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On Hyperplanes of the Geometry D4, and their Related Codes
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Abstract: Problem statement: The point-line geometry of type,Dwas introduced and characterized
by many authors such as Shult and Buekenhout asévaral researches many of geometries were
considered to construct good families of codes #md forced us to present very important
substructures in such geometry that are hyperplakhggroach: We used the isomorphic classical
polar spaceQ’(8, F) and their combinatorics to construct the drpfanes and the family of certain
codes related to such hyperplanBssults: We proved that each hyperplane is either thesép)
which consisted of all points at a distance mo2tlyom a fixed point p or a Grassmann geometry of
type Ag, and then we presented a new family of non linesrady constant-weight codes.
Conclusion: The hyperplanes of the geometry JLallow us to discuss further substructures of the
geometry such as veldkamp spaces.
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INTRODUCTION where XOP. Lines incident with more than two points
are called thick lines, but those incident with eka

InY! Bruyn characterized the hyperplanes of thetwo points are called thin lines.
dual polar spaces DQ (2n,K) and DQn+1,K). If? x” means a set of all points in P collinear with x,
and® he also determined all hyperplanes of DW 2n-including x itself. A clique of P is a set of painin
1,q), ¢2 and DW 5, . In™ Bruyn and Pralle Wwhich every pair of points are collinear. A partiakar
presented a classification of all hyperplanes of DHspace is a point-line geometry (P, L), in which rgve
(5,4). Shuff! proved that every hyperplane of the Half- pair of points are incident with at most one limel all
spin geometry arises from embedding. This studyines have cardinality at least 2. A point line getry
presented a description for two classes of hypegsla I = (P, L) is called singular or (linear) if everyipaf
of point-line geometry of type [} which was points is incident with a unique line.
characterized completely'th The singular rank of a spade is the maximal
For the following definitions. number n (possiblyo) for which there is a chain of
A given set |, geometrly over | is an ordered triple distinct subspaces # X, O X10...0X, such that Xis
M= (X, D), where X is a set, D is a partition pof X singular for each i, ¥ X; , i # ], for example rank
indexed by I, Xare called componentss a symmetric  (0) = -1, rank({p}) = 0 where p is a point and
and reflexive relation on X called incidence redati rank(L) = 1 where L a line.
such that: A point-line geometry (P, L) is simply a  |n a point-line geometry = (P, L), a path of length
geometry for whichlI| = 2, one of the two types is n is a sequence of n+1o(X,..,X,) Where, (xx.1) are
called points, in this notation the points are thecollinear, xis the initial point and xs the end point. A
members of Pand the other type is called linesedin geodesic from a point x to a point y is a path afimal
are the members of L. IffP and [L, then pC1if and  possible length with initial point x and end pojntThis
only if pOl. In point-line geometry (P, L), it's said that length is denoted byrd(x, y). Diameter ofl is the
two points of P are collinear if and only if theyea maximal distance between the pointdof.e., diameter
incident with a common line. (N = maximum {d(x, y), x, ¥Il'}. A geometryl is
A subspace of a point-line geomelry (P, L) isa called connected if and only if for any two of fisints
subset XIP such that any line which has at least two ofare connected by a bath. A subset X of P is saigeto
its incident points in X has all of its incidentipts in  convex if X contains all points of all geodesics
X. A hyperplane of a point line geometry is a pnope connecting two points of X.
subspace meets each line in at least one pE¥t. A gamma space is point-line geometry such that
means the intersection over all subspaces congpXjn for every point-line pair (p, 1), p is collinear thi no
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point, exactly one point, or all points of I, i.enl is
empty, consists of a single point, or I.

A polar space is a point-line geomefry= (P, L)
satisfying the Buekenhout-Shult axiom:

For each point-line pair (p, I) with p not inciden
with I; p is collinear with one or all points of that is
|p"nll = 1 or else POI Clearly this axiom is
equivalent to saying that’fis a geometric hyperplane
of I for every point fil P.

A point-line geometryl = (P, L) is called a
projective plane only in case if satisfies the daling
conditions:

» [ is alinear space; every two distinct points xqny i
P lie exactly on one line

« Every two lines intersect in one point

» There are four points no three of them are one lin

A point-line geometrylr = (P, L) is called a
projective space if the following conditions are
satisfied:

» Every two points lie exactly on one line

e If |4, I, are two linesnl, # O, then(l,, L) is a
projective plane. ({1, ;) means the smallest
subspace df containing{ and })

A point-line geometryl = (P, L) is called a
parapolar space only in case it satisfies the votig
properties:

» [ is aconnected gamma space
« foreveryline |, ¥'s not a singular subspace
« for every pair of non-collinear points x, y;xy"is

In"l the geometry B, was introduced to be
isomorphic to the classical polar spdce Q*(8, F) that
comes from a vector space of dimension 8 overitefin
field F = GF(qg) with a symmetric bilinear form. Thet
S, consists of all totally isotropic 1-dimentional
subspaces of the vector space V apd@sists of all
totally 2-dimensional subspaces of V. The two @ass

1w M, consist of maximal totally isotropic 4-
dimensional subspaces. Two 4-subspaces fall in the
same class if their intersection is of even dimemsi
Hence the geometryR(F) is a point-line geometry (P,
L), whose set of points P is corresponding to thss
S,and whose each line is corresponding to the totally
isotropic (1, 4)-dimensional subspaces (A, B) antBA
A point C is incident with a line (A, B) if and onif
ALCOB as a subspaces of V.

To define the colinearity, let Cand G be two
point (the points are the T.I 2-spaces), then i€
collinear to G if and only if the intersection of Gand
C, is a T.I 1-dimensional space @, in addition to
the complement of Cand G must form a T.l 3-
dimensional space and then contained in a T.l 4espa
The elements of the class,Mre corresponding to the
class of geometries of typesAthat are convex polar
spaces of rank 2 and then they represent sympilecta
the geometry .. As a result the symplecta of, BXF)
are the Grassmannians of types; ) that are
corresponding to the collection of Tl 4-dimensional
spaces.

Notation: Let the map¥: P-V be defined as above,
i.e., ¥(p) is the T.I. 2-dimensional subspace
corresponding to the point p. We will ugefor the rest
of the geometry; for exampl®(A;,) is the T.I. 4-

either empty, a single point, or a non-degeneratgimensional subspace corresponding to a geometry of

polar space of rank at least 2

If x, y are distinct points in Pand |ik"ny”|= 1,
then (x, y) is called a special pair and ity" is a
polar space, hence (X, y) is called a polar pairgo
symplectic pair). A parapolar space is called angr
parapolar space if it has no special pairs.

MATERIALSAND METHODS

First we present a construction of the geometiry D

As2

Polar spaca D,,(
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type As, The inverse mapP™ will be used for the
inverse; for exampl&™*(C) is the point corresponding
to the T.I. 2-dimensional subspace C.

The following Theorem is a good characterization
of the point-line geometry .

Proposition 1: Let ' = (P, L) be a point-line geometry
of type Dy, then thefollowing ar e satisfied:

e (P)T is a strong parapolar space of diameter 3

* (P,) The symplecta of the geometry are of type A

e (P3) If (p, S) is a pair of non-incident point-
symplecton, then rankJ(rﬂ S)=-1,1

e (P If S; and S are two different symplecta of
D, then rank(gn S;)=-1, 0

Proof!”: For the result that shows we could generate a
non linear binary constant-weight code using the
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second construction of hyperplanes, we present sonferoposition 3% Let V be equipped with a bilinear
basic Definitions. form then the number of totally isotropic k-subsgmts

) . ) o the following:
Basic definitions: For the following definitions sé&&

A code C of length n and size M over a field Fustja |y the symplectic case W(2n,q):
subset of Fof cardinality M, then C is (n, M)-code. 7 2

Thus each code consists of codwords (vectors”jn F | (@' +1)
and the number of codwords is the size of the code. - -9
The Hamming weight of u = (xx,, ..., X)) is the
number of non-zero coordinates =1, 2, ..., n, itis !N the orthogonal casg(2n+1, q):
denoted by wu). ni = (" +1)

Let C be a code of length n and u, v be two k]| L
codwords. The hamming distance between u and v,
dy(u, v), is the number of coordinate in which they,
differ, that is ¢(u, v) = wy(u+v). If d = minimum{d,(u, nl ka
v): u, VOC, u #v}; then d is called the minimum K (g +1)
distance of C, in this case we say that C is (ndM, L -ai=
code. If C is a linear vector subspace bf then C is

called a linear code and if the dimension of C,isvk  In the elliptic cas€(2n+2, q):

say that C is [n, k, d]-code. If all codwords inh@ve {n} k—l( )
qn—l— +
q

n the hyperbolic cas@’(2n, q):

the same hamming weight w then C is called a|,
constant-weight code. An (n, M, d, w)-code is a
constant-weight (n, M, d)-code with w as the common
weight of all codwords. If the code C has two wesgh Proof (ol;
w; and w, then C is called a two-weight code (n, M, d,
Wi, Wy). Proposition 4™: The numbers of maximal totally
In several studies many of geometries have beefingular subspaces of the finite classical polacsp
considered to construct good families of code’d, fthe  are given by the following formulae:
geometric ideas has been used to define a norrlinea
binary constant-weight code Shult sets in different>(W,.(q))|
point-line geometry. In this study we present avne [3(Q(2n+1,q))
construction for a binary constant weight code gishe  |3(Q*(2n,q))
class of Grassmann geometryhat are isomorphic to |y (Q~(2n,q)) (+1)(+1) ... (d+1)
the maximal Tl 4-spaces in the classical polar 8PaC|y(H* (2n,d))| = (q+1)(G+1) ... (d+1)
Q'(8, F).
Propositions 2, 3 and 4 is used to prove theltresu RESULTSAND DISCUSSION
at Theorem. The propositions and their proofs can b
found i,

@+1)(F+1) ... (F™+1)
(@+1)(f+1) ... (d*+1)
2(q+1)(G+1) ... (d'+1)

The following result shows that the ge{p) forms
Proposition 2% The number of subspaces of & construction of hyperplanes of the geometry. D
dimension k in a vector space of dimension n over

GF(q) is: Theorem 1: For a fixed point p, The sé(p) forms a
hyperplane of the geometry, WhereA,(p) is the set
(a"-1)(a"-9q) .. (d-d7) of all points that are of distance at most 2 frown fixed

(qk _1)(qk - q) ( 4 - ({1-1) point, namelyA,(p) = {xOP: d(x, p¥ 2}.

Proof: This is the proof of Proposition 1.4.1'fh Proof: Let | be a line in Rx(q) that is identified by the
two points r and s such th#{r) = <x, x> and
Remark: This number in Proposition 2 is called a y(s) = <x, x> and letW(p) = <y, y>>. Now if

Gaussian coefficient and is denoted by: W) OW(), then @l and [WA(p) (because d(p,
N p) = 0), so nA(p) # ¢.
{ } If W(p) is not contained id(l), then there are two
kla cases:
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e YnW(p) = l-sapace = <x>, X =X Y, If Then the rows of G represent a binary constant-
ylt'n W(l) = <x, %, %>, then <y, x, %> forms a TI  weight (n, M, d, w) non-linear code of pasders:
3-space and p is collinear to s. This means that 8 =| Pl =(q? + 17 (¢ + 1) (F+ o+ 1.

OA%(p) , then InAy(p) # @ M =| Hl = (the number of hyperplanes of = (q+1)

«  W()nW(p) = O-sapace. If YnW() = <x3, X3, %>  (gP+1) (f+1) (d+1), w=|H |(His a hyperplane of
and y nW(l) = <xs, X, U>, then there is a point q N =(f+q+1) (§+1),d=2w-1.
such thatP(q) = <x, ¥>>. Now since <y, y», X3> is
a Tl 3-space, the point g is collinear to the pointProof: The columns of the incidence matrix represent
sand since <y xs, %> form TI 3-spaces, the the points of the geometry,R Then n represents the
point g is collinear to the point p which meand ( nhumber of point of . The points of correspond to all
s) = 2. Then §10y(p), so In&y(p) # ¢. ThenAx(p)  TI 2-spaces in the classical polar sp&X¢8, q). Then
is a hyperplane of the geometry D the number of points n is equal to the number o2TI

spaces if2*(8, q) which can be given by:
The following result shows that the Grassmann

geometries of type A form the second construction of 4] (@ -a) (-1

hyperplanes of such geometry. LL :W(qz_l)

Theorem2 in D4, the class of Grassmann geometries |j G +D)=(F+ 1 (F+ 1)
of type Az, form hyperplanes in the geometry, i=

Proof: Let | be a line with two point p and q , where

W(p) = <xg, x>, W(q) = <%, x> and¥(l) = (<x>, <x, X,  Then:

X, U>). Let D be one of the Grassmann geometry of

type Ag, in Dyp ThenW(D) = Tl 4-space = <y Ya, Vs, n=|p= {4}
y+>. Now we prove that InD #¢. Referring to the 2
construction of [, W(D) and W(l) form TI 4-spaces
belong to different classes of the set of all Tdp&ces,
which means that’(l) nW(D) has odd dimensions.
Then for¥(l) nW(D) in just two cases:

L e @ - 0@ - DE + DE+ D
@ - -1

n=(*+°(@+ D+ o+ 1

Now the rows of the incidence matrix represent the
hyperplanes of the geometry. Since the hyperplanes
. Lp(l)anD(D) = 1-space = <y>, where y S ¥ X.  correspond to the maximal Tl spaces in the claksica

Then y-nW(l) = <, x,, y>. There is a pointiD  olar space’(8, q), the number of maximal Tl spaces

such thatb(r) = <y;, y> and <y, y, %, X;> forms a  whijch is equal to the size of the code M is evadat

Tl 4-spacecontains both¥(p) and ¥(q). So, The number of maximal TI 4-spaces is:

Y(r) OW¥(l) and l. Then InD = {r}

¢ YhnwW(D) = 3-space. In this case <xg, x> 2(Q7(8,9)) = (a+1)(cf+1)(cP+1) (cf+1)
O W(D). ThenW(p) = <x, x> O W(D),so, @1D and .
| nD #o, this complete the proof Then the size of the code equals:
_ a
Now the following result presents a new family of M = (@+1)(d+1)(@+1) (d*+1)

binary non linear constant-weight codes by using th
second construction of hyperplanes of the geometr}g}aC
D4, (Grassmann geometry of typg A

The hamming weight w is the number of ones in
h code word, but the code words represent the
hyperplanes that have the same number of poinen Th
o this give a constant-weight code with hamming weigh
Theorem 3: LetI" be the point-line geometry,Rand  equals to the number of points in the hyperplaieces

H be the class of the second construction OfEach hyperp|ane is a Grassmann geometry Of tme A

hyperplanes of . Let G = (g) be the incidence matrix, Then by Proposition 2 the hamming weight w is
where: given by:
Lot pOH i} 4} _@-a@-y_
e : w= =t M (P +g+1)(F+ 1
9 {0 it pOH {2 @ -a@-D (@ +q+1)(F + 1)
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Let G, and G be any two distinct codwords. Since 2.

C; and G are corresponding to two hyperplanes @D
and the hyperplanes are constructions of type tAat

are considered the symplecta of such geometry,ligen 3.
Theorem 2 the intersection of any two symplecta is

empty or a point. Then any two hyperplanes areifis;j
or meeting in a point, this means tha€,nC, | = 0 or

4,

1. Then the hamming distance between any two

codwords either is 2w or 2w-1 (w is the hamming

weight of the code), i.e., the minimal distancetlud
constant code d = 2w-1.

CONCLUSION

This study provided a description of the most

important substructures in the point-line geomaeify

5.

6.

type Dy, such substructures are called hyperplanes. It

was found out that there are two types of hypegdan

this geometry. Those geometrical concepts were tsed 7.

generate interesting codes called constant-weigies

The above new results may help to solve somé.

problems related to the
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