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Abstract: Problem statement: One of the main purposes of modeling variance is forecasting, which 
is crucial in many areas of finance. Despite the burgeoning interest in and evaluation of volatility 
forecasts, a clear consensus on witch volatility model/or distribution specification to use has not yet 
been reached. Therefore, the out of-sample forecasting ability should be a natural model selection 
criterion for volatility models. Approach: In this study, we used high-frequency to facilitate 
meaningful comparison of volatility forecast models. We compared the performance of symmetric 
GARCH, asymmetric EGARCH and non leaner asymmetric NAGARCH models with six error 
distributions (normal, skew normal, student-t, skew student-t, generalized error distribution and normal 
inverse Gaussian). Results: The results suggested that allowing for a heavy-tailed error distribution 
leads to significant improvements in variance forecasts compared to using normal distribution. It was 
also found that allowing for skewness in the higher moments of the distribution did not further improve 
forecasts. Conclusion: Successful volatility model forecast depended much more heavily on the choice 
of error distribution than the choice of GARCH models. 
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INTRODUCTION 

 
 Traditional regression tools have shown their 
limitation in the modeling of high-frequency (weekly, 
daily or intra-daily) data. Assuming that only the mean 
response could be changing with covariates while the 
variance remains constant over time often revealed to 
be an unrealistic assumption in practice. This fact is 
particularly obvious in series of financial data where 
clusters of volatility can be detected visually. During 
the last few decades we have seen a multitude of 
different suggestions for how to model the second 
moment, often referred to as volatility, of financial 
returns. Indeed, it is now widely accepted that high 
frequency financial returns are heteroskedastic. Among 
the models that have proven the most successful are the 
Auto-Regressive Conditional Heteroskedasticity 
(ARCH) family of models introduced by Engle[4] and 
the models of Stochastic Variance (SV) pioneered by 
Taylor[14]. One of the main purposes of modeling 
variance is forecasting, which is crucial in many areas 
of finance such as option pricing, value at risk 
applications and portfolio selection. Therefore, the out 
of-sample forecasting ability should be a natural model 
selection criterion for volatility models. The vast 

majority of variance forecasting articles have used 
squared daily returns as the proxy for ex post variance. 
This is, as shown by Andersen and Bollerslev[2], an 
unbiased but exceedingly noisy estimator. 
 While the literature that examines competing 
variance models is abundant, very little work has been 
done comparing different distribution assumptions, with 
the noticeable exceptions of Anders[1] and Shamiri[10,11]. 
However, none of these papers has explicitly focused 
on evaluating asymmetric GARCH models forecast 
using different error distributions. The previous studies 
paid more attention on the symmetric GARCH model, 
while in this study we focus on both symmetric and 
asymmetric volatility models as well as symmetric and 
asymmetric distributions. Unfortunately, ARCH models 
often do not fully capture the thick tails property of 
high frequency financial time series. However, another 
striking characteristic of high-frequency financial 
returns is that they are often characterized by fat-tailed 
distribution. In fact, the kurtosis of most asset returns is 
higher than three, which means that extreme values are 
observed more frequently that for the normal 
distribution. While the high kurtosis of the returns is a 
well-established fact, the situation is much more 
obscure with regard to the symmetry of the distribution. 
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Many authors do not observe anything special on this 
point, but other researchers, such as Simkowitz and 
Beedles[13] and Kon[7] have drawn the attention to the 
heavy tail of the distribution. Shamiri[10,12] have shown 
that a fat-tailed distribution is required for modeling 
daily returns of East Asian equity markets.  
 This study adds to the literature in several 
important directions. Firstly, in this study we 
demonstrate that this gap can be filled by a rigorous 
density forecast models comparison methodology. 
Secondly, we compare the performance of the GARCH, 
EGARCH and NAGARCH models and also introduce 
different densities (Normal, Skew normal, Student-t, 
Skew student-t, Generalized Error Distribution GED 
and Normal Inverse Gaussian (NIG)). Thirdly, using 
high-frequency data from Kuala Lumpur Composite 
Index (KLCI) of Malaysian’s stock market to facilitate 
meaningful comparison of the forecast results. In the 
model estimation, it is shown that allowing for a 
leptokurtic return distribution significantly improves 
the fit of the model. In terms of out-of-sample 
forecasting performance, allowing for excess kurtosis 
leads to significant improvements over the normal 
distribution, whereas allowing for non-centrality does 
not further enhance forecasts.  
 

MATERIALS AND METHODS 
 
Data source: All data are the daily data obtained from 
DataStream. In the database, the daily return Rt 
consisted of daily stock closing price Pt of KLCI, which 
is measured in local currency. The sample consists of 
2869 daily observations on stock returns of the KLCI 
index. The index spans a period of approximately 11 
years from 1/1/1998 to 31/12/2008. In the database, the 
daily return Rt consisted of daily closing price Pt, which 
is measured in local currency and computed as: 
 

[ ]t t t 1R ln P / P −=  
 
GARCH: Bollerslev[3],introduced GARCH model 
known as the Generalized auto-regressive conditional 
heteroskedasticity model which suggest that the time-
varying volatility process is a function of both past 
disturbances and past volatility. The GARCH model is 
an infinite order ARCH model generated by: 
 

p q
2 2 2

0 t j

i 1 j 1

t i t i j −

= =

−σ = α + α ε + β σ∑ ∑  (1) 

 
where α0, α and β are non-negative constants. For the 
GARCH process to be defined, it is required that α>0. 

EGARCH: Nelson[8] introduced the first asymmetric 
GARCH model known as exponential GARCH model 
(EGARCH). This model looks at the conditional 
variance and tries to accommodate for the asymmetric 
relation between stock returns and volatility changes. 
Nelson implements that by including an adjusting 
function g (z) in the conditional variance equation, it in 
turn becomes expressed by: 
 

t i

p q
2 2

0 t i j t j
i 1 j 1

ln g(z ) ln( )− −
= =

σ = α + α + β σ∑ ∑  (2) 

 
where, t t tz = ε σ  is the normalized residual series. The 
value of g (zt) is a function of both the magnitude and 
sign of zt and is expressed as: 
 

t 1 2 t tt

sign effect magnitude effect

g(z ) z [ z E z ]= θ + θ −  (3) 

 
 Notice moreover that E|zt| depends on the 
assumption made on the unconditional density. The 
EGARCH model differs from the standard GARCH 
model in two main aspects. First, it allows positive and 
negative shocks to have a different impact on volatility. 
Second, the EGARCH model allows large shocks to 
have a greater impact on volatility than the standard 
GARCH model. 
 
NAGARCH: Engle[5] proposed the Asymmetric Non-
Linear GARCH Model (NAGARCH), given by: 
 

( )
p q22 2 2

t 0 i t 1 t 1 j t 1
i 1 j 1

− − −
= =

σ = α + α ε + λσ + β σ∑ ∑  (4) 

 
 Failure to capture fat-tails property of high-
frequency financial time series has led to the use of 
non-normal distributions to better model excessive third 
and fourth moments. Since it may be expected that 
excess kurtosis and skewness displayed by the residuals 
of conditional heteroskedasticity models will be 
reduced when a more appropriate distribution is used, 
we consider six distributions in this study: the normal, 
skew-normal, student-t, skew-student-t, GED and NIG. 
In the following, f (z) is the standardized density 
function of the standardized residuals {zt}. 
 
Normal distribution: 
 

2

2
1 z

f (z) exp ,  E z , 02 /
22

= − = γ =
 

π  π  
 (5) 
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Skew-normal distribution: 
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ξ and α are the location scale and shape respectively, 

where, 
21

δ =
+ α

α . 

 
Student-t distribution: 
 

( )
( ) ( )

( )

( )
( )( )

v 1 2

2
6

 ,  v 4

2v 1 2 1 zf (z;v) 1 ,v 2
v 2 v 2v 2

4 1 v / 2 v 2
E z

1 v / 2 v 1

v 4

+

γ = >

−
 Γ +
 = + >
 Γ −π −  

Γ + −
=

+ πΓ −

−

 (7) 

 Skewed-t distribution: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )( )

( ) ( )( ) ( )
( )

1

(v 1/2)2 2

1

(v 1/ 2)2 2

2

3/2 2 4

1 3 3

f (z)

4

1

2s v 1 2 v 2 1 (v 2)

1 (sz m) v 2 if z m / s

2s v 1 2 v 2 1 (v 2)

1 (sz m) v 2 if z m / s

1 v) 2 v 2
E z

1 v 2 v 1

v 2 1 v 3 / 2

s v / 2

−

− +

−

− +−

=

ζ Γ
=

ζ − ζ +
= −

Γ

  ζ + ζ Γ + Γ π − 

 + ζ + − ≤ − 


 ζ + ζ Γ + Γ π −  
 + ζ + − > − 

+ −

ζ + ζ πΓ −

− Γ −  γ
πζ

( )( )
( )( )

( ) ( )( ) ( )
( )

2

5 2

1 4

3

5 2

2 4

3/ 2 2 4

3 4

)

3m (m 2s)
ss

1 1

m(m 3s
s

3 v 2
v 4

4m v 2 v 3 / 2

s v / 2

−

−

+

+ +
= −

ζ + ζ

ζ − ζ +
−

ζ ζ −
γ

−

− Γ −  
πζ Γ

(8) 

 
where, 0,  v 2,  ζ > > ( ) ( )m v 1 / 2 v 2 / ( 1 / ) /= Γ − − π ζ − ζ    

( )v / 2Γ , ( )2 2 2s 1 / 1 m= + − −ζ ζ  γ1 exists if v>3 and γ2 
exists if v>4. 

GED: 
 

( )
( )

( ) ( )
( ) ( ) ( )
( ) ( )

( )[ ]

v

1 1/ v

2/ v

2 2

2

 0,  2

 

vexp 0.5 z /
f z;v

1 / v

v 1 / v 3 / v

1 / v 5 / v
3 / v

+

−> =

Γ
=

− λ
=

λ Γ

λ Γ Γ

Γ
γ

Γ

 (9) 

 
NIG: 
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modified Bessel function of the third kind of order λ 
evaluated at u and 2 2w = τ −β let Ei, T (hT+h) denote the 
h-step ahead forecast of hT+h at time T from GARCH 
model i using rolling methods. Define the 
corresponding forecast error as εI, T+h = Ei, T (hT+h)-hT+h 
Common evaluation statistics based on Mean Squared 
Error (MSE), Mean Absolute Error (MAE), Median 
Squared Error (MDSE) and Root Mean Squared Error 
(RMSE). 
 

RESULTS  
 
Descriptive statistics: Table 1 shows the descriptive 
statistics of KLCI series for the sample under 
consideration. The mean return is positive 0.014%, 
however, accompanied by high volatility 1.51%. It is 
clear that the Malaysian market offer high average 
returns but these high returns are also characterized by 
high volatility, which is common for emerging markets 
and is consistent with previous studies[9,10]. Moreover, 
we check the statistical features of the data reported in 
Table 1, the skewness, kurtosis and their tests.  
 The Ljung-Box Q-statistics Q (10) and Q2 (10) are 
reported under the null hypothesis of non-serial 
correlation tests in daily return and squared returns,
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Table 1: Summary statistics for daily returns 1 January 1998-31 December 2008 
 Sample Mean Std. Skewness Kurtosis Rob.Sk Rob.Kr Q (10) Q2 (10) LM (5) 
KLCI 2870 0.0135 1.506 0.569 60.239 -0.004 0.37 85.29** 1365** 787** 
Rob.Sk and Rob.Kr are outlier-robust versions of skewness and kurtosis described as Sk2 and Kr2 in Kim and White[6], LM test of Engle[4] for 
presence of ARCH at lag 5, **,*: Significant at 1 and 5% respectively 
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Fig. 1: KLCI daily returns 
 

 
 
Fig. 2: KLCI daily return distribution  
 
respectively. At significance levels of 5%, the null 
hypotheses (skewness = 0 or excess kurtosis = 0) and 
of non-serial correlation are rejected, respectively. 
This time series have the typical features of stock 
returns as fat tail, spiked peak and persistence in 
variance. In contrast, the robustified statistics, Rob.Sk 
and Rob.Kr, do not suggest non-normality. With 
evidence of ARCH effects, it is possible to proceed to 
the second step of the analysis focused on the GARCH 
modeling of market’s volatility. 

 Figure 1 looks at the behavior of the KLCI 
returns, over the sample period. There is evidence of 
volatility clustering and that large or small asset price 
changes tend to be followed by other large or small 
price changes of either sign (positive or negative). 
This implies that stock return volatility changes over 
time. Furthermore, the figure indicates that the 
Malaysian equity market is not affected much by US 
recent financial crisis compared to the Asian crisis in 
1997. Figure 2 shows the distribution of KLCI log 
returns, which clearly indicate the departure from 
normality with a high peaked distribution.  
 
Estimation and diagnostic: A quasi maximum 
likelihood approach is used to estimate the Models 
GARCH, EGARCH and NAGARCH, with six 
underlying error distributions. Table 2, shows the 
estimation results for the parameters for the GARCH, 
EGARCH and NAGARCH models. The use of 
asymmetric GARCH models seems to be justified. All 
asymmetric coefficients are significant at standard 
levels. Moreover, the Akaike Information Criteria 
(henceforward AIC) and the Bayesian information 
criterion values highlight the fact that EGARCH and 
NAGARCH models better estimate the series than the 
traditional GARCH. All the models seem to do a good 
job in describing the dynamic of the first two 
moments of the series as shown by the Box-Pierce 
statistics for the squared standardized residuals with 
lag 15 which are all non-significant at 5% level. LM 
test for presence of ARCH effects at lag 5, indicate 
that the conditional hetroskedasity that existed when 
the test was  performed on the pure return series 
(Table 1) are removed. As, is typical of GARCH 
model estimates for financial asset returns data, the 
sum of the coefficients on the lagged squared error 
(α1) and the lagged conditional variance (β1) is close 
to unity 1.00 and 0.99 with the GED and NIG error 
term respectively, this implies that shocks to the 
conditional variance well be highly persistent 
indicating that large changes and small changes tend 
to be followed by small changes, this mean volatility 
clustering is  observed in KLCI financial returns 
series. 
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Table 2: GARCH models estimation 
 Normal Skew normal Student-t Skew student GED NIG 
Panel A: GARCH: 
α0 0.0000** 0.0000** 0.0000** 0.0000** 0.0000** 0.0000** 
 (0.0000) (0.0000) (0.00000) (0.00000) (0.0000) (0.0000) 
α1 0.1185** 0.1177** 0.14790** 0.14850** 0.1306** 0.1312** 
 (0.0111) (0.0111) (0.02180) (0.02190) (0.0189) (0.0183) 
β1 0.8874** 0.8881** 0.86170** 0.86150** 0.8735** 0.8686** 
 (0.0092) (0.0093) (0.01710) (0.01710) (0.0159) (0.0160) 
γ1  1.0122**  0.98630**  -0.0145 
  (0.0197)  (0.02250)  (0.0178) 
γ2  4.0477** 4.04160** 1.02360** 1.0000** 
  (0.3345) (0.33420) (0.05580) (0.1463) 
Log like -9113.6290 -9113.8230 -9287.87900 -9288.06000 -9301.719 -9290.2330 
AIC -6.3504 -6.3498 -6.47120 -6.47060 -6.4808 -6.47210 
BIC -6.3421 -6.3394 -6.46080 -6.45810 -6.4704 -6.45960 
Q2(15) 8.4750  8.4800  7.64900 7.65500 7.786  7.72000 
LM(5) 2.2450  2.2770 1.65710  1.65970 1.7187  1.66470 
Panel B: EGARCH:       
α0 -0.0682** -0.0697** -0.19600** -0.19850** -0.1451** -0.1717** 
 (0.0195) (0.0201) (0.04680) (0.04790) (0.0372) (0.0412) 
α1 0.2417 0.4144 0.78050 0.48790 0.4076 0.37670 
 (0.4169) (0.5892) (0.95070) (0.43130) (0.5362) (0.49570) 
β1 0.9911** 0.9910** 0.97860** 0.97830** 0.9843**  0.981500** 
 (0.0021) (0.0022) (0.00510) (0.00520) (0.0040) (0.00450) 
φ1 -0.0808* -0.1290** -0.08660** -0.13830** -0.1399** -0.16660** 
 (0.0036) (0.0027) (0.00180) (0.00130) (0.0049) (0.00540) 
φ2 0.3003* 0.4705** 0.32060** 0.52040** 0.5343** 0.61810** 
 (0.0776) (0.0104) (0.09270) (0.01810) (0.0048) (0.01270) 
γ1  0.9766**  0.96360**  -0.05550 
  (0.0192)  (0.02310)  (0.04270) 
γ2   4.22540** 4.19210** 1.0786** 1.00000** 
   (0.35380) (0.34980) (0.0376) (0.13650) 
Log like -9155.3020 -9156.0020 -9330.24800 -9330.62000 -9328.751 -9330.03200 
AIC -6.3773 -6.3771 -6.49790 -6.49820 -6.4976 -6.49780 
BIC -6.3628 -6.3605 -6.47920 -6.47950 -6.4809 -6.47910 
Q2(15) 9.7570 9.4220 5.09100  4.06400 5.773 4.69100 
LM(5) 5.6840 5.3950 0.88110 0.88780 2.166  1.33330  
Panel C: NAGARCH:      
α0 0.0000** 0.0000** 0.00000** 0.00000** 0.0000** 0.0000** 
 (0.0000) (0.0000) (0.00000) (0.00000) (0.0000) (0.0000) 
α1 0.1124** 0.1132** 0.14520** 0.14600** 0.1287** 0.13070** 
 (0.0106) (0.0108) (0.02150) (0.02140) (0.0183) (0.01810) 
β1 0.8770** 0.8757** 0.84770** 0.84580** 0.8588** 0.85200** 
 (0.0099) (0.0103) (0.01870) (0.01870) (0.0173) (0.01780) 
γ 0.3428** 0.3475** 0.31260** 0.32190** 0.3503** 0.346700** 
 (0.0515) (0.0523) (0.06470) (0.06570) (0.0696) (0.06880) 
γ1  0.9873**  0.97150**  -0.04660 
  (0.0195)  (0.02260)  (0.03540) 
γ2   4.11600** 4.11280** 1.0341** 1.000000** 
   (0.34350) (0.34420) (0.0407) (0.14470) 
Log like -9137.3100 -9137.5190 -9300.47800 -9301.25700 -9315.2340 -9304.15000 
AIC -6.3662 -6.3656 -6.47920 -6.47910 -6.4895 -6.48110 
BIC -6.3558 -6.3532 -6.46680 -6.46450 -6.4771 -6.46660 
Q2(15) 8.8690 8.8380  8.51200  8.46600 8.5310  8.43100 
LM(5) 2.6150 2.5790  2.22845  2.22186  2.1743 2.14490 
Standard errors are given in parentheses. **,*: Significant at 1 and 5% respectively 
 

DISCUSSION 
 
 Based on the findings, the symmetric distributions 
with fatter tails clearly outperform the Gaussian. 
According to AIC, GARCH and NAGARCH models 

perform better with GED, while EGARCH model 
perform better with skew-student-t distribution. The 
leverage effect terms φ1 and φ2 in EGARCH model and 
asymmetric term λ in NAGARCH model are 
statistically significant, furthermore with φ1 negative sign, 
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Table 3: Forecast performance out-of- sample 
 Normal Skew normal Student-t Skew student GED NIG 
Panel A: GARCH:      
MSE 0.001098 0.001098 0.001294 0.001313 0.001099 0.001080 
MDSE 0.000212 0.000212 0.000351 0.000362 0.000219 0.000159 
RMSE 3.313204 3.313204 3.597198 3.623870 3.314653 3.286948 
MAE 2.143484 2.143484 2.649073 2.683303 2.155249 2.008332 
Panel B: EGARCH:       
MSE 0.001092 0.001072 0.001090 0.001090 0.001096 0.001100 
MDSE 0.000339 0.000339 0.000118 0.000115 0.000107 0.000100 
RMSE 3.304849 3.274849 3.300770 3.301175 3.309850 3.316831 
MAE 2.244085 2.244085 1.851566 1.852097 1.838961 1.833950 
Panel C: NAGARCH:      
MSE 0.002087 0.002087 0.013221 0.011741 0.003112 0.001978 
MDSE 0.000908 0.000908 0.003131 0.002976 0.001271 0.000850 
RMSE 4.568193 4.568193 11.498303 10.835615 5.578780 4.447064 
MAE 3.645259 3.645259 8.491675 8.080493 4.479974 3.552767 
MSE: Mean squared error; MDSE: The median squared error; RMSE: The root mean squared error; MAE: The mean absolute error 
 
as expected that negative shocks imply a higher next 
period conditional variance than positive shocks of the 
same sign, indicating that the existence of leverage 
effect is observed in returns of the KLCI market index. 
However, the comparison between models with each 
density (normal versus non-normal) shows that, 
according to the different measures used for modeling 
the volatility, the EGARCH model with skew-student-t 
provides the best in-sample estimation for KLCI 
compared to all other volatility models and 
distributions. 
 Now that we have estimated the series, the obvious 
question is how good are the forecasting models? 
Typically, there are several plausible models that we 
can select to use for our forecast. We should not be 
fooled into thinking that the one with the best fit is the 
one that will forecast the best.  
 The results of forecasting daily volatility with 
GARCH models together with various distributions and 
four evaluation criteria are given in Table 3. All results 
are presented for each distribution and for each model 
GARCH models, whose specification is always of order 
(1, 1). In this study the length of the out-of-sample 
period is chosen to be 100 days. Form Table 3 some 
interesting comments emerge. A first major conclusion 
is that there is no single model that completely 
dominates the other models. Secondly, forecasting with 
normal distribution does not yield a significant 
reduction of the forecast error relative to heavy-tailed 
distributions. Thus, the failure of predictor hT+h is 
justified due to that the GARCH model residuals follow 
a (possibly) heavy-tailed distribution. Third, it seems 
that asymmetric model (EGARCH) tend to perform 
better forecast with a fatter tailed distribution (student-t 
and Skew-student-t). It is apparent, that the simple 
predictor hT+h seems to actually have some predictive 
ability, when a heavy-tailed is assumed for the GARCH 

residuals (i.e., NIG distribution). A possible explanation 
is that modeling asymmetries contributes to the 
reduction of the magnitude of the bias.  
 

CONCLUSION 
 
 This study contributes to the literature of volatility 
modeling in two aspects. First, we use a data set from 
an emerging market. Secondly we estimate the 
alternative GARCH-type models (symmetric and 
asymmetric GARCH Models). The comparison was 
focused on two different aspects: The difference 
between symmetric and asymmetric GARCH (i.e., 
GARCH versus EGARCH and NAGARCH) and the 
difference between normal tailed symmetric, heavy-
tailed symmetric distributions and both heavy-tailed 
and asymmetric distributions for estimating the KLCI 
stock market index return volatility. As expected, the 
leverage KLCI market shown by EGARCH model is 
statistically significant at with a negative sign, which 
indicate that negative shocks imply a higher next period 
conditional variance than positive shocks of the same 
sign, indicating that the existence of leverage effect is 
observed in returns of the KLCI stock market index.  
 However, the comparison between models with 
each density (normal versus non-normal) shows that, 
according to the different measures used for the 
performance of volatility forecast, the EGARCH model 
provides the best out-sample estimation for KLCI 
clearly outperform the symmetric models. Our results 
show that, non-normal distributions provide better in-
sample results than the normal distribution. Out-of-
sample results show however less evidence of superior 
forecasting ability. Briefly, looking at the overall 
results, we can argue that the asymmetric model 
coupled with a Student-t distribution for the innovations 
performs very well with the dataset we have 
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investigated. The models seems to capture the dynamics 
of the first and second moments of the KLCI stock 
market index returns series.  
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