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Abstract: Problem statement: We deal with the bi-level linear programming perbl A bi-level
programming problem is formulated for a problemwhich two Decision-Makers (DMs) make
decisions successiveljpproach: In this research we studied and designs a GeAlgarithm (GA)

of Bi-Level Linear Programming Problems (BLPP) lpnstructing the fitness function of the upper-
level programming problems based on the definitibthe feasible degree. This GA avoids the use of
penalty function to deal with the constraints, taieging the randomly generated initial population
into an initial population satisfying the constiaiin order to improve the ability of the GA to tlea
with the constraints. Also we designed softwarsdltve this problem. A comparative study between
proposed method and previous methods through noateresults of some examples. Finally,
parametric information of the GA was introducd®esults: Results of the study showed that the
proposed method is feasible and more efficientdlwes (BLPP), also there exist package to solve
(BLPP) problemConclusion: This GA avoids the use of penalty function to degh the constraints,
by changing the randomly generated initial popafatinto an initial population satisfying the
constraints in order to improve the ability of B to deal with the constraints.

Key words: Bi-level linear programming problems, feasible degrfitness function, genetic algorithm

INTRODUCTION after it realizes that of the predominant firm.
Stackelberg solution has been employed as a solutio
Multi-level programming techniques are developedconcept to two-level programming problems and a
to solve decentralized planning problems with mldti considerable number of algorithms for obtaining the
decision makers in a hierarchal organizatioiThe Bi-  solution have been develop&d. Many instances of
Level Programming (BLP) problem is a special case odecision problems can be fined, which are formdlate
multilevel programming problems with a two-level as two-level programming problems and concernieg th
structure. This problem is an important case in-nonabove mentioned hierarchical decision problem i th
convex optimization and a leader-follower game indecentralized firm, it is natural that decision ek
which play is sequential and cooperation is notbehave cooperatively rather than non-cooperatively.
permitted®. A bi-level programming problem is Recently, Lai and Le&“ have proposed a solution
formulated for a problem in which two Decision- concept, which is different from the concept of the
Makers (DMs) make decisions successively. ForStackelberg solution, for multi level linear
example, in a decentralized firm, top managememt, aprogramming problems such that decisions of DMs in
executive board, or headquarters makes a decisitin s both levels are sequential and all of the DMs asasgn
as a budget of the firm and then each divisioncooperate with each other!
determines a production plan in the full knowledde Their method is based on the idea that the DM at
the budgdt?. Also, the Stackelberg duopoly can bethe lower level optimizes the lower level objective
cited: two firms supply homogenous goods to a marke function, taking a goal or preference of the uppgel
Suppose one firm dominates the other in the makdt into consideration. DMs elicit membership functiafs
consequently the predominant firm decides its l@fel fuzzy goals for theirs objective functions and
supply and then the other firm determines thats#li  especially, the DM at the upper level also spesifie
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those of fuzzy goals for decision variables. The BM objective function of the lower-level problem isngly

the lower level solves a fuzzy programming problemdenoted as:

with constraints on fuzzy goals of the DM at theoeip

level. Unfortunately, there is possibility that ithe f=d]x, 4)

method leads to an undesirable final solution beead

inconsistency between the fuzzy goals of the ohject

function and};he decision variabI)éSQ. e Let. X __{(Xl’XZ)‘AllerA?( ZSb} denote - the
In this study, we deal with the bi-level linear constraint region of BLPP.

programming problem. First, we construct the fimes  Here, we assume X is nonempty and bounded.

function of the upper-level programming problems Let Q(xl):{ X, AX,Sb=AX, X, 0} nonempty

based on the definition of the feasible degreeerhat  and hounded. Let Y¢x denote the optimal solution set

the genetic operators are developed for designfitieo  f proplem:

GA for BLPPY. Numerical examples are given to

clarify the developed algorithm. Finally, parametri

study of the GA is introduced. Parametric studyhef

mathematical programming problems is importantyver

necessary and enhances the scope of applicatitire of We assume the element of the set,Y gxists and

obtained solutions of those problems. In other wprd s unique and then the inducible region is:

our problem can be restudied in different variation

(parameters values) with no need to resolve it. W, (X) ={(X, X ) |(X5X ) OX, X ,0Y(x )} (6)
There are three main different approaches to leand|

the parametric optimization problem, namely the

sensitive analysis approach that concerns the min

changes in the parameters values and its effectheon

obtained solutions; the stability sets approachdieals o ] ] . )

with the stability of the optimal solutions in difent  Definition 2: The feasible pointx;, X, )0W(X) is the

cases and finally the parametric solution appraheh  optimal solution of the BLPP if F(xx, )=F(xy,x,) for

studies the major variations of the parameterB@nGA  each point (xx,) OW:(X).

and its relations with the obtained solutions. hist

study we shall exhibit and apply the last approach. Design of GA for BLPP: 1t is not easy to know the

upper-level objective of BLPP has no explicit
Problem formulation: Let us consider the following formulation, since it is compounded by the lowerele

f=d 5
max, 4 %, 5)

efinition 1:  The point (xx,) is feasible if
X1,X2) IWr(X).

BLPP with the following forrft®22: solution function which has no explicit formulation
Thus, it is hard to express the definition of the
P maxF(x,% F ¢ %+ & % (1) derivation of the function in common sense. Alsdsit

difficult to discuss the conditions and the aldumits of
the optimal solution with the definition. The GA a

where, % solves: numerical algorithm compatible for the optimization
problem science it has no special requirementshfer
Py - max f(x %)= d x+ d x (2)  differentiability of the function. Hence the stusglves

BLPP by GAZ'7#2%3]
The basic idea for solving BLPP by GA issfiy,

subject to: choose the initial population satisfying the coaisiis,
then the lower-level decision maker makes the
AX,+A X,<b,x,20,x,20 (3) corresponding optimal reaction and evaluate the

individuals according to the fithess function cousted

by the feasible degree, until the optimal solutisn
where A, OR™™, A, O0R™™ ¢y, X0 R™ ,Cp, 0t X, searched by the genetic operation over and over.
R", bOR™ ) . )

Coding and constraints: At present, the coding often

o Lo L used are binary vector coding and floating vector
Once x is fixed, the termd;x,in the objective  ,4ing. But the floating vector coding is more néer

function of the lower-level problem is a consté8u.the  the space of the problem compared with the former a
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the experiments show that it converges faster aral h Step 2: Initialization of the initial population, M

higher computing precision. This study adopts the
floating vector coding. Hence the individual is

individuals are randomly generated in X,
making up the initial population.

expressed by: Step 3: Computation of the fitness function. Evadua
the fitness value of the population according to
Ve = (Vies Vizreoos Vien) 7 formula (8)

Step 4: Selection, Select the individual by roelett
wheel selection operaftt®
The individuals of the initial population are Step5: Crossover, in this step, first, a randomimer
generally randomly generated in GA, which tends to P.0[0,1] is generated. This number is the
generate off-springs who are not in the constraint percentage of the population on which the
region. Hence, we must deal with them. crossover is performed. Then, two individuals
Here, we deal with the constraints as follows: are selected randomly from the population as

generate a group of individuals randomly and then parents. Children are generated using the
retain the individuals satisfying the constraimtsEq. 3 following procedure:

as the initial population and drop out the ones not

satisfying the constraints. The individuals gerextaty Random integer c is generated in the intervat [1,|
this way all satisfy the constraints and the offi#ps 1] where | is the number of components of an
satisfy the constraints by corresponding crossavet  ingividual. The ¢ first components of the childrare

mutation operators. the same components as respective parents (iee., th
first child from the first parent and the secondlicth

Design of the fitness function: To solve the problem from the second parent). The remaining componests a
BLPP by GA, the definition of the feasible degree i selected according to the following rules:

firstly introduced and the fithess function is coosted

to solve the problem by GA. Let d denote the large,
enough penalty interval of the feasible region dach
(Xl,Xz)DX.

The (c+i)th component of the first child is repldce
by the (I-i+1)th component of the second parent
(fori=1,2,....I-c)

e The (c-i)th component of the second child is
Definition 3: Let 80J[0,1] denotes the feasible degree of replaced by the (l-i+1)th component of the first
satisfying the feasible region and describe it bg t parent (fori=1,2, ...I-c)
following function:

For example we assume c = 5, we obtained the

1, if [x,=Y(x) =0 following children:
X, = Y(X .
6=11- ZT(I) i<, = Y(x)|<d (8) Parents Children
i d 10110 1100 10110 0100
0. it]x, =Y |[> 11010 0010 11010 0011
Where,||.| denotes the norm. Note that the proposed operator generates

Furthers. the fitness function of the GA can beindividuals with more variety in comparison witheth
stated as: standard operator, because this operator can denera

different children from similar parents, where stard
eval(v,) = (F(x % - F.,) 0 operators cannot.

Step 6: Mutation, In this step, first, a randommiver
Pn[0,1] is generated. This number is the
percentage of the population on which the
mutation is performed. Then one individual is
selected randomly from the population. An
integer random number u is generated in the
interval [1,1], where | is the length of the
individual. For generating the new individual,

where, K, is the minimal value of F{xx,) on X.

MATERIALSAND METHODS
Step 1. Initialization, give the population scale tiie

maximal iteration generation MAXGEN and
let the generationt =0
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the uth component is changed to O, if it was max f(x,,x,)=X,— 3X,
initially 1 and to 1 if it was initially 0 [11] *
Step 7: Terminations, Jude the condition of the
termination. When t is larger than the subject to:
maximal iteration number, stop the GA and
output the optimal solution. Otherwise, let -X, = 2x,<-10
t =t+1, turn to Step 3

X, —2X,<6
RESULTS 2%, - X, <21
. -X; +2x,<18
Numerical example: In order to compare the
X, +2X,< 38

performance of GA which introduced in this studyhwi
the other existing methods, proposed three examples *1:X;20
solved by proposed method in this study and compare

our results with the results in the previousExample3:

method&*2°]
max F(x ,% )= = 8x%,= 4X,+ 4%~ 40%,~ 4x,
Example 1: “
max F(X %)= 2% = % where, % solves:
where X solve: ”lax FX%G) = Xyt 2K+ Xppt Xt 2X 5
rrl?xf(xl,xz): X+ 2% subject to:
subject to: X,y F Xy + X 53 <1, 2X = Xt 2X 5+ 0.5, 1
2X 1, F 2Xy — X~ 0.5X,,< 1
3x, - 5%,< 15
3% —X,<21 The comparison of the results through 20
3%, + X, < 27 generations by the algorithm in the study and éseilts
3x, + 4x, < 45 in the references are as follows: .
+3x <30 From the numerical results in Table 1, the results
% 2= by applying our algorithm is very efficient sinceew
X1 %20 obtained the optimal solution in minimum time and
minimum effort comparing with the previous methods
Example 2: as shown ir_l Table_ 1 (thi_s re_sults obtain by usimg t
package which designed in this study).
max F(x % )= %+ 3% Parametric information of the GA: In this study we

make some changes in the parameters (VP§ of the
_ GA and study its relations with the obtained solosi
where % solves: as shown in Table 2.

Table 1: The comparison of our results and theltes the references for the used examples

Results in the paper Results in the referenc
Parameters
—————————————————————— Elapsed Elapsed
Example M R Pn (X1, X2,0) F f time (sec) (% X F f time (min)
1 100 0.17 0.3 (7.26,5.23,0.17) 9.29 17.72 7.72 7.26 5.23) 929 1772 20
2 100 0.17 0.3 (16,11, 0.951) 49.00 -17.00 21.70 15.95, 10.9) 49.00 -17.00 15
3 100 0.17 0.3 (0,0.89,0,0.6,0.39,0) -29.17 83.1 2.65 (0,0.9,0,0.6,0.4) -29.20 3.20 5

Notes: M: Denotes the population scalg; Benotes crossover probability,:A-Denotes mutation probability, F and f: Are tteative function
value of the upper-level and the lower-level progmgng problem, respectively
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Table 2: Parametric study of the GA for the usah®les

Parameters
Example M R Pn Elapsed time (sec) X%, 0) Fig. No.
1 100 0.17 0.30 6.50 (7026, 5.23, 0.17) 1,2
1 50 0.70 0.15 13.60 (7.26, 5.23, 0.34) 34
1 50 0.60 0.20 27.20 (7.26,5.23, 1) 5,6
1 100 0.80 0.30 23.42 (7.26, 5.23, 0.26)
1 200 0.80 0.30 16.50 (7.26,5.23, 1)
2 100 0.17 0.30 27.50 (16, 11, 0.951) 7,8
2 50 0.70 0.15 7.69 (16, 11, 1) 9,10
2 50 0.60 0.20 9.19 (16, 11, 0.43) 11,12
2 100 0.80 0.30 17.48 (16, 11, 0.59)
2 200 0.80 0.30 7.14 (16, 11, 0.47)
3 100 0.17 0.30 9.56 (0, 0.89, 0, 0.6, 0.39, 0)
3 50 0.70 0.15 11.97 (0, 0.89, 0, 0.6, 0.39, 0)
3 50 0.60 0.20 4.44 (0, 0.89, 0, 0.6, 0.39, 0)
3 100 0.80 0.30 2.65 (0, 0.89, 0, 0.6, 0.39,0)
3 200 0.80 0.30 4.16 (0, 0.89, 0.6, 0.39, 0)
12
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= 11.14
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5 2 2 X L ; 0 3 10 15 20 25 30
0 3 10 15 20 25 No. of generations
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S Fig. 2: Performance the maximum value of the best
Fig. 1: Performance the best value and mean value o solution of the GA for example 1

the GA for example 1

DISCUSSION 12

Here we discuss the result that we have acquired 1 /'—-_
from the previous section. In example 1 (Fig. 1),
according to the changes in the parameters of igenet 2
algorithm where P=0.17, B=0.3, R=0.7, = 9
P, = 0.15 and P= 0.6, R, = 0.2), Note that when the

-
number of generations are increased the best \alue 8
Genetic Algorithm (GA) nearly fixed and converges t M\/W
11.24 and the mean value of the GA is increased, 7

decreased, increased, decreased and so on dugng tt
GA is running. Also in Fig. 2, the maximum valuk o 0
the best solution for the GA is fixed in the begmmn
after that it is increased, fixed, increased amediin
the final until reach to the maximum value of 11.24

Note that the optimal solution for example 1 is th Fig. 3: Performance the best value and mean vafue o
same for the figures from Fig. 3-6. the GA for example 1
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vdlue o

In example 2 (Fig. 7), Note that when the number
of generations is increased the best value of Genet
Algorithm (GA) nearly fixed and converges to 30.18
Fig. 6: Performance the maximum value of the besknd the mean value of the GA is increased, deatgase
increased, decreased and so on during the GA risngin
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Also in Fig. 8, the maximum value of best solutimin
the GA is fixed in the beginning after that it iefeased
and fixed in the final until reach to the maximualue
of 30.18.

Note that the optimal solution for example 2 is th
same for the Fig. 9-12.

CONCLUSION

This study designs the GA for solving BLPP which
the optimal solution of the lower-level problem is
dependent on the upper-level problem. The numerical
results show the method is feasible and efficient.
Compared with the traditional methods, the methasl h
the following characters:

10: Performance the maximum value of the best

The method has no special requirement for the
characters of the function and overcome the
difficulty discussing the conditions and the
algorithms of the optimal solution with the
definition of the differentiability of the function
This GA avoids the use of penalty function to
deal with the constraints, by changing the
randomly generated initial population into an
initial population satisfying the constraints in
order to improve the ability of the GA to deal
with the constraints

Finally, we make some variations in the parameters
of the GA and study its relations with the obtained
solutions. Also we design a program to solve (BLPP)
problem.
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