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Abstract: Problem statement: The study and research of survival or reliability or life time belong to 
the same area of study but they may belong to a different area of application. In survival analysis one 
can use several life time distribution, exponential distribution with mean life time  θ is one of them. To 
estimate this parameter and survival function we must be used estimation procedures with less MSE 
and MPE. Approach: The only statistical theory that combined modeling inherent uncertainty and 
statistical uncertainty is Bayesian statistics. The theorem of Bayes provided a solution to how learn 
from data. Bayes theorem was depending on prior and posterior distribution and standard Bayes 
estimator depends on Jeffery prior information. In this study we annexed Jeffery prior information to 
get the modify Bayes estimator and then compared it with standard Bayes estimator and maximum 
likelihood estimator to find the best (less MSE and MPE). Results: when we derived Bayesian and 
Maximum likelihood of the scale parameter and survival functions. Simulation study was used to 
compare between estimators and Mean Square Error (MSE) and Mean Percentage Error (MPE) of 
estimators are computed. Conclusion: The new proposed estimator of modify Bayes estimator in 
parameter and survival function was the best estimator (less MSE and MPE) when we compared it 
with standard Bayes and maximum likelihood estimator.  
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INTRODUCTION 
 
 Survival analysis refers to the techniques used to 
study the time to occurrence of some event in a 
population and is often called time to event analysis. 
The survival function S(t) is defined as the probability 
that human being will surviving at time period  t. The 
two parameter of exponential distribution was used 
when failure will never occur prior to some specified 
time to. The parameter to is a location parameter that 
shifts the distribution an amount equal to to the right on 
the time (horizontal axis). Now t ≥ to, the probability 
density function of exponential distribution becomes: 
 

( ) o1 t t
f t; exp

− θ = − θ θ 
  

 
and the survival function is given by: 
 

t

S(t) f (u; )du
ω

= θ∫  

 Some studies deal with this aspects in detail and 
provide the conceptual framework and methodology for 
such analysis. In[1] show how the classical estimators 
can be obtained from various choices made within a 
Bayesian framework. A Bayesian approach to 
hypothesis testing is presented by Fernandez[2]. He 
studied the problem of estimating the mean lifetime, 
hazard rate and survival function of exponential 
lifetime model. Hahn[3] show that it is not always 
Jeffrey’ prior applied to panel models with fixed effects 
yields posterior inference free from the incidental 
parameter problem. In[4] derived Bayesian and non 
Bayesian estimators of the shape parameter and 
reliability in case of complete and censored samples 
and the MSE of estimators are computed. 
 The main aim of this study is to obtain maximum 
likelihood estimator and Bayesian estimators of the 
parameters and survival functions under Jeffrey’s prior 
and extension of Jeffrey’s prior and then compared 
between them to find the best estimator (less MSE and 
MPE). Based on simulation study, the Mean Square 
Error (MSE) and Mean Percentage Error (MPE) are 
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compared with those of their Maximum likelihood and 
Bayes estimator under prior distribution and loss 
function. 
 

MATERIALS AND METHODS 
 
 Maximum likelihood estimation: We have the set of 
random lifetime t1, t1,…tn and a vector of unknown 
parameters θ = (θ1,… θn), the ith element of the score 
vector is: 
 

( )i
i

ln L(t, )
U ,i  1,  2, ,  p

∂ θθ = = …
∂θ

 

 
 Now we can find the maximum likelihood 
estimator by using exponential population with 
parameter θ. The probability density function of two 
parameters exponential distributions is given by: 
 

o1 t t
f (t; ) exp( ), 0

−θ = − θ >
θ θ

 

 
 The likelihood function is: 
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 The score vector is: 
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 Let ( )U 0θ = , then the maximum likelihood 

estimator is: 
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 Since the maximum likelihood estimator is 
invariant and one to one mapping. The maximum 
likelihood estimator of survival function is: 
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Bayes estimation: 
Estimator of parametric: We can found Bayes 
estimator of parametric distribution by using posterior 
distribution, depend on joint probability density 
function and marginal probability density function, so 
the posterior distribution is given by: 
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 Now the joint probability density function 
f( 1 nt ,..., t ,θ) is given by: 
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 And the marginal probability density function of 
t1,…t is given by: 
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 So the posterior distribution (conditional 
probability density function of θ is given: 
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          By using Risk function, we can obtain the Bayes 
estimator, such that: 
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  Let 
( )ˆR ,

0
ˆ

∂ θ θ
=

∂θ
, then the Bayes estimator is: 
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Estimator of survival function: We can find the 
estimator of survival function; also by depend on 
posterior distribution, such that: 
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So, the estimator of survival function is given by:
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Modify Bayes estimation:  
Estimator of parametric: The extension of Jeffery 
prior is given by: 
 

( ) ( ) 1c
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So: 
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 The same way above, we can find the modify 
Bayes estimator by depend on posterior distribution as 
following: The joint probability density function is 
given by: 
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 And the marginal probability density function is 
given by: 
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 Then the posterior distribution given the data  
t1,…tn is given by: 
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 By risk function, we can obtain modify Bayes 
estimator, such that: 
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 Let: 
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Estimator of survival function: By using posterior 
distribution, we can found the survival function such 
that: 
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Simulation: Two experiments were designed to 
compare the methods of estimation, Maximum 
likelihood and Bayesian approach, using the ordinary 
and proposed tool based on varieties of parameters and 
sample sizes. Using Mean Square Error (MSE) and 
Mean Percentage Error (MPE) as criteria for 
comparisons were some new results  presented.  
 Where: 
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RESULTS 

 
 We chooses the samples with size n = 25, 50, 100 
with varieties of parameter value namely 0.5, 1, 1.5,2. 
The size of replication is R = 1000. After the 
parameters and survival functions were estimated, using 
formulas Mean Square Error (MSE) and Mean 

Percentage Error (MPE) to compare between the 
methods of estimator. 
 

DISCUSSION 
 
 In the simulation 1, when we compared parametric 
estimators  of    exponential   distribution  in  maximum 
likelihood and Bayes method, we found the Maximum 
Likelihood Estimator (MLE) is the best with 100% 
percentage valued in Mean Square Error (MSE) in 
Table 1 and Mean Percentage Error (MPE) in Table 2.  
 
Table 1: Parameter Estimation using MLE and Bayes with respect to 

MSE 

Size θ Mθ̂  Mθ̂  Best 

25 0.5 0.0101 0.0115 Mθ̂  

 1.0 0.0395 0.0441 Mθ̂  

 1.5 0.0898 0.1029 Mθ̂  

 2.0 0.1571 0.1765 Mθ̂  

50 0.5 0.0049 0.0052 Mθ̂  

 1.0 0.0189 0.0201 Mθ̂  

 1.5 0.0445 0.0469 Mθ̂  

 2.0 0.0778 0.0819 Mθ̂  

100 0.5 0.0025 0.0026 Mθ̂  

 1.0 0.0101 0.0104 Mθ̂  

 1.5 0.0212 0.0218 Mθ̂  

 2.0 0.0406 0.0417 Mθ̂  

 
Table 2: Parameter Estimation using MLE and Bayes with respect to 

MPE 

Size θ Mθ̂  Mθ̂  Best 

25 0.5 0.1600 0.1679 Mθ̂  

 1.0 0.1595 0.1659 Mθ̂  

 1.5 0.1579 0.1661 Mθ̂  

 2.0 0.1544 0.1625 Mθ̂  

50 0.5 0.1124 0.1144 Mθ̂  

 1.0 0.1108 0.1134 Mθ̂  

 1.5 0.1116 0.1139 Mθ̂  

 2.0 0.1095 0.1121 Mθ̂  

100 0.5 0.0800 0.0812 Mθ̂  

 1.0 0.0808 0.0816 Mθ̂  

 1.5 0.0782 0.0790 Mθ̂  

 2.0 0.0803 0.0808 Mθ̂  
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Table 3: Survival Estimation using MLE and Bayes with respect to 
MSE 

Size S ( )MŜ t  ( )BŜ t  Best  

25 0.5 0.0031000 0.0035000 ( )MŜ t  

 1.0 0.0032000 0.0034000 ( )MŜ t  

 1.5 0.0030000 0.0032000 ( )MŜ t  

 2.0 0.0031000 0.0030000 ( )MŜ t  

50 0.5 0.0015000 0.0017000 ( )MŜ t  

 1.0 0.0012000 0.0014000 ( )MŜ t  

 1.5 0.0013000 0.0015000 ( )MŜ t  

 2.0 0.0012000 0.0015000 ( )MŜ t  

100 0.5 0.0000748 0.0000741 ( )MŜ t  

 1.0 0.0000763 0.0000760 ( )MŜ t  

 1.5 0.0000714 0.0000711 ( )BŜ t  

 2.0 0.0000760 0.0000750 ( )BŜ t  

 

 

 
Fig. 1: Comparison parametric estimators in different 

sample size using MSE 
 
Also, when compared the estimators of survival 
function for exponential distribution, we found the best 
estimator is MLE with 66.66% percentage valued with 
MSE in Table 3 and MPE with 100 % in Table 4. 
 In the simulation 2, when we compared the best 
estimator (MLE) in simulation 1 with proposed 
parameter (modify Bayes), we found the  best estimator 
is proposed estimator , that is explain in MSE ( Fig. 1) 
and MPE (Fig. 2),because this proposed gives the value 
of MSE and MPE less than the valued in other 
estimators. We have the same thing if we compared 
survival estimators (proposed and MLE), we found the 
proposed survival estimator with MSE in Fig. 3 and 
MPE in Fig. 4 is the best estimator. 

Table 4: Parameter Estimation using MLE and Bayes with respect to 
MPE 

Size S ( )MŜ t  ( )BŜ t  Best  

25 0.5 O.1865 0.2152 ( )MŜ t  

 1.0 0.1825 0.2101 ( )MŜ t  

 1.5 0.1908 0.2209 ( )MŜ t  

 2.0 0.0802 0.2082 ( )MŜ t  

50 0.5 0.1211 0.1291 ( )MŜ t  

 1.0 0.1186 0.1272 ( )MŜ t  

 1.5 0.1203 0.1289 ( )MŜ t  

 2.0 0.1176 0.1257 ( )MŜ t  

100 0.5 0.0836 0.0868 ( )MŜ t  

 1.0 0.0839 0.0866 ( )MŜ t  

 1.5 0.8060 0.0833 ( )MŜ t  

 2.0 0.0833 0.0858 ( )MŜ t  

 

 
 
Fig. 2: Comparison parametric estimators in different 

sample size using MPE 
 

 

 
Fig. 3: Comparison survival estimators in different 

sample size using MSE 



J. Math. & Stat., 5 (2):130-135, 2009 
 

135 

 

 
Fig. 4: Comparison survival estimators in different 

sample size using MPE 
 

CONCLUSION 
 
 The new proposed estimator of modify Bayes 
estimator in parameter and survival function is the best 
estimator (less MSE and MPE) when we compared it 
with standard Bayes and Maximum likelihood 
estimator.  
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