Journal of Mathematics and Statistics 5 (3):183; 2889
ISSN 1549-3644
© 2009 Science Publications

A New Approach in Cryptographic Systems Using Fractal | mage Coding
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Abstract: Problem statement: With the rapid development in the communicationd aformation
transmissions there is a growing demand for newragmhes that increase the security of
cryptographic system#pproach: Therefore some emerging theories, such as fractatsbe adopted

to provide a contribution toward this goal. In tlEgidy we proposed a new cryptographic system
utilizing fractal theories; this approach exploitdte main feature of fractals generated by IFS
techniquesResults: Double enciphering and double deciphering methmetéormed to enhance the
security of the system. The encrypted date reptedehe attractor generated by the IFS transfoomati
collage theorem was used to find the IFSM for degitng data.Conclusion/Recommendations. The
proposed method gave the possibility to hide marinaumount of data in an image that represent the
attractor of the IFS without degrading its qualagd to make the hidden data robust enough to
withstand known cryptographic attacks and imagecgssing techniques which did not change the
appearance of image.

Key words: Iterated function system, attractor, affine transfation, collage theorem, iterated
function system mapping

INTRODUCTION The natural question may appear: "Can we use IFS

o ) ] to approximate images?" The seminal research by

The digital information revolution has brought jacquif’, then a Ph.D. student of Barnsley at Georgia
about changes in our society and our lives. TheymanTech provided the basis of block-based fractalgena
advantages of digital information have also gemefat ,4ing which is still used today. Jacquin's researc
new challenges and new opportunities for innovation|; ;nched an intensive activity in fractal image

Every few years, computer security has to re-invent, ., essiod” From this assumption, the IFS can be
itself. New technology and new applications briregn seen as a relationship between the whole imagétand

threats and force us to invent new protection h loiting the similarities that exi
mechanism€. The fractals theory has proved to bePa's: thus exploiting the similarities that exastween
an image and its smaller parts. At that point, riegn

suitable in many fields and particularly interegtim i , .
various applications of complex systems. Recenrtiye problem is how to find these transformations ot

researchers developed cryptosystem based on &actalS the same) how to define the IFS. There is, o1, fa
since one of the fractal properties was havingeenely ~ Version of the IFS theory, the local iterated fiomt
high visual complexity while having low information SYystems theory that minimizes the problem by sgatin
contents, which can make simple cryptographic andhat the image parts do not need to resemble tidewh
Steganography methods very comB‘iex image but it is sufficient for them to be similarsome

In most applications, image data is two- other bigger parts in it. It was Arnaud Jacéfﬂ;inNho
dimensional data; therefore, an image can be cermid developed an algorithm to automate the way to &nd
as two-dimensional memory. Fractal archiving isdolas set of transformations giving a good quality to the
on image representation in compact form by means adecoded images.
iterated function system coefficients. First impoit
a_ldvances are due to Barnsteywho introduces for the MATERIALSAND METHODS
first time the term of Iterated Function SystensS(),
based on the self-similarity of fractal sets. Bay's ) )
work assumes that many objects can be C|ose|y The major concepts and results of IFS and their
approximated by self-similarity objects that mighg¢  application to the study of functions are presented
generated by the use of IFS simple transformations.  more detailed review of the topics was givehifi.
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IFS Theory: Let's consider a metric space (£, d) where Now, suppose that we are giverilE. A natural
d is a given metric. A Hausdorff space H (£) isimiel  question that was first asked in IFS theory is Wwaebr
to be the space of all compact subset of £ with theot it is always possible to find a contractive izper
Hausdorff distance h. A contractive transformatien BOCon(£, d) whose fixed point 5. We expect that, in

defined by: £ - £, that satisfies: general, this is not possible and that one must be
satisfied in finding fixed pointsa; of contractive
dBX),B(Y))<sd(x,y), X,YI£, O<s<1 operationg3; that are approximations t. Even in this

_ ~ case, however, we are faced with the problem of
We write Con(£, d) for the set of all contractive finding such fixed pointst;. This problem is called the
mapsB:£-£. An IFS consists of a complete metric Inverse Problem. It is generally stated as follo@isien

space (£,d) and a number of contractive mapppigs (Y; dy) a metric space, ¥ ande>0, can we find a non
defined on £. The fractal transformation associat#d  constanf OCon(Y; d,) such that ¢(y; yp) <€?

IFS is defined by: Before commenting on this question, an additional
question that arises is, “gively and BCCon(Y; d,),
B(E)=LNJBi(E) how close is y to y? The following proposition lends
i an answer. Lety; Y and be as above. Then:

where, E is any element of the space H of non-empty
compact subsets of £. ff; is contractive for every i,
then B is contractive and there exist a uniquedfixe
point for which: This is often called the collage theorem. It is
important in helping to identify the functions tseuin
an IFS in order to approximate the attractor. The
Collage Theorem is fundamental to the theory of IFS
because it states thatfify) is close to y, thengyis also
or close to y. Of course, if§1, the right hand side of the
inequality might not be very small. Thus, this give
LimB"(E) =A some insight into finding our desired function. We
should findBOCon(Y; d,), which takes y close to itself.
A is called the attractor of B. If B is continuous We recall from the BCMP thagys the attractor of if
then A is called a fixed point of B. The fundaménta Y is complete. Hence we can iter@t¢o retrieve yand
result upon which the entire theory of iteratedcion  get the desired approximation to y. Therefore, the
systems is founded is the Banach Contraction Mappininverse Problem is often formulated as follows: (¢t
Principle (BCMP) or Fixed Point Theorem, which stat dy) be a complete metric space and I8ly Giveng>0,
that, if (£,d) is a complete metric space g@htCon(£,d) can we find a non constaBfiCon(Y; d,), such that
with contractivity factor s, thefd has a unique fixed dy(y;B(y)) <€?
point ACJE. Furthermore, A is the attractor of B. A formal solution to this problem was giverf'th
The transformations B are usually chosen to ben the case of IFS on grey-level maps. This will be
affine. For the two dimensional case the affineimportant in our study of approximations of images.

1
d, (y,yg)spsdY (yB)

A=B(A) = UBi(A)

transformations have the following forms: Once Bis determined, it is easy to get the decoded
image by making use of the BCMP, the transformation

X1 = @, + DY, + € B is applied iteratively on any initial point untihe

Yne1 = O% + dyn + succession of images does not vary significantly.

However, given a set M, how to find a contractive
transformation B such that its attractor A is closé?

To answer this question in symbols is to apply the
collage theorem.

The coefficients a,..., f are the IFS "code". This
also be written in the affine form as:

B{x} (A {X}{e} =AX +b For a set M and a contraction B with attractor A:
y 3, )y f
h(M,B(M))
h(M,A) s ——————=~
[ is said to be linear, if e =f=0. (M.A) 1-s
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where, h is the Hausdorff Distance. That is to &  represents A[0,1]% Since the world is not black and
M and A will be sufficiently close, if M and B(M)ra  white. What is needed is an IFS-type method, which
made close enough in terms @f and combining the allows for, greys, i.e., maps, which move pixelgusd
following two expressions: and then scale their grey-levels. These thouglad le
IFSM theory. There is however a fundamental

BIM) = M- N difference between the IFS and IFSM. The IFS works
(M) =M; B(M)‘gBi(M) with measure and a set of probabilitiesapsociated
with the B; which acts as multiplicative weight. The
Which implies: IFSM work with function u:£-[0,1] and function

@:[0,1]-[0,1] which are composed with the u. From
N the viewpoint of image processing the value u(xXy ma
UBi(M) =M be interpreted as a nonnegative gray level or briags
= value at the point (or pixel)3€E™.
Let us consider a compact subset A of
stimulate some ideas. Formulate a definition ofedn
a grey-scale image is to think of the image as a
M :Umi function, rather than a set. That's mean formul&®
=1 method on functions from sets to grey-levels in the
form of A = {(x;, v, u(x, ¥)), i = 1,...,N}, where u (x
Then, mcan be closely approximated by applying y;) represent the grey level value of the sety"”.

So, M can be partitioned as:

a contractive affine transformati@on the whole M: These developments of IFS give a necessity to
define a complete metric space of these functiéns.
m; = Bi(M) local metric for the gray level maps with respectan

element WE£ was contracted and the continuity of

From IFSto IFSM fractal Transform: The concepts attractor W with respect to @ maps was then
of IFS, first developed by Barnsley and Defkand ~ established. Le® (£) = {B:£—R |B™(n)OH(£), OrOR},
IFS on grey-level maps (IFSM), was introduced bythis set is defined as the set of grey level map<£.0
Forte and Vrscdy. We continue with a discussion of Now a metric on this space must be defined such as:
the inverse problem for IFSM. The main idea of a
fractal based image coder is to determine a set of D (u,V) = Sup h(t(r),v"(r)) Ou, vO Q(£),0rOR
contractive transformations to approximate eaclclblo
of the image (or a segment, in a more general yense If (£,d) is complete metric space the@ (£),D) is
with a Iar?er block. More details and explanatian be ~ also. The operator T d2(£), is defined by, Tu(x) = max
found irt*?. uP™(x)), DudQ(E), xT£. Thus, to find an IFS whose
The Collage Theorem tells us that in order to findattractor is "close to' or “looks like' a given geaone
an IFS whose attractor looks like a given set, westm must find a set of contraction mappings such that t
find a set of contractive transformations on aahlé union, or collage, of the given set under the
space, in which the given set lies, such that theadce  transformations is “close to' or “looks like' thivem
between the given set and the union of themage. This leads to the next result. Let (£, d)abe
transformations is small. In other words, the unadn metric space and let B =p3{ n = 1,2,...,.N} is
the transformations is close to, or looks like, tfieen  contractive with contractivity factor,s Then T is
set. The IFS which satisfies this may be a goodontractive with contractivity S = max{sn = 1,
candidate for reproducing the given set, or imdge, 2,...,N}. Also T has a unique attracting fixed point
the attractor of the IFS. Thus this image can beest pOT, T (p) = p. Since u took only two values, modify
using much less spdt® this new operator to the grey level values, so ey gr
Consider applying this theory to images, (i.e.,level component is added.
computer images). One can think of an image asgbein The IFSM operator J(x) = max@u(p(x)))OxOE,
a compact subset of"ROne can model a computer ¢ RoR. where ¢ is defined by, DudQ (£),
screen by £ = [0,f]or R and define an image on the ou@E(x))) = a u@*(x)+. Therefore define the
screen to be a set A in £ with points being SCreeRperator T on GQ(E) by T,(0=Y au@ )+
pixels. If xJA, the associated pixel is plotted white. If i
xOA, leave the pixel black. Hence a white screenxO£, whereX indicates that the sum runs over the all

185



J. Math. & Stat., 5 (3): 183-189, 2009

indices i with XJB;(E). The diagram in Fig. 1 shows Proof: If B is secret key then B is one to one map from
these operations. Z. to Z where t = ff and hence onto and so invertible.
Thus GCD(D, fl) = 1. Conversely if GCD (D, = 1,
Proposed approach: There are many types of then Ais invertible and hendeis one to one.
cryptography, in which there are “double enciphgtin The sender arranges each unit of length m in
and “double deciphering” processes, that make thentries with value one in the affine IFS transfotiora
codes more difficult to crack and to analyze. ForThe elements of the B maps constructed fromin(Q
enciphering, firstly, one of the classical Cryptagnic  where Cij = px n"™+p,n™+...+pm.
methods are used to convert message letter iregent
numbers, secondly arranging the resulting code in Affine IFS maps: An IFS is a standard way to model
chosen manner of affine IFS transformation and thenatural objects. The intuitive key for deriving IFSat
resulting enciphering code is the attractor of IRE  models any given object is self-tiling (similarity®ne
system. For deciphering, the receiver of the ditra8  can always view an object as the union of sevarat s
retrieves affine IFS transformation B using “Invers objects. Let the sub-objects be actually scaledrdow
Problems” techniques to perform the first level ofcopies of the original object. Each of these subjés
deciphering method, then some algebraic calculatiogalled a tile. In particular, each sub-object isadied by
applied to obtain the plain text. To illustrate thethod  applying an affine transformation to the entire eahj
some algebraic facts are recalls. Let m be a pesiti Now consider the original object with two or moféree
integer, the idea is to take m linear combinatibthe n  transformed copies of itself. The tiling scheme ustho
alphabetic characters in one plaintext element thusompletely cover the object, even if this necetssta
producing the m alphabetic characters in one ciplker overlapping the tiles. Each transformation used to
element. An mx m matrix K = (k;) is taken as a first “create” a tile corresponds exactly to one mamelES.
key. Let X = (%, X, ..., %n) and KIK (the set of all m In order to create an IFS, one first specifienadiset of
x m invertible matrices), we compute y = eK (X) 3,(y contractive affine transformationg{i = 1,..., n} in R.
Yo, ..., Ym). We say that the ciphertext is obtained fromIn general, a contractive affine transformatfom R? is
the plaintext by means of a linear transformatiod € of the form:p(X) = AX + b, which could be used as a
!is used for deciphering as X = Y. A matrix K has  secret key to produce an enciphering code. Thege ar
an inverse if and only if its determinant is nomezez,  different possibilities to arrange element in IR@eirtible
denotes the ring of integer's modulus n,iZ Galois  maps, therefore, for abbreviation, binary sequenteis
field if and only if n is prime number. So we assum and 1's used to represent all possibilities formelat
that our language has n-letter, n is prime, encipge arranging in th; maps, as follows:
and deciphering m units of messages of lengthd at
time. K represents an ™ m matrix whose entries [x]| (a; a,\x]| [0
belong to Zfor which t = i, D represents the det(K). y a, 0 {y}{o} =AX -111000
The relevant result for our purpose is that a mafri ~ ' o
has an inverse modulo n if and only if GCD(det(Kyxn X &, J{X}{O} -~ AX 101100
2

B =
1™, y| lan &

Theorem: B(X) = AX + b could be used as a secret key - - 0 0
to encipher p messages of length m at a time gttes] g x| B ]{X}{ }:Ax -, 100100
2

alphabet if and only if GCD(D,"h = 1. ly] (0 & 0
£ 4 £ -
b (%) - > x pl X< ™ H{O}:Ax ~.111100
’ ) LYl 2 )Y 0
Bl
u T)(w) 1 (0
l B *|= b {X}+{O}:AX - 011000
b Ly] (&aa O)JLy] [O
u(Bix) » T(u)(x)
R LE@=Towdlen+y R All the above orders are for linear affine
‘ transformation. Now for non- linearity order eaateo
Fig. 1: Block diagram for IFSM transformations of the above maps is extended to three forms bingdd
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the translation part b. For example, for 111000, we
have:

Example: To encrypt the message, "We will attack at
dawn through the left flack", the sender and tloeireer
agreed on an alphabet mentioned in Table 1. The

%] x1 [e] message is divided into units of three charactexd a
Bl |=A vI*lo =AX+b -111010 used as inputs to the affine transformations after
. oo applying the polynomial C = pn*tp.:n+p.,, the
. o enciphering code is shown in Table 2.
Bl [=a|*|+|®|=Ax +b _111011 If the affine mappings, 111001, 101110, 111000,
LY Lyl Lf] 100111 are chosen, then the IFS for example 1 are
constructed as follows:
B;(/ =A|" |+ S =AX +b ~111001 1 (18644 1874
T o Bl_{293(10005 [y? (6533
RESULTS 199 x) (11706 _
93 577 254
Conversion of the plain-text message to the ~~ 1 (6394 1729
unreadable format is known as enciphering of the 5(22424 j( j,p 7
message. Similarly, conversion of the enciphered
message back to the human readable form through the {i(4129 J ( 2202j’p=.1
reversal of the encryption algorithm is known as 29°( 0 3528 68

deciphering of the messdge

Applying the random iterated algorithm, the
Encryption method: Let's assume that there are two attractor of these transformations is shown in Eig.
parties( sen.der and reclelv.er) n two fr?r placﬁ_sghad Table 1: English Alphabet used for encryption
to communicate secretly in a way that a third perso English letters with integer values
(intruder) won't figure or recognize that they arez-g B=1 C=2 D=3
exchanging information between them. However, thee =4 F=5 G=6 H=7
alphabetic, the classical encryption method and thé=8 J=9 K=10 L=11
der of the affine IFS tb d - NZ1s oz Pl
order of the affine maps must be agreed Upop - g R=-17 S-18 T=19
between sender and receiver. U=20 v=21 w=22 X =23
Y =24 Z=25 $=26 =277=28
EnC|Eher|ng aIgonthm: In thl.S algorithm an alphabet Table 2: Message units and their enciphering code
of n = 29 character is chosen: M. unit Value M. unit Value
we$ 18644 hro 6394
« The message characters are given a numbers aswit 18745 ugh 17291
I$a 10005 $th 22424
appear in Table 1, show the length of the message 16530 oy 1129
» Divide the message of length | into units of lengthcks 1998 eft 3528
m = 3, represented bypp.ipi2 at$ 577 $fl 22022
« Calculate the numeric value of each unit using théawW 1?%2 ack 68

polynomial C p n*+p.N+p.,, Or matrices

operation to perform first level of the proposed

method

e The contraction factor used is r = 1/nm

e The elements of the chosen affine IFS
transformationsp; are calculated byp; = r*C.

Notice that B = §;, Bo,...
IFS

* The attractor A is generated using Random lterated
Algorithm

» The enciphering code is the picture represents the
Attractor A

B} called a (hyperbolic)
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I 1 S [Extend the| |[For eact
I Fy Contract domain range Yes
L L R Create | | Create d&:’:il block with| | bleck Storg R
2 u range [P domaiz. py So the L eight Wiind the Plcoeffl COIHE » End
blocks b‘%ks size symmetric best cient| |lete?
R R transform| |©°mam
. block
ations No
Fig. 3: The transformation from domain block togan R I'W

<

block
Fig. 4: Flow chart to find the IFSM maps

Decryption method: The main idea to automate the
searching of local IFS relies on a partition of image The second level is performed by applying some
into N non-overlapping blocks of a fixed size, edll algebraic calculation to find;pp,, ps in each cipher
Range Blocks. Each range block Br iC0{1,...,N}, is  unit, as follows:
coded independently by matching it with a biggerchl
D; in the image, called Domain Blocks. This matche p,=int(C/n)
defines a transformation and the global fractal codeis « R =C mod A
then given by the union= Ot of local transforms as «  p,= int(R/n)
shown in Fig. 3. Moreover, each local cagleestricted « p;=R mod n
to consist of a reduction, a discrete isometric and
affine transformation on the luminance. Hengecan DISCUSSION
be modeled by:

The theory of IFS was extended to local IFS where

x] (a R 0\[x] [t each part of the image is approximated by applgng
T|y|=|¢ d o v+ ¢ contractive affine transformation on another pdirthe
z 0 o sz O'_ image: m= 3; (D). D; is the bigger part from which;m

is approximate. The main idea of a fractal basealyien

~ coder is to determine a set of contractive
where, @ b, G, d, 1, > represent the geometric transformations to approximate each block of thagen
transforms andi,SQ the grey'levels transform; X, y are (Or a Segment, in a more genera' Sense)' W|th@3|‘|ar
the pixel coordinates and z the correspondingiock. In this paper we propose a new Cryptographic

luminance value®. method using the fractals theory (more precisely th
_ ) _ IFS theory). For enciphering, firstly, one of tHassical
Deciphering algorithm: Cryptographic methods are used to convert message

letter into integer numbers, secondly arranging the
+ 1-Upon the receipt of the attractor (picture) Ae th resulting code in a chosen manner of affine IFS
receiver retrieves B using “Inverse Problems”transformation and the resulting enciphering cadiné
techniques. Let A denote the image we want taattractor of the IFS system. For deciphering, the
encode. Let also Adenote a partition of A toxm receiver of the attractor A retrieves affine IFS
blocks referred to as Range Blocks)(RSimilarly,  transformation B using “Inverse Problems” technigue
Ag4 will denote another partition of A, this time to to perform the first level of deciphering methody a
2x2 n blocks or Domain Blocks ¢ in steps of algorithm based on Jacquin’s work is used, thenesom
nxn pixels. The goal of the deciphering algorithm algebraic calculation applied to obtain the plaixtt
is to establish a relationship betweenafd A in

such a way that any,Ran be expressed as a set of CONCLUSION

transformations to be applied on a particulat D

This algorithm is illustrated by the flowchart in The proposed approach emp]oys double
Fig. 4° enciphering and double deciphering process. Thedra

« The receiver then modifies the entries of theimage generation through the given parameters,sneed
retrieved IFS system B to gBf asthey agreed on great amount of iterations to converge into araatar,
before but at the same time, it provides non uniform

« By multiplying each entry in the affine IFS map by randomness and it is independent of the imagé&sire
n™ and rounding them to the nearest integer wehe proposed method the IFS (B(X) = AX + b) coudd b
perform the first level of decrypting method used as a secret key to encipher p units messdges o
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length m at a time in n-letter alphabet if and aifilihe

6.

GCD (D, ") = 1, then generates the fractals associated
with the IFS. The receiver can recover the message
using the collage theorem and simple algebraic

calculations.

The proposed fractal encryption technique gives

the possibility to hide maximum amount of data in a

image that represent the attractor of the IFS witho 7.
degrading its quality. The other advantage of using

fractal as an encryption technique is to make ttidem

data robust enough to withstand image processing
technique which does not change the appearance of

image. For better results images should be in 24iBi

map (bmp) format and much better results are obthin

by using larger size image (5%512).
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