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Abstract: Problem statement: Some properties of certain integral operators on some subclasses were 
studied. Approach: Certain classes defined by integral operators were introduced. The well known 
definitions and preliminaries results were stated. Results: Having new integral operator, the 
characterization problems were discussed. Thus sufficient conditions were given. Conclusion: Therefore, 
by having new integral operators, sufficient conditions were determined. In fact, other properties from 
this class could be obtained. 
 
Key words: Univalent functions, fractional calculus, logarithmic coefficients, integral operators 

 
INTRODUCTION 

 
 The study of integral operators has been rapidly 
investigated by many authors in the field of univalent 
functions. Recently, various integral operators have 
been introduced for certain class of analytic univalent 
functions in the unit disk. In this study, we follow the 
similar approach by introducing a logarithmic 
coefficients of analytic functions in the punctured disk. 
We begin by giving some well-known notations and 
preliminary results on the class defined by integral 
operators and also the basic knowledge of logarithmic. 
Later we derive the integral operator aforementioned. 
Once the integral operator being derived, we shall 
discuss on the sufficient conditions of certain classes 
defined. 
 Let denote by A the class of functions f normalized 
by: 
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 Which are analytic in the open unit disk: 
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 We also denote by S the subclass of A consisting 
of functions which are also univalent in U. 
Furthermore, we denote by T the subclass of S 

consisting of functions whose nonzero coefficients, 
from the second one, are negative and normalized by: 
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 Associated with each function f in S are its 
logarithmic coefficients γn defined by: 
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 The numbers γn are called the logarithmic 
coefficients of f[9].  
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functions f∈S*, but is false for the full class S. 
 In particular case, the Koebe function 
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  We next define the following fractional calculus 
(fractional integrals and fractional derivatives) given by 
Owa and Srivastava[7,8]. 
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Definition 1: The fractional integral of order λ is 
defined for f (z) ∈A by: 
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where, the multiplicity of 1(z )λ−− ζ  is removed by 
requiring (z )− ζ  to be real when (z ) 0− ζ > . 
 
Definition 2: The fractional derivative of order λ is 
defined for f (z)∈A by: 
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where, the multiplicity of (z )−λ− ζ  is removed by 
requiring (z )− ζ  to be real when (z ) 0− ζ > . 
 
Definition 3: Under the hypothesis of definition 2, the 
fractional derivative of m+λ is defined for a function f 
(z)∈A by: 
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Remark 1: From definitions 1, 2 and 3, we see that: 
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 Therefore, we say that:  
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for any real λ.  
 Consider the following integral operator: 
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where, fi (z)∈A and αi>0, for all i∈{1,2,3,…..m}. 
 These operators are introduced by Breaz and 
Breaz[3] and studied by Breaz[1,2] and Breaz, Owa and 
Breaz[4]. 
 

MATERIALS AND METHODS 
 
 Next we state two known definitions that lead to 
our definitions: 
 
Definition 4: A function f∈A is said to be in the class 
KD(µβ), if satisfies the following inequality[6]: 
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for some µ≥0 and 0≤β< 1.  
 
Definition 5: A function f∈T is said to be in the class 
(K, A, B, µ) -UCV iff it satisfies the condition[5]: 
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where, -1≤B<A≤1, -1≤B<0, 0≤µ<1, kζ ≤ and all z∈U. 

 Now we introduce the following subclasses of 
KD(µβ) and (K, A, B, µ)-UCV. 
 
Definition 6: A family of functions if A∈ , i {1,...,m}∈  

is said to be in the class KDFm (µ, β, α1,…, αm), if 
satisfies the inequality: 
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 For some µ≥0 and 0≤β<1, where Fm (z) is defined 
as in (1). 
 
Definition 7: A family of functions fi, i {1,...,m}∈  is 
said to be in the class (K, A, B, µ, α1,…, αm)-UCVFm iff 
it satisfies the following condition: 
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where, -1≤B<A≤1, -1≤B<0, 0≤µ<1, kζ ≤ , where Fm (z) 

is defined as in (1).  
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RESULTS 
 
Theorem 1: Let Fm (z) be the integral operator defined 
by (1) then: 
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and 
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where, zD λ  and zD −λ are the fractional derivative and 

fractional integral respectively of f∈S and γn (n = 1, 
2,…) denote the logarithmic coefficients of f.  
 
Proof: From (1) we have: 
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 Since fi(z)∈S, then by using logarithmic 
coefficients γn, we get: 
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 Hence:  
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 By using similar method we get the result (5). 
 

DISCUSSION 
 
 Having classes defined previously, we first give a 
sufficient condition for a family of functions fi∈KDFm 

(µ, β, α1,…, αm). Before embarking on the proof of our 

result, let us calculate the expression m
m
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F '(z)
, required 

for proving our result.  
 Recall that, from (1), we have: 
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 Since fi (z)∈S, then by using logarithmic 
coefficients γn, we get: 
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Theorem 2: Let the function fi ∈T for i∈{1,…m}. 
Then the functions fi∈KDFm (µ, β,α1,…, αm) for 
i∈{1,…m} if and only if: 
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where, µ≥0, 0≤β<1 and αi >0 for i∈{1,…m}. 
 
Proof: First, consider: 
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 If (7) holds then the above expression is bounded 
by 1-β and consequently: 
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 Hence fi∈KDFm(µ, β,α1,…, αm). for i∈{1,…m}. 
 Conversely, let fi∈KDFm(µ, β, α1,…, αm). for 
i∈{1,…m} and prove that (7) holds. 
 If f i∈KDFm(µ, β,α1,…, αm)i∈{1,…m} and z is real, 
we get from (2) and (6): 
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 That is equivalent to: 
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 The above inequality reduces to: 
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 Let z→1− along the real axis, then we get: 
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 This gives the required result. Next, we consider 
the class: 
 

f i∈KDFm (K, A, B, µ, β,α1,…, αm)-UCVFm 
 
Theorem 3: Let the functions fi ∈ T. for i∈{1,…m}. 
Then the functions fi∈KDFm(K, B, µ, β,α1,…, αm)-
UCVFm for i∈{1,…m} if and only if: 
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where, -1≤B<A≤1-1≤B<0, 0≤µ<1, 0≤K<∞ and αi>0 for 
i∈{1,…m}.  
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 Then we have: 
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 If we choose z and ξ real and letting z→1- and ξ→-
k+, we obtain: 
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 This is equivalent to: 
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 By hypothesis, this implies that fi∈(K, B, µ, α1,…, 
αm)-UCVFm. 
 
 
 
 
 

CONCLUSION 
 
 The integral operator defined was motivated by 
Breaz and the group[1-4] This operator can be 
generalised further and many other results such as the 
coefficient estimates and distortion theorem can be 
obtained. 
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