (RDMDTS). In the first step, the 
RMD (MCD) or RMD (MVE) method is used to detect 
the suspected outlier group which will be deleted from 
the data set resulting in the clean data for the next step. 
In the second step, we apply the MD for the entire data 
set that based on the mean and covariance matrix of the 
clean data set which was obtained from the first step. 
Therefore, Two-Steps Robust Diagnostic Mahalanobis 
Distance (RDMD TS) is written as follows: 
 

TS
i

1
0 0 0

(RDMD)

(X T (X)) 'C (X) (X T (X)) for i 1,  ,  n−= − − = …
 (6) 

 
where, T0(X) and C0(X) are the mean and covariance 
matrix of the clean data set. Two different cutoff points 

are considered, namely the2
k,0.975χ  where k is the 

number of explanatory variables and a new proposed 
one, that is Median (RDMDTS) +c Mad (RDMDTS). The 
procedure of this method can be summarized in the 
following algorithm. 
 
First step: 
• Compute RMDi(MCD) or RMDi(MVE) for i = 1, 

…, n which is defined in equation (2) in 
multivariate cases (both x and y variables) 

• Compare these values with 2
p,0.975χ  to detect 

outliers (if any) where p is the number of x and y 
variables together 

Second step: 
 
• Find the mean and the covariance matrix of the 

clean subset of the explanatory variables, after 
removing the suspected outliers in the first step 

• Find the classical MD with the mean and 
covariance matrix of the clean data set in the first 
step for the entire data (for x variables only) 

• Compare these values with 2
k,0.975χ  to detect high 

leverage points (if any) where k is the number of x 
variables. We refer to this method as (RDMDTS)-
chi-sq or: 

• Compare these values with Median (RDMDTS)+c 
Mad (RDMDTS), to detect high leverage points (if 
any) where c is an appropriately chosen constant 
such as 2 or 3. We refer to this method as 
(RDMDTS)-mad 

• Those points with TS 2
k,0.975(RDMD ) < χ  or 

(RDMDTS)<Median (RDMDTS)+c Mad (RDMDTS) 
are not considered high leverage points and are put 
back in the set of inliers 

 
RESULTS  

 
Numerical Examples: The two well-known data sets 
which are frequently referred to in the study of the 
identification of influential observations, high leverage 
points and outliers are considered in this study. It is 
important to note here that we changed the cutoff point 
of mad which is used by [6] to chi-square in the first step 
of the examples and also in the simulation study.  
 
Hawkins-Bradu-Kass data: Hawkins et al.[9] 
constructed an artificial three-predictor data set 
containing 75 observations with 10 outliers (cases 1-10) 
and 14 high leverage points (cases 1-14). Most of the 
previous single case deletion identification methods fail 
to identify all of these influential observations. Some of 
them identify four high leverage points wrongly as 
outliers[23]. Table 1 shows the DRGP (MVE), DRGP 
(MCD), (RDMDTS) (MVE), (RDMDTS)(MCD), MD 
and their corresponding cutoff points. 
 
Stack loss data: Here we consider the stack loss data[3] 
that have been extensively analyzed in the statistical 
literature. This three-predictor data set (Air flow, 
Cooling water inlet temperature and Acid 
concentration) contains 21 observations with five 
influential observations; three of them which (cases 1, 3 
and 21) are high leverage outliers. One of the influential 
observations  (case 4) is an outlier and another one 
(case 2) is a high leverage point. Table 2 illustrates the 
DRGP (MVE), DRGP (MCD), (RDMDTS)(MVE), 
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Table 1: Diagnostic robust generalized potential based on MVE and MCD and two-step Robust diagnostics Mahalanobis distance based on MVE 
and MCD for hawkins-Bradu-Kass data 

   (RDMDTS) (MVE) (RDMDTS) (MCD) 

 DRGP (MVE) DRGP (MCD) 2
3,0.975χ = (2.7955) 2

3,0.975χ = (2.7955) MD 

Index MAD (0.2068) MAD (0.2133) MAD (3.5229) MAD (3.6293) 2
3,0.975χ = 2.7955 

1 14.5318 14.8768 29.2642 29.3577 1.9168 
2 15.2960 15.6974 30.0246 30.1574 1.8558 
3 17.0694 17.4605 31.7193 31.8077 2.3137 
4 18.1231 18.5965 32.6845 32.8270 2.2297 
5 17.4770 17.9118 32.0961 32.2165 2.1001 
6 15.6763 16.0392 30.3961 30.4843 2.1462 
7 15.7654 16.1511 30.4824 30.5906 2.0105 
8 14.8954 15.2549 29.6285 29.7288 1.9193 
9 17.1425 17.5823 31.7871 31.9185 2.2212 
10 16.0898 16.4974 30.7947 30.9171 2.3335 
11 22.5124 23.1043 36.4314 36.5932 2.4465 
12 24.2013 24.7596 37.7742 37.8824 3.1083 
13 22.7931 23.4013 36.6580 36.8278 2.6624 
14 28.1638 29.1744 40.7515 41.1234 6.3816 
15 0.0923 0.0934 2.0008 1.9934 1.8155 
16 0.1107 0.1161 2.2127 2.2471 2.1514 
17 0.0859 0.0859 1.9188 1.8983 1.3849 
18 0.0277 0.0291 0.7782 0.8106 0.8482 
19 0.0460 0.0469 1.2703 1.2713 1.1489 
20 0.0978 0.0979 2.0675 2.0471 1.5914 
21 0.0364 0.0374 1.0442 1.0537 1.0900 
22 0.0723 0.0752 1.7302 1.7528 1.5488 
23 0.0418 0.0426 1.1755 1.1786 1.0854 
24 0.0483 0.0486 1.3178 1.3053 0.9712 
25 0.0906 0.0959 1.9794 2.0225 0.7993 
26 0.0699 0.0726 1.6942 1.7150 1.1684 
27 0.0901 0.0910 1.9731 1.9628 1.4496 
28 0.0377 0.0398 1.0779 1.1127 0.8678 
29 0.0397 0.0418 1.1278 1.1586 0.5764 
30 0.1136 0.1138 2.2441 2.2230 1.5689 
31 0.0710 0.0777 1.7106 1.7878 1.8385 
32 0.0736 0.0736 1.7499 1.7306 1.3072 
33 0.0460 0.0462 1.2686 1.2559 0.9820 
34 0.0974 0.1000 2.0620 2.0715 1.1750 
35 0.0819 0.0825 1.8664 1.8542 1.2436 
36 0.0424 0.0428 1.1904 1.1818 0.8508 
37 0.0945 0.0992 2.0278 2.0623 1.8324 
38 0.0566 0.0596 1.4748 1.5092 0.7521 
39 0.0766 0.0780 1.7927 1.8820 1.2650 
40 0.0377 0.0378 1.0771 1.0618 1.1120 
41 0.0948  0.0980 2.0308 2.0479 1.6998 
42 0.0868 0.0800 1.9312 1.9117 1.7650 
43 0.1041 0.1067 2.1396 2.1464 1.8701 
44 0.1025 0.1040 2.1218 2.1163 1.4204 
45 0.0799 0.0881 1.8383 1.9271 1.0760 
46 0.0893 0.0910 1.9631 1.9629 1.3442 
47 0.1150 0.1300 2.2588 2.3849 1.9663 
48 0.0828 0.0849 1.8783 1.8863 1.4242 
49 0.0629 0.0644 1.5838 1.5888 1.5698 
50 0.0560 0.0561 1.4640 1.4484 0.4240 
51 0.0591 0.0634 1.5190 1.5728 1.3027 
52 0.0983 0.0992 2.0731 2.1839 2.0761 
53 0.1389 0.1389 2.6856 2.6598 2.2104 
54 0.0859 0.0860 1.9197 1.8994 1.4143 
55 0.0503 0.0505 1.3567 1.3430 1.2305 
56 0.0682 0.0682 1.6679 1.6487 1.3311 
57 0.0496 0.0543 1.3437 1.4152 0.8327 
58 0.0743 0.0743 1.7599 1.7403 1.4044 
59 0.0485 0.0486 1.3215 1.3053 0.5912 
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Table 1: Continue 
60 0.1116 0.1127 2.2222 2.2114 1.8897 
61 0.1140 0.1202 2.2481 2.2894 1.6749 
62 0.0905 0.0952 1.9776 2.0140 0.7595 
63 0.0781 0.0781 1.8138 1.7941 1.2923 
64 0.0796 0.0796 1.8352 1.8151 0.9739 
65 0.0646 0.0666 1.6120 1.6245 1.1482 
66 0.0552 0.0552 1.4502 1.4326 1.2967 
67 0.0219 0.0224 0.5320 0.5344 0.6298 
68 0.1058 0.1072 2.1595 2.1526 1.5495 
69 0.0721 0.0792 1.7280 1.8091 1.0705 
70 0.0533 0.0539 1.4143 1.4084 0.9978 
71 0.0344 0.0344 0.9880 0.9729 0.6429 
72 0.0323 0.0324 0.9280 0.9140 1.0534 
73 0.0521 0.0526 1.3930 1.3831 1.4722 
74 0.0594 0.0605 1.5254 1.5253 1.6465 
75 0.1097 0.1098 2.2023 2.1806 1.8992 

 
Table 2: Diagnostic robust generalized potential based on MVE and MCD and two-step robust diagnostics Mahalanobis distance based on MVE 

and MCD for stack loss data 
   (RDMDTS) (MVE) (RDMDTS) (MCD) 

 DRGP (MVE) DRGP (MCD) 2
3,0.975χ = (2.796) 2

3,0.975χ = (2.796) MD 

Index MAD (0.781) MAD (1.063) MAD (4.165) MAD (3.199) 2
3,0.975χ = (2.796) 

1 2.2214 2.4259 7.7595 5.3092 2.2536 
2 2.3049 2.5304 7.7379 5.4260 2.3247 
3 1.3005 1.4307 6.2906 4.0305 1.5937 
4 0.2765 0.2871 2.3042 1.5883 1.2719 
5 0.2133 0.2530 2.3501 1.2248 0.3034 
6 0.2635 0.2877 2.3250 1.3259 0.7729 
7 0.3944 0.4230 2.4873 1.6260 1.8527 
8 0.3944 0.4230 2.4873 1.6260 1.8527 
9 0.2229 0.2322 1.2689 1.1567 1.3606 
10 0.4171 0.6825 1.2188 1.9861 1.7460 
11 0.2489 0.3874 1.4417 1.5580 1.4657 
12 0.4115 0.6765 1.4568 1.9797 1.8415 
13 0.2314 0.3243 1.2625 1.7230 1.4826 
14 0.2378 0.3175 1.5311 1.6991 1.7788 
15 0.6137 0.7711 1.6796 2.0740 1.6902 
16 0.3525 0.4016 1.6847 1.5860 1.2919 
17 0.7604 1.0531 1.8307 2.2874 2.7000 
18 0.2562 0.2738 1.7483 1.2868 1.5032 
19 0.3213 0.3397 1.7646 1.4559 1.5932 
20 0.0933 0.1179 0.7819 0.7014 0.8071 
21 0.9128 1.1244 4.9305 3.5454 2.1768 

 
(RDMDTS)(MCD), MD and their corresponding cutoff 
points. Another useful detection tool is proposed by 
Rousseeuw and Van Driessen[24] as DD plot. In this 
plot, the classical MDi is plotted vs. robust MDi. The 
low leverage points should cluster below the cutoff 
point lines and the high leverage points will be 
separated from the bulk of the data and thus, will be 
located in the upper area of the cutoff points.  
 The DD  plot  of  stack loss data set is shown in 
Fig. 1a (MD Vs RDMDTS (MCD)), (b) (MD Vs 
RDMDTS (MVE)) and Fig. 2a (MD Vs DRGP (MCD)) 
and 2b (MD Vs DRGP (MVE)). In both plot of Fig. 1, 
there are two cutoff point lines namely the Mad and the 

chi-square ( 2
3,0.975χ ), while there is only one cutoff 

point line (Mad) employed by DRGP in plot (a) and (b) 
of Fig. 2. 

 
Simulation study: In order to investigate the merit of 
our newly proposed method, we designed a Monte 
Carlo simulation experiment. In this study, we 
compared  the Robust  Diagnostic Mahalanobis 
Distance (RDMDTS) with other existed methods, with 
sample sizes equal to 20, 40, 60, 100 and 200. The 
first 100 (1-α) % observations of the three regressors 
from these sample sizes are produced from Uniform 
(0, 1) and the remaining 100α% observations are 
constructed as  high leverage points. The high 
leverage  points  are  generated  with unequal weights,
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 (a) (b) 
 
Fig. 1: (a): Mahalanobis distance against two-step robust diagnostic mahalanobis distance based on MCD, (b): 

Mahalanobis distance against two-step robust diagnostic mahalanobis distance based on MVE 
 

      
 (a) (b) 

 
Fig. 2: (a): Mahalanobis distance against diagnostic robust generalized potential based on MCD, (b): Mahalanobis 

distance against diagnostic robust generalized potential based on MVE 
 
where the last observations in each sample sizes are 
kept fixed at 10 value and the other high leverage points 
are the increments of five. We run 10000 simulations for 
these 5 different sample sizes. The results are illustrated 
in Table 3. 
 

DISCUSSION 
 

 Let us focus our attention to the results of 
Hawkin’s data presented in Table 1. The RMD (MCD) 
and the RMD (MVE) can detect 1-10 data as outliers. 
In addition to that RMD (MCD) identifies observations 
11-14, 47 and 53 as outliers while RMD (MVE) swamp 
observations 11-14 and 53(not shown due to space 
limitations). Although these robust methods are more 
powerful than MD which can just detect 2 outliers, that 

is cases 12 and 14, they still can be improved so that 
their performance as high leverage detection tool is 
more powerful. As proposed in the second step of the 
(RDMDTS), we should find the mean and covariance 
matrix of the clean data set for both RMD (MCD) and 
RMD (MVE) after deleting the suspected outlier group. 
Finally we can find the distance of the whole data set 
with this clean mean and clean covariance matrix for 
the x variables only. It is obvious from Table 1 that 
both of our proposed method and Habshah et al.[6] 

method can detect 14 high leverage points from both 
mad and chi-square cutoff points. However the values 
of (RDMDTS) are further from their corresponding 
cutoff points compared to DRGP. Thus, this new 
method enhances the chance to detect these 14 
observations as high leverage points. 
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Table 3: 10000 simulations for comparing RDMDTS and DRGP based on (MCD) and (MVE) 
       10000 simulations 
   ---------------------------------------------------------------------------------------------------------------------------------------------- 
    RDMDTS (MCD)  DRGP (MCD)  RDMDTS (MVE)  DRGP (MVE) 
   ------------------------------------------ ------------------ ------------------------------------------ ------------------ 
   Mad  Chi-sq  Mad  Mad  Chi-sq  Mad 
   ----------------- ------------------ ------------------ ------------------------------------------ ------------------ 
% HLP n 2 1 2 1 2 1 2 1 2 1 2 1 2 
5% 20 1 1.853 1 3.870 1 1.7520 1 0.351 1 0.465 1 0.805 1 
 40 2 0.987 2 3.788 2 1.8000 2 0.138 2 0.221 2 0.625 2 
 60 3 0.387 3 1.898 3 1.1000 3 0.076 3 0.135 3 0.533 3 
 100 5 0.100 5 0.464 5 0.6270 5 0.034 5 0.076 5 0.461 5 
 200 10 0.013 10 0.077 10 0.4790 10 0.008 10 0.039 10 0.453 10 
10% 20 2 1.351 2 3.183 2 1.2370 2 0.213 2 0.329 2 0.595 2 
 40 4 0.553 4 2.909 4 1.1120 4 0.082 4 0.178 4 0.405 4 
 60 6 0.199 6 1.443 6 0.6600 6 0.036 6 0.120 6 0.316 6 
 100 10 0.037 10 0.333 10 0.3170 10 0.012 10 0.069 10 0.239 10 
 200 20 0.002 20 0.064 20 0.1950 20 0.002 20 0.039 20 0.177 20 
15% 20 3 0.945 3 2.603 3 0.8450 3 0.119 3 0.222 3 0.416 3 
 40 6 0.283 6 2.203 6 0.6590 6 0.046 6 0.151 6 0.254 6 
 60 9 0.078 9 0.993 9 o.3305 9 0.016 9 0.092 9 0.164 9 
 100 15 0.010 15 0.238 15 0.1330 15 0.003 15 0.063 15 0.103 15 
 200 30 0.000 30 0.054 30 0.0630 30 0.000 30 0.039 30 0.058 30 
20% 20 4 0.552 4 1.992 4 0.4610 4 0.585 4 0.132 4 0.270 4 
 40 8 0.121 8 1.570 8 0.3280 8 0.016 8 0.111 8 0.127 8 
 60 12 0.026 12 0.718 12 0.1400 12 0.007 12 0.086 12 0.076 12 
 100 20 0.003 20 0.187 20 0.0500 20 0.001 20 0.063 20 0.041 20 
 200 40 0.000 40 0.047 40 0.0120 40 0.000 40 0.035 40 0.011 40 
25% 20 5 0.283 5 1.397 5 0.2340 5 0.028 5 0.070 5 0.188 5 
 40 10 0.043 10 1.069 10 0.1410 10 0.007 10 0.087 10 0.065 10 
 60 15 0.005 15 0.486 15 0.0570 15 0.002 15 0.068 15 0.032 15 
 100 25 0.000 25 0.139 25 0.0130 25 0.000 25 0.057 25 0.011 25 
 200 50 0.000 50 0.047 50 0.0020 50 0.000 50 0.039 50 0.002 50 
1#: LLP = Low Leverage Points, 2#: HLP = High Leverage Points, where # denotes cardinality 
 
 Let us now focus to the Stack loss data where the 
RMD (MVE) can detect 4 outliers and another outlier 
which is case 2. Furthermore, RMD (MCD) can detect 
4 outliers and cases 2, 13, 14, 20 as outliers as well. The 
RMD (MVE) and RMD (MCD) are not presented due 
to space constraint. After deleting the outliers from the 
data set and utilizing the mean and covariance matrix 
from the cleaned data set in the first step, the 
(RDMDTS) can identify exactly 4 high leverage points. 
The DRGP (MCD) and DRGP (MVE) of Table 2 also 
can identify these 4 high leverage points. Like the 
results of Hawkin’s Data, similar conclusion can be 
drawn from this example regarding higher chances of 
(RDMDTS) for detection of high leverage points. The 
results of Table 2 show that (RDMDTS) can detect these 
4 high leverage points easily. Due to MD masking 
problem, it cannot detect any high leverage points.  
 By looking at Fig. 1 and 2, it is obvious that MD 
couldn’t identify any high leverage points while the 
other 4 robust methods, can identify 4 high leverages 
easily. 
 Next, we will discuss the simulation results 
whether they confirm the conclusion of the numerical 
examples that our proposed method performs better 

than the DRGP and MD method. It can be observed 
from Table 3 that for small sample size, the (RDMDTS) 
based on MCD or MVE with chi-square cutoff points 
swamp more low leverage points compared to 
(RDMDTS) based on MCD or MVE with mad cutoff 
points. Nevertheless as soon as the number of sample 
sizes increases this cutoff point performs better and 
with this cutoff point we can find less low leverage but 
still it shows more low leverage than (RDMDTS)-mad. 
It is obvious from the results of Table 3 that (RDMDTS) 
(MVE)-mad outperforms (RDMDTS) (MCD)-mad in 
identifying less low leverages in small sample sizes.  
 In large sample sizes such as 200 (with 20 or 25% 
high leverage points) both of these two methods 
(RDMDTS) (MVE)-mad and (RDMDTS) (MCD)-mad 
are equally good and do credible job in detecting high 
leverage points. To compare (RDMDTS)-mad and 
DRGP based on MCD or MVE, we can say that the 
number of low leverage points which is identified are 
less when our newly proposed methods are used. When 
the sample size are 100 or 200 and 20 or 25% high 
leverage points are added, (RDMDTS)-mad can detect 
the exact high leverage points with no low leverage 
points while DRGP swamps some low leverages. When 
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the number of sample size and high leverage points are 
very small, DRGP swamp less low leverage points 
compared to (RDMDTS)-mad (20 sample size and 5% 
high leverage points). When the number of high 
leverage points and the number of sample size 
increases, the (RDMDTS)-mad overcome DRGP in 
detecting less low leverages. 
 

CONCLUSION 
 
 The presence of high leverage points affects all 
least squares models, which are extensively used in data 
exploration and modeling. In multivariate cases the 
identification of high leverage points is much more 
difficult. Furthermore it is difficult to detect outliers in 
p-variate data when p>2, as one can no longer rely on 
visual inspection. Among all outlier detection tools, 
Mahalonobis Distance is more powerful to detect a 
single outlier. This approach is not applicable for 
multiple outliers because of the masking effect, by 
which multiple outliers do not necessarily have large 
Mahalonobis distance value. It is better to use distances 
based on robust estimators of multivariate location and 
scatter [23]. In regression analysis, the robust distances 
are computed from the explanatory variables which 
allow us to detect high leverage points. The main 
insight behind this study is to introduce a two step 
robust diagnostic methods based on Robust 
Mahalanobis distance. This relatively new method not 
only can detect exactly the high leverage points but also 
it can identify less number of low leverage points than 
the existing methods such as Diagnostic Robust 
Generalized Potential. To investigate the superiority of 
our new method, a Monte Carlo simulation is carried 
out. The results of this study indicate that for small 
sample sizes, the best detection method is (RDMDTS) 
(MVE)-mad whereas there is not much difference 
between (RDMDTS) (MVE)-mad and (RDMDTS) 
(MCD)-mad for large sample sizes. Therefore, when 
the sample size is very small such as 20 and the number 
of high leverage is 5% of the data set, it is better to use 
DRGP (MVE) which can detect less low leverage 
points.  
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