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'Abbas Y. Al Bayati’Rostam K. Saeed afiBaraidun K. Hama-Salh
1Department Mathematics, Mosul University, Mosuhgir
’Department of Mathematics, Salahaddin UniversitpjlElraq
3Department of Mathematics, Sulaimani UniversitylaBuoani, Iraq

Abstract: Problem statement: The lacunary interpolation problem, which we haeestigated in this
study, consisted in finding the six degree spli(® &f deficiency four, interpolating data given the
function value and third and fifth order in theental [0,1]. Also, an extra initial condition was
prescribed on the first derivative. Other purpo$ehis construction was to solve the second order
differential equations by two examples showed thatspline function being interpolated very well.
The convergence analysis and the stability of thpraimation solution were investigated and
compared with the exact solution to demonstrate pitesscribed lacunary spline (0, 3, 5) function
interpolation.Approach: An approximation solution with spline interpolatiéunctions of degree six
and deficiency four was derived for solving initielue problems, with prescribed nonlinear endpoint
conditions. Under suitable assumptions, the existgnuniqueness and the error bounds of the gffline
3, 5) function had been investigated; also the uppands of errors were obtaindtesults: Numerical
examples, showed that the presented spline fungtiomed their effectiveness in solving the second
order initial value problems. Also, we noted thiag better error bounds were obtained for a snel s
size h.Conclusion: In this study we treated for a first time a laoyndata (0,3,5) by constructing
spline function of degree six which interpolatee tacunary data (0,3,5) and the constructed spline
function applied to solve the second order ini@ue problems.

Key words: Existence and uniqueness, spline function, matheatathodel, 2nd order differential
equations

INTRODUCTION deficient lacunary spline for solving Cauchy praoble
also. Saxena and Venturffloused two-point boundary

The initial value problems play an important rivie ; . : !
. . .value problem by using lacunary spline function ebhi
mathematical physics, because many problems in

; > _interpolates the lacunary data (0, 2). Ahmetdal.
science and technology are formulated mathematicall S .
. . found the approximation solution of the fourth arde
in boundary value problems as in heat transfer an

L acunary spline functions.
deflection in cables. y'sp

Several numerical methods have been investigatedrobllr;}r:_1IS study, we fry to solve the initial value
for calculating the solutions of such problems. Amgo P ‘
these, finite diff_erence techniques and the shgoti_n Y =06V Y) YG) = Y, Y () = Y, 1)
method play an important role. These methods peovid
the value of the unknown of some grid knots. If we
want the solution at the points, there is a need o
interpolating these values. Also, spline functiaofs
Coing hese probieie o Mo SIS Bty 1yl Ly aoy v

The literature on the numerical solutions of aiti q=0,1, ..., n-1
value problems by using lacunary spline functiosis i
not too much. Gyovdfl solved Cauchy problem by for all x0[01] and all real y,y, v,Y,. These
sing modified lacunary spline function which conditions ensure the existence of the unique isolut
interpolating the lacunary data (0, 2, 3) SaXénased  of the problem &'

y using that f OC"'([0,1]xR?), n=2and that it
satisfies the Lipschitz continuous:
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This study is organized as follows: First consider

The existence and uniqueness theorem for spline

the spline function of degree six is presented twhic function of degree six which interpolate the laayna

interpolates the lacunary data (0, 3, 5). Someréimal

data (0O, 3, 5) are presented and examined.

results about existence and uniqueness of theesplin

function of degree six are

convergence analysis is studied. To demonstrate t

convergence of the prescribed lacunary spline fanct
numerical examples presented, finally, we presdtiee
conclusion and discussion of the result.

MATERIALSAND METHODS

Descriptions of the method: We present for the first

time according to our knowledge a six degree sglihe

3, 5) interpolation for one dimensional and given

sufficiently smooth function f(x) defined on i =,[Q
and A, 0=X%,<X,<X,<..< X,=1.

Denote the uniform partition of | with knotg=xih,
where i =0, 1, 2, ..., n-1. We denote By, the class

of six degree splines S(x) such that:

(x—x,)°

5 o

So(x)= Yo + (X_ Xo)y0+ (X— Xo)2 ao,2+
(2)

(x- Xo)5 (

(x- Xo)4a0.4 + 120 Yo D+ (x= Xo)sao.e

on the interval [¥ x] where g; j = 2,46 are
unknowns to be determinéd.

Let us examine now intervals;[%.1], i = 1,2,...,
n-2. By taking into account the interpolating cdiudis,
we can write the expression, foi()8 in the following
form:

s.(x):yi+(x—x)a,1+(x—x.fg2+_(x‘6xi> g+
(3)
Cyia XD s
(x=x)'a,+ 0 ) +(x— % )°a,

where, a,,i=1(1)(n- 1), 1,2,4,¢ are unknowns we

need to determine it.
On the last interval [x, x,] we define §x) as
follows:

S, (X)= Yoot (X=X _pa, 1t (X=X, 1)2 a, g
x=x_) .
+%yn—l+(x_xn—l)4an-l,4 (4)
X=X _)°
+ ( 12n0 1) yn—l(S) + (X _Xn—])ean-l,ﬁ
where, ai;, j = 1,246 are unknowns to be
determined.

124

introduced and alsol heorem 1: Existence and uniqueness: Given the real
Haumbers y@, y¥(x;) and y’(x) fori=0, 1, 2, ..., n,

then there exist a unique spline of degree six\angn
the Eq. 2-4 such that:

S(%)=y(x)
gn (X| ): y(r) (X ), r=3,
and

S(%)=Y (%)

for i =0,1,...,n (5)
Proof: Let as define a spline function S(x) as follows:

S (x) when X3 [x,.% ]
S(x)=<8§ (x) when X0 [x,x, ];i= 0,1,...,&

S, (X) when X3 [x,_, ,%,]

where the coefficients of these polynomials arébéo
determined by the following conditions:

S (%)= S X )= Y

SP(%4)=Su %)= ¥u” . r=38 ;= 0L..r  (6)
S ()§+1): $+1 (X+1 )

and

S (%)= Yar Sp1” (%)= v, 1 1= 35 @)

To find uniquely the coefficients iny&) of Eq. 2
by using the condition (3.2) where i = 0, we obttia
following:

h’a,,+ H'a,+ K ae= y- ¥~ hy-
h3 3) _ h5 (5)
50 "0V

2
2ng,,+ 120h g,= 9 §- -2
and
720hg,= ' - ¥
From the boundary condition (3.3) we have:

(?_h_A

24

h2

2hg,, + 4H'g,+ 6 g,;= a- ¥ Y ®

Solving these equations to obtain the following:
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1 h
Q2 :F[yl_ Yo~ hyo]_z[y(f) +3y(g)]

h® (5) (5) (g)
—_[4y® +5
gty Yo
04 = o[y - Y91y O+ 2y (10)
= ganls TYolT s °
-1 s 5)
85 = oo Vi + 2y (12)

720h
Substituting these values ofa& 4 and 3 we get:

2 h
a1,1:_[y1_y0_3y0]

+E[y‘3) +y 9]
h 127t 70

. (12)
- E[Yf’) +y§]

We shall find the coefficients of(8) for i = 1, 2,
3, ..., n-2. Here we have:

h? h®
ha,+Ha,+ Ha+ hg= y- yo ¥-0 ¥
2
2ang,+ 120 = - §-T §
720ha, = -y
and

h? h?
a,-8,,+ 2ha, + 4h g+ fﬁ%.@?; S?-ﬂ 8

The coefficient matrix of the system of Eq. 12 and
16 in the unknown;g, i = 1, 2,...,n-1 is a non-singular
matrix and hence the coefficientg,d = 1, 2,...,n-1 are

determined uniquely and so are, therefore the
coefficients g, g4 and .
Finally, for finding the coefficients of ,3(x), we
have:
hzan—l,2+ h43n—1,4+ i 16~ Y Yoi MV,
W oo N e
6 yn—l 120yn—1
h2
24han—1,4+ 120A Q16= 9)_ 32) 1 H)é_? Si):
720“@171,6 = }9:)_ yrsr)l
and
1 h
&1 :F[Yn ~Yoi—hy, J]_Z[y(?]) + 3y(::r) 1
h? (5) (5)
+—[4y® +5
720[ yn ynfl]
Solving these equations, we see that the

coefficients a1, i = 2, 4, 6 are uniquely determined.
Hence the proof of Theorem 1 is completed.

The error bound of the spline function S(x) which
is a solution of the problem (5) is obtained foe th
uniform partition | by the following theorem:

Solving the first three equations, we obtain theTheorem 2: Let yDCe[o,]_] and S(X) be a unique Sp|ine

following:
1 1 h
a,= _F g, +F [Yi+1 - Y ]_Zl[y.(ﬂ + 3Yi(3)]
he (23)
tooglayia + 5yl
_ 1 e _ye_ N e ®
a1‘,4 _%[yi(ﬂ -V ]_HZP’M +2yi ] (14)
__ 1 e y®
&6 __[yi+1 -Yi ] (15)

720h

Substituting the values ofa a, and g in the
fourth equation, we obtain the following relation
between g, ; and g, where §x) fori=1,2,...,n-2:

2 h?
QT a,= h V= ¥ ]+1_2[yff)1 + y§3)]
(16)

h3 5 5
‘E)[yi(& +y ]

function of degree six which a solution of the gesb
(5). Then forxO[x;,x,,,];i=1, 2,..., n-1:

s 00- ¥ 0 <

h® "W (h) for r=4,5,6 and £ 0,1,....A 1
%hs‘rws(h), for r=2,3 and £ 0,1,...r 1
ih*"WG(h), for r=1 and E O

20

G2\ (h), for =1 and F 12,8 1

360

11 .

—h"W;(h) for r=0 andi= 0

720

2i+3 .

h®W,(h) for r=0 andi=l 2,..,n—-1

(120) 5 (h)

where, W(h) denotes the modules of continuity &P,y
defined by|W,(h)| = max| W (x} :0< x< }.
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To prove this theorem we need the following n° h?

. - (5)(9 )+ (5)(9 )

lemma: 120 Li 2,
m] <
h® +— h° y®(0,.) - ®)(g
Lemmal: Let yOC°[0,1]. Then,| |< W, (h) for 72 (C) E)y (8,)
i=0,1,.. n1. <L how, (h)
Where: 60
' Hence:
€178~ ¥ (17)
i

and W(h) denotes the modules of continuity &f.y |eiv1| s% h W, (h)
Proof of lemma 1: If yOC°[0,1] then using Taylor's Which completes the proof of the Lemma 1.

expansion formula, we have:
Proof of Theorem 2: Let xO[x,,x;,]wherei=1, 2, ...,

. (x=x)* . n-1.
= )+ - X: )+ — .
YOI =y )y () ; V™) We have from Eq. 3 by applying Taylor's
.+ (x-x,)° @) expansion formula we have:
720

S%(x)= 7203 (20)

where, x; <8 <x, and similar expressions for the

derivatives of y(x) can be used. Using (20) and (15), we have:

Now from Eq. 16 and using (17) we obtain:
2086 | _|y ()| _
ERIGENRIC SIS w, (h)
5) 5) _y(s)(x) (6)(X)
€1t 6.7 __); @1| )} @2|
120 360 (18)
o From Eq. 3 we have:
yl (3|)_ y| (4|)

S? (x)= y® - 720ha,

where x; <6, <x,,, fori=1,2,..,n1;,s=1,2, 3,4

and: from which we obtain:

he S7 ()= ¥ (x)= ¥ - y*(x)— 720hg, (21)
==V B 350 ©:,
h (19) From Eq. 21 we get:
+—y®(® )-—y(s)( 40
[ 5 00~ ¥ (0] < hw ()

WHere x,<8,0,8,0 850840 X by using Eg. 15 and using Taylor series expansion o

We see that the system of Eqg. 18 and 19 is thg®)(x) and y®) about x = x
unknowns g, i =1, 2, ...,n-1 has the unique solution: From (5), we haves® (x )~ y® (x ) = 0, from which

6 =M, - M+ .+ C17 we obtain:
Where: S 00- ¥ (x) = X (s? -y () d)S
hS 5 5 5 5 X :
m ==y ”(91.)+ “(92|)+ 72y( ’6s,) Jhws(h)dt: H wy, (h)
120y (8,,)

To find |33) (x)—¢3)(x)|, we need the following

It is clear that: equation:
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yOX) =yO(x,) +(x = x, )y O(x ) + Then:
%y“)(xi) +%y‘6)(xi) IS 0=y <l - Y05 ]+ 28, - § (x)

h3
+2 |9gg , - 4y" 25
(3)+ 24ha +_ y(S) (X 24| a,4 y (X} ( )

SRIGENAIOE

+1201 y© B, )= ¥ (%)= (x- X )W) x)
(x - Xi)5 (x=x ) (6)
+—2 5 B,)

h5
+7)|7205},4 - ¥ (x)
(22)

y(s)(xi) T

Using Eq. 13, 14 and apply Taylor's expansion
formula, we can show that:

<h|24g, - ¥ (5 |+ | Y B8,)- ¥ 8, )

h4
23, - Y (x)so-W(h) (26)
where, X <BuBy <Xy - | ’ 1 30
From (50) and using Taylor series expansion, we
get: and
4) h? (6) 6) h’ 4) 2h2 \ 27
243, - ¥ 0 )< v© )= ¥ <" Wh) (23)  [96a, - 49 (¢ )= - W () (27)
where, x; <a,,a, <X, . From (25), using (26), (27) and Lemma 1 we can
From (22) and using (23) we get that: get:
h3
EHORMAOEAI0) @4 500~y 0ols E 25) 1w (h)
By (5), S (x)- % (x)= 0, from which we obtain: Carrying on similar arguments we easily find that:

IS ()= y(x) < &1 3w (h)

S 0=y (x)| = T

[(s? - y© ) d

< [[s? (- %@ (tfat This proves Theorem 2 for0[x,,x.,], i =1, 2,...,n- 1.
L . For x0[x,,X,] , we have from (2):
< j% (h)dt= h—w (h)
" S ()= v () =| 7208, - ¥ ()
To find [S(x)-y (x| we need the following =|y0<6>(x) _y<6)(x)| <w,(h)
equations:
o and
Y0 =y (x) *+ (x = %)y ) + ==y (%) | |
S ()- ¥ (x) < hw (h)
+ (X _X|)3 y(4](xl) + (X ;Z|)4 y(5)(xl)
Carrying on similar steps as for the case

y© (o) x0O[x,,x.,,], i=1,2,...n-1, we find the following
inequalities: |S” ()~ y* ()< W (h), |SY ()~ ¥ (x)

sh—;ws(h) and|S'(x), - ¥' (x) < h—; W, (h).

v \5
L xX=x)
120

and from Eq. 3 that:

S(x)= a1+2haz+( %)’ P (xr 40 x)a
(x—-x)* But for the first derivative ofg(x), we have the
[ R S EA

24 following inequality:
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|S00-y (< h2a,- ¥ (%)

+h—|24ao,4 - ¥ (%] +LI 7203~  04))
h® h®
<7—W (h)+—W (h)+EOW (h)—— W (h)

Also for S(x), we get:

[.00- Y0 s | 2a.- ¥ (o}

h* he
€|4ao,4_ ¥ (Xo1+_ 7203 ,~ ¥ (% |)

h® h® h6 11K
<—W,(h)+—W,(h)+ W h)=——=W;(h
=y s(h)+ a4 () + ()= 720 (h)

This proves Theorem 2 fof%x,, X].
Hence, the proof of Theorem 2 is completed.

RESULTSAND DISCUSSION

We present numerical results to demonstrate thes® (x)——[yffi

5 (2):123-129, 2009

h
o~hydl - *[y Iy
24 +

3y ]+ [4y(5) +5y5]

()
y" +h 24h[y
)

[y ' +2yp

+—y©+
120"

{720h[y(5)+2 (5)]} =Y,(%)

Also it is easy from Eq. 2 and 3 to verify that:
S(Xi+1) = Yz fori=0,1,..., n-1:

, 2 2
S‘(X)=—7a1+f[y+1—y]+

2
2y +ﬁ11yff’> +10y]

S (x)= o Ly —yere E[Zy}ff +y{

and

¥l

convergence of the spline (0, 3, 5) function ofgrée

six which constructed before to the second ordiéain

value problem.

From (5) we have:

SV (%.0)= ¥ and S (x.,)= ¥

Problem 1: we consider that the second order initial

value problem y"=l(y'+y) where
2

y(0) = y*(0) = 1 with the exact solution y(x) &,

Problem 2: we consider

y(0)=y(0)=0
From Eq. 2 it's easy to verify that:

h3
SO(Xl): Yot hy0+ h2602+€ %"' (%= Xof &,

X1[0,1] and

that the second order
initial value problem y™y = x where [}0,1] and

From 1 and 2, with using the valued @,
i=0,1,..,n1landj= 24,6 given in the Eq.®-We
get:

— 2 h? 3) (3)
&,1= ", F[yi+l_yi]+1_2[yi(+l+y| ]

h4
_Ho[yi(ﬂ +y ]

It turns out that the six degree spline which
presented in this study, yield approximate solutioat

+h_5y ) +hea, is O(tP) as stated in Theorem 2. The results are shown
120”° 6 in the Table 1 and 2 for different step sizes h.
Table 1: An absolute maximum error for S(x) and @érivative's for problem 1
h ls)- v, s 0=y ). 5" 00-y (<), Is" 00~ y" ().
0.1 1.x10%° 4x10° 1.8x10° 1x10°
0.16 9.6x10%° 4.2x10° 31.7%10° 17x10°
0.2 x10° 1.4x107 4.1%10° 69x10°
h [+ -y 4], [+ 007 [+ 0=y 4],
0.1 4.%10° 1x10° 5.1%10°
0.16 2.1&10* 17x10° 13.5¢10°
0.2 21x10* 63x10° 113x102
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Table 2: An absolute maximum error for S(x) and éérivative’s for problem 2

h [s00=y(x), s 0=y (). )=y (<, (0= y" (),
0.1 10° 4x10° 16.7%10° 2x10°
0.2 %10° 4x10° 18.4%10° 4x10°
0.3 x*10° 29x107 20.43%10° 7%x10°
h 2 00- o 00- 0] o o0- 0o,
0.1 4.3%10° 2x10° 5.34x102
0.2 4.8%10° 4x10° 5.9x107?
0.3 5.3610° 7x10° 6.5x102
CONCLUSION 6. Sallam, S. and M.A. Hussien, 1984. Deficient

In this study we treat for a first time a lacundata

(0,3,5) by constructing spline function of degrér s
which interpolates the lacunary data (0,3,5) anel th

constructed spline function applied to solve theosd 7.

order initial value problems. Numerical examples,
showed that the presented spline function proved th

effectiveness in solving the second order initialue 8.

problems. Also, we note that, the better error lgun
are obtained for a small step size h.
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