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Abstract: Problem statement: In the presence of multicollinearity, the estiroatiof parameters in
multiple linear regression models by means of GudirLeast Squares (OLS) is known to suffer severe
distortion. An alternative approach was to usentwglified OLS which was based on the latent roots
and latent vectors of the correlation matrix of iteependent and dependent variables. This proeedur
is called the Latent Root Regression (LRR) whictveg the purpose to improve the stability of the
estimates for data plagued by multicollinearity wéwer, there was evidence that the LRR estimators
were easily affected by a few atypical observatitre we call outliers. It is now evident that the
robust method alone cannot rectify the combinedblpros of multicollinearity and outliers.
Approach: In this study, we proposed a robust procedurehierestimation of the regression parameters
in the presence of multicollinearity and outliefge called this method Latent Root-M based Regrassio
(LRMB) because here we employed the weight of theskimator in the weighted correlation matrix.
Numerical examples and some simulation studies wezeented to illustrate the performance of the
newly proposed methodResults. Results of the study showed that the LRMB metisochére efficient
than the existing method€oncluson/Recommendations: In order to get a reliable estimate, we
recommend using the LRMB when both multicollingagihd outliers are present in the data.
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INTRODUCTION where, () =Y -Xp . This gives the OLS estimator for
Consider a multiple linear regression model: B:
Y=XB+e 1) B=(xx)"xY (2)

Where: _ According to the Gauss- Markov Theorem, the
Y = The m1 vector of standardized dependentOLS estimators, in the class of unbiased linear

variables estimators, have minimum variance that is theyBarst

X = The nxk full rank matrix of standardized known | jnear Unbiased Estimator (BLUE). Nonetheless, the
constants presence of multicollinearity will produce inflated

XB = The k<1 vector of model parameters standard errors that will lead to misleading partame

¢ = The 1 vector of random disturbances with jnferences. To remedy this problem, HawKingGunst
e~NID (0,0°) _ and MasoR!, Gunstet al.®! and Lawrence and Arthtir

p = The number of independent variables have introduced a new biased estimation procedures

n = The number of observations.

known as Latent Root Regression (LRR) to improe th
_ o _ precision of the regression estimates. The major
Using the least squares criterion, the estimatd@ o advantage of LRR is that it is not only identifitie
are found by minimizing the sum of squares resitual  mylticollinearities present in the independent alés,
but also allows the researcher to distinguish betwe
_~ 2 predictive and non predictive multicollinearity, rioe
Q=2 r(p) / . ;
= appropriately adjust the OLS estimates for the non
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predictive multicollinearities. However, this tedtye Gunst et al®! and Lawrence and Arthiflr

is inefficient if the underlying disturbances aretn suggested small latent roots and latent vectorshich
normal, which may arise as a result of outliers.ass Aj < 0.3 andyy| < 0.1 which indicates the presence of
alternative, we may turn to robust methods whiah ar non predictive singularities. But later, they digered
not sensitive to the presence of outligfs that a tighter cut-off value ofj < 0.2 and | < 0.1
Nevertheless, robust method alone cannot overchene t could improve the analysis.

combined problem of multicollinearity and outliets. Suppose now that the latent vectgssyi, ., Yp1
this study, we propose a Robust Latent Root Reigress correspond to non predictive near singularitiese fbn

to rectify these two problems simultaneously byngsi predictive multicollinearities are eliminated andly
Latent Root Regression based on robust weightetie predictive are retained. The above OLS estimato
correlation matrix. can be adjusted by setting, =a,=...=a,,=0. Then

the modified least squares coefficients are:
MATERIALSAND METHODS

The Latent Root Regression (LRR): The latent root éLRR :_nzk:amo (4)
regression utilizes the latent roots and latentorecof [

the correlation matrix of the dependent and inddpah

variables, denoted as A. The latent rod§sand latent  Where:

vectorsy; of A’A are defined by: At
Y Y :kyo#j:p, p+l,....,k

ao.
]
2y -1
|A'A-\]|=0 and(A'A-Af)y;=0 j=0,1, ..,k ;“{Of)‘f
k 2 -
Analysis of these latent roots and latent vectoebies  with residual sum of squareSSE ., = nz(zyi] .
one to: =Y
. . o If all of the principal components for the
» Identify near singularities in X correlation matrix of the dependent and independent

» Determine whether the near singularities havevariables are predictive, then none of the'sequal

pred|_ct|ve value . ) zero, the latent root estimator and the OLS estimat
« Obtain the modified least squares estimates ofi|| pe identical.

parameters which adjust for non-predictive near ¢ js well-known that the variance covariance

singularities . . L _
g matrix for the OLS estimator is given b§(x'x)™" and

The OLS estimator in (2) can also be expressed iits trace (sum of diagonals) represents its un hte

terms of these latent roots and latent vectors: mean squared error:
B= _njz:amo @)  MSE@)=c’t(Xx'X)" (5)
Where: or in terms of latent roots of X’X
n 2
=2 (% V) MSE@)=0?3 ¢ (®)
a; = kyoi)\j_1 :
;yof}\fl ¢, are the latent root of X'X and are ordered such

that 7, < ¢, ... ¢,

ij'Z(Vlijzj,---:ij) and the residual sum of squares For a near multicollinearity situation, ¢,

given by: approaches 0 and (6) implies theiSE@) approaches
o infinity, that is B is subjected to very large variance.
2 . . . . .
SSE=n? Zk:h This inflation cause the estimation becomes less
T A accurate and less precise, thus unstable.
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Robust M-estimator: The OLS estimation method the weighted correlation coefficient between the
optimizes the fit of the model by minimizing thenswwf  dependent and the independent variables. We may use
the squared deviations between the actual andgieedi the weight from the final step of any robust estions,
Y values, Z(y—y)z. The OLS method can be butin this study the weight is confined to theafistep

of the robust M-estimation. The pair wise correati
coefficient in Eg. 9 is modified to obtain a weigtt
pair wise correlation coefficient, as follows;

) iz;:wi(vi =Y (%, -X)

Hubef! developed a group of estimators called M- "™~ [/ — ) — 2
estimators, which are based on the idea of repgatie [Z_;,Wi (Yi ‘Yw) ][Z}W. (Xi -X w) j

squared residualsg’, with another function of the

represented as:

mmi:é (7)

(10)

residuals, given by: Where:
n _ iWiYi _ iwixi
min >"p(¢) (8  Yu=-Z — andXw=-L —
i=1

2w 2w,

i=1 i=1
where, p is a symmetric function with a unique
minimum at zero. The robust M-estimates (ROBM) are  In this study, we have chosen the Tukey’s Biweight
calculated using Iteratively Re Weighted Least Sesia function in the M estimation technicft. By using
(IRLS). In IRLS, the initial fit is calculated artien a  (10) a robust weighted correlation matrix for degemt
new set of weights is calculated based on thetesfil and independent variables, which originally denaisd

the initial fit. The iterations are continued undl A can be formulated. Based on this weighted
convergence criterion is met. correlation matrix, the latent roots and the lateattors

are computed and the latent root routines are then
Robust latent root regression: Robust latent root incorporated to estimate the parameters of the mode
regression incorporates resistance in the ordilent ~We call this method the Latent Root- M based
root regression. This is done by imposing weighthews ~ Regression (LRMB) because here we have employed
correlation matrix of the dependent and independerfhe weight of the M-estimator in the weighted

variables, A’'A. correlation matrix. We would expect the modified
The pair wise Pearson correlation coefficient formethod to be more robust than the OLS, ROBM and
the two variables is defined as: LRR.
n RESULTS

Z(Yi_v)(Xi ) (9)  Numerical example:
_ ple. In order to compare the
n _ n _ performance of the LRMB with the other existing
J 2 007 67

methods such as the OLS, LRR and ROBM, two real
data sets are considered. The first data set pgseHen
Palm Oil data which is taken from the Malaysiann®al

Where: Oil Board'. The dependent variable is the palm oil
Z":Y_ anx' annual export (tonnes) while the independent viasab
V=2 gndx=5=_ are oil palm planted area (hectares) and crude pdlm

n n production (tonnes). By incorporating the weight
obtained from the final step of the ROBM estimator,

The correlation coefficient, r in (9) is based onYields the robust-weighted correlation matrix witte
corresponding latent roots and latent vectors whieh
displayed in Table 1 and 2, respectively. The gmes
of outlier in the data was detected by using Robust
_ ! Mahalanobis Distance (RMBYY The standard error,
affected by outliers are proposed to replacandy in  confidence interval length and the® Rf the four
(9). Following the idea of Mokht8, we propose using methods are shown in Table 3.

3

sample means andy , respectively, which are known

to be very sensitive to the presence of outliers.af
alternative, a robust location estimates which lass
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Table 1: The robust-weighted correlation matrix

Y X1 X2

1.0000 0.9918 0.9923
0.9918 1.0000 0.9898
0.9923 0.9898 1.0000

Table 2: The latent roots and latent vectors of ribteust-weighted

correlation matrix

1 2 3
Aj 2.9826 0.0102 0.0072
Yi 0.5776 0.0864 0.8117
0.5772 -0.7464 -0.3313
0.5773 0.6598 -0.4810

Table 3: The standard error, confidence intervagtle and the Rfor

oil-palm data

B1 B2 R
oLS Est.  7.204 -1.5403
SE 32113 0.9187 0.5104
t 2.2433 -1.6765
C.| (0.482,13.925)[13.443]  (-3.463,0.383)[3.846]
ROBM Est. 1.3212 0.4346
SE 05261 0.1505 0.9824
t 2.5111 2.8872
Cl (0.220,2.422)[2.202] (0.119,0.749) [(0.63]
LRR  Est. 0.7771 0.2979
SE 0295 0.0979 0.4067
t 2.634 3.043
C.l (0.160,1.395) [1.235] (0.093,0.503) [0.410]
LRMB  Est. 1.1402 0.4873
S.E  0.2305 0.0956 0.9891
t 4.9466 5.0973
C.l  (0.658,1.623)[0.965] (0.287,0.687) [0.400]

Table 4: The standard error, confidence intervagtie and the Rfor

Gujarati data

B: B2 R
oLS Est. 0.9415 -0.0424
SE  0.8229 0.0807 0.9635
t 1.1442 -0.5261
Cl  (-1.004,2.887)[3.891]  (-0.233,0.148) [0.381]
ROBM  Est. 1.0132 -0.0503
SE  0.8900 0.0872 0.9631
t 1.1384 -0.5762
Cl  (-1.091,3.118)[4.209]  (-0.257,0.156) [0.413
LRR  Est 02271 0.0276
S.E 0.0822 0.0099 0.9595
t 2.7613 2.7778
Cl  (0.033,0.422)[0.389]  (0.004,0.051) [0.047]
LRMB Est. 0.2177 0.0278
S.E 0.075 0.0095
t 2.9017 2.9246 0.9605
Cl  (0.040,0.395)[0.355]  (0.005,0.050) [0.045]

Simulation study: A simulation study similar to that of
Lawrence and Arthiff has been performed in order to
compare the performance of the four estimatorse Th
model used wag; =By +BiXi1 +BoXs +€;.

The parameter valudk, 3; andp, were set equal
to one. The explanatory variableg »and X% were
generated as follows:

xj=(1-p%)z +p3 i=1,2,.,mj=1,2

where, z are independent standard normal random
variables. The value @f were chosen as 0.0, 0.5 and
0.95 and they represent the correlation betweetwbe
independent variables. Sample sizes, n of 25 &hd 5
(each corresponding to small and large sample) were
examined. Four error disturbances were employed as
follows:

e Standard normal distribution

e Cauchy distribution with median zero and scale
parameter one

e t-Student distribution with
freedom

e Contaminated normal distribution where the
underlying distribution is standard normal with
probability 0.85 and normal with mean zero and
standard deviation five with probability 0.15

three degrees of

The non-normal distribution, such as the Cauchy
and studentt with 3 degrees of freedom are
symmetrical bell-shaped with heavy tailed distribat
which prone to produce considerable amount of
outliers. These distributions were generated to
investigate the effect of combined problems of
multicollinearity and outliers on different estiroed.

All the four methods were then applied to each of
the sets of the generated data. In each simulation
there were 1000 replications. Some summary Statist
such as the bias, Standard Errors (SE) and Rooth Mea
Squared Errors (RMSE) over 1,000 runs were
computed and the results are exemplified in Tablé, 5

The performances of these four estimators are durth 9 and 11. Table 6, 8, 10 and 12 show the efficiasfcy
examined by applying these estimators to anothtx dathe estimators by observing at the MSE ratios af tw
set which is taken from GujardtPwhere consumption estimators. Values less than one indicate thafitse
expenditure being the dependent variable while thestimator is more efficient than the second, vakesal
independent variables are income and wealth.
Table 4 exemplified the standard error, confidencgypile values more than one indicate that the second
interval length and the Rof the Guijarati's data. The estimator is more efficient than the first estintato

confidence interval lengths for Table 3 and 4 are i

square bracket.

to one imply that both estimators are equally good,

The values in all Table 1-12 are for sample s&e 2
while values for n = 50 are shown in bold.
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Table 5: Bias, RMSE and SE é{ and ﬁz with disturbance distribution normal (0,1)

Values ofp?
0.0 0.5 0.95
Method Bias RMSE SE Bias RMSE SE Bias RMSE SE
B,
oLSs -0.0157 0.2174 0.2169 -0.0088 0.3327 0.3326 09780 3.1103 3.1088
0.0017 0.1451 0.1451 -0.0026 0.2284 0.2284 -00507 2.0939 2.0933
ROBM -0.0158 0.2292 0.2287 -0.0098 0.3491 0.3489 .13180 3.2573 3.2547
0.0016 0.1514 0.1514 -0.0003 0.2347 0.2347 -00333 2.1418 2.1415
LRR -0.0157 0.2174 0.2169 -0.0097 0.3328 0.3327 0.01240 0.2090 0.2087
0.0017 0.1451 0.1451 -0.0023 0.2287 0.2287 0.00280 0.0808 0.0808
LRMB -0.0158 0.2292 0.2287 -0.0102 0.3492 0.3491 -0.0026 0.4283 0.4282
0.0016 0.1514 0.1514 -0.0003 0.2349 0.2349 0.00360 0.0889 0.0888
B,
oLSs -0.0051 0.2258 0.2258 0.0091 0.3496 0.3495 4000 3.1226 3.1209
0.0069 0.1484 0.1482 0.0094 0.2303 0.2301 0.05550 2.0927 2.0920
ROBM -0.0041 0.2361 0.2361 0.0133 0.3629 0.3626 3|0 3.2668 3.2638
0.0054 0.1526 0.1525 0.0083 0.2361 0.2359 0.03953 2.1414 2.1410
LRR -0.0051 0.2258 0.2258 0.0099 0.3499 0.3498 03b0 0.2013 0.2013
0.0069 0.1484 0.1482 0.0091 0.2303 0.2302 0.00130 0.0836 0.0836
LRMB -0.0041 0.2361 0.2361 0.0137 0.3631 0.3628 1240 0.4277 0.4275
0.0054 0.1526 0.1525 0.0083 0.2363 0.2362 0.00180 0.0895 0.0895

Table 6: MSE ratios of 6 pair wise estimatorsﬁghnd [32 with disturbance distribution normal (0,1)

Values op?
B, B,

Estimatorl vs  Estimator 2 0.0 0.5 0.95 0 0.5 0.95
LRMB oLS 1.11 1.10 0.02 1.09 1.08 0.02
1.09 1.06 0.00 1.06 1.05 0.00

ROBM 1.00 1.00 0.02 1.00 0.02 0.02

1.00 1.00 0.00 1.00 1.00 0.00

LRR 1.11 1.10 4.20 1.09 1.08 451

1.09 1.06 1.21 1.06 1.05 1.15

LRR oLS 1.00 1.00 0.00 1.00 1.00 0.00
1.00 1.00 0.00 1.00 1.00 0.00

ROBM 0.90 0.91 0.00 0.91 0.93 0.00

0.92 0.95 0.00 0.95 0.95 0.00

ROBM oLS 1.11 1.10 1.10 1.09 1.08 1.09
1.09 1.06 1.05 1.06 1.05 1.05

DISCUSSION from Table 3 that the OLS estimates have beenglyon

affected by outliers and multicollinearity. This is

Here we discuss the results that we have acquiredicated by its largest standard error among the f
from the previous section. The result of Table 1eAst|mates, smaller Rralue and negative coefficient of
suggests that the oil palm planted areas and oip,. Moreover, it possesses confidence interval length
production are highly correlated. The presencewaf t which is remarkably larger than the other intervalse
outliers in this data were detected based on RNBY.  performance of the ROBM and the LRR are also not
the application of LRR techniques, the vector defet encouraging since their standard errors and comdigle
criteria in which latent vectors are deleted§&0.2 and interval lengths are still relatively large. Howevéhe
IVojl<0.1, leads to the deletion of the second lateriovec RLMB can be considered the best method because it
from the robust-weighted correlation matrix of T@@l.  has the smallest standard errors and confideneevait
By this deletion, the LRMB has substantially rediice length and the highest’R/alue than the other three
the standard error of the estimates. It can berobd  estimators.

5
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Table 7: Bias, RMSE and SE 6{ and ﬁz with disturbance distribution Cauchy

Values ofp?
0.0 0.5 0.95
Method Bias RMSE SE Bias RMSE SE Bias RMSE SE
B,
oLSs 2.9485 126.3610 126.3270 1.1476 47.5185 47.5047 6.2723 263.8537 263.7791
0.1949 18.5650 18.5639 0.3225 32.0980 32.0964 7%.17 340.4129 340.3735
ROBM 0.0259 0.4512 0.4505 0.0449 0.6850 0.6835 IB39 6.0744 6.0612
-0.0024 0.2681 0.2681 -0.0151 0.4207 0.4204 -&216 3.8499 3.8439
LRR 2.9485 126.3610 126.3270 1.5514 45.5053 45.4789 0.4533 12.7839 12.7759
0.1949 18.5650 18.5639 0.2991 32.0867 32.0853 4a.12 5.6074 5.6060
LRMB 0.0259 0.4512 0.4505 0.0425 0.6849 0.6836 0.0075 2950. 0.2949
-0.0024 0.2681 0.2681 -0.0152 0.4209 0.4207 0.0053 0.1471 0.1471
B,
oLSs 3.9460 144.0250 143.9716 1.7290 58.1426 58.1169 -5.3485 245.9591 245.9009
-0.2085 17.3463 17.3450 -0.6186 36.8859 36.8807 5090 344.5208 344.4767
ROBM -0.0175 0.4663 0.4660 -0.0345 0.6916 0.6907 .39 6.0919 6.0793
0.0144 0.2810 0.2806 0.0253 0.4285 0.4278 0.2229 .8618 3.8546
LRR 3.9360 144.0250 143.9716 1.2933 58.2196 58.2052 0.5077 14.0675 14.0584
-0.2085 17.3463 17.3450 -0.5975 36.8847 36.8800 1183 5.6021 5.6008
LRMB -0.0175 0.4663 0.4660 -0.0319 0.6899 0.6892 -0.0015 0.2847 0.2847
0.0144 0.2810 0.2806 0.0254 0.4283 0.4275 0.0017 1460. 0.1469

Table 8: MSE ratios of 6 pairwise estimatorsﬁg)fand [32 with disturbance distribution Cauchy

Values ofp?
B B,
Estimatorl vs Estimator 2 0.0 0.5 0.95 0.0 0.5 0.95
LRMB oLsS 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
ROBM 1.00 1.00 0.00 1.00 1.00 0.00
1.00 1.00 0.00 1.00 1.00 0.00
LRR 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
LRR oLS 1.00 0.92 0.00 1.00 1.00 0.00
1.00 1.00 0.00 1.00 1.00 0.00
ROBM 78431.53 4413.09 4.43 95399.80 7086.45 5.33
4795.08 5817.08 2.12 3810.67 7409.53 211
ROBM OLS 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

Let us now focus to the Gujerati's data. There igoint is that the LRMB is not easily affected byeth
evidence that income and wealth for the Gujaratiita  presence of both multicollinearity and outliers.
are highly correlated. This data has no outlier ltas Next, we will discuss the simulation results
multicollinearity problem. Since this data hasyonl obtained from the standard normal and heavy tail
multicollinearity problem, we expect that the distributions whether they confirm the conclusidrhe
performance of the LRMB is closed to the LRR. It is numerical examples.
interesting to note that the results of Table 4 are
consistent with the earlier findings except that IIRR ~ Standard normal  digtribution  of disturbances:
and LRMB are equally good as expected because wherable 5 shows that for standard normal disturbandts
there is no outlier and only multicollinearity eixishe p = 0, all four methods are virtually indistinguishe
LRMB become closer to LRR. We have notwith respect to the values of the bias, SE and RMSE
scrutinized the analysis of the example to thelfinaThe performance of the OLS and the LRR are
conclusion, but a reasonable explanation up to thislightly better than ROBM and LRMB for smaHvalue.

6
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Table 9: Bias, RMSE and SE 6{ and [32 with disturbance distribution t-student (3)

Values ofp?
0.0 0.5 0.95
Method Bias RMSE SE Bias RMSE SE Bias RMSE SE
B,
oLSs 0.01480 0.3630 0.3627 0.03150 0.5736 0.5727 230.2 5.1562 5.1514
-0.00960 0.2435 0.2433 -0.01530 0.3815 0.3812 15 3.4542 3.4508
ROBM 0.01030 0.2850 0.2848 0.02660 0.4618 0.4610 1859 4.1788 4.1746
-0.00780 0.1876 0.1875 -0.00920 0.2919 0.2918 70.08 2.6684 2.6670
LRR 0.01480 0.3630 0.3627 0.03910 0.5738 0.5725 0310 0.1980 0.1980
-0.00960 0.2435 0.2433 -0.01690 0.3817 0.3813 28.00 0.1346 0.1345
LRMB 0.01030 0.2850 0.2848 0.02685 0.4620 0.4612 .0118 0.4162 0.4160
-0.00780 0.1876 0.1875 -0.00970 0.2923 0.2921 26.00 0.1091 0.1091
B,
oLSs -0.00300 0.3613 0.3613 -0.01790 0.5636 0.5633 0.2139 5.1522 5.1480
0.00140 0.2573 0.2573 0.01540 0.3811 0.3808 0.1560 3.4463 3.4428
ROBM -0.00890 0.2942 0.2941 -0.01340 0.4533 0.4531 -0.1710 4.1738 4.1703
0.00150 0.1896 0.1896 0.00930 0.2925 0.2924 0.0895 2.6698 2.6683
LRR -0.00300 0.3613 0.3613 -0.02420 0.5588 0.5582 .0088 0.2043 0.2041
0.00140 0.2573 0.2573 0.01690 0.3806 0.3802 0.0002 0.1340 0.1340
LRMB -0.00890 0.2942 0.2941 -0.01360 0.4535 0.4533 0.0265 0.4271 0.4262
0.00150 0.1896 0.1896 0.00980 0.2926 0.2925 -g.000 0.1075 0.1075

Table 10: MSE ratios of 6 pairwise estimators fpfand B, with ~ freedom and contaminated normal. Let us first focus

disturbance distribution t-student (3) our attention to Table 7 and 8, for cauchy distitou
Values ofp? The results in Table 7 show that when there is no
- N multicollinearity (@ = 0.0) for this type of data with
By B2 only the presence of outliers, as can be expedted t

performance of the ROBM is similar to that of RLMB.

Estimatorl vs_Estimator2 00 05 095 00 05 085yn0 ) g s as good as the LRR and their performance

LRMB OLS 062 065 001 066 065 001 > ©
059 059 0.00 054 059 0.00 are less efficientthan the LRMB and ROBM. For dmal
ROBM 1.00 1.00 0.01 1.00 1.00 0.01 i - ‘s ali
100 100 000 100 100 00 correlation p —_0.5), the LRMB is slightly bet_te_r than
LRR 062 065 442 066 066 437 the ROBM estimates and they are more efficient than
059 059 066 054 0.59 0.64 i
LRR oLs 100 100 000 100 098 000 th_e oLS an.d LRR. The presence of both ou_tller-and
1.00 1.00 000 1.00 1.00 0.00 high  multicollinearity changes the situation
ROBM 162 1.54 0.00 1.51 152 0.00 i i
Tes 191 000 1oa 166 000 dramatically. The biases and the RMSE of the OLS,

ROBM oLS 062 065 066 066 065 066 LRR and ROBM estimates increase significantly. On
059 059 060 0.54 059 0.60 the other hand, the LRMB is not affected by thdiens
o o and multicollinearity, as shown by the biases amal t
When the multicollinearity is highp(= 0.95) as to be RysE which were decreasing and consistently the
expected, the LRR give the b_ESt resul'gs followedrisy smallest among the four estimators. It is evidbat the
LRMB, OLS and ROBM. This result is supported by LRMB is the best estimator followed by the ROBM,

Table 6, where for high correlation; the LRR is mor L
efficient than LRMB indicated by the value of theSH LRR and OLS. The MSE ratios in Table 8 supported
S the results obtained from Table 7 where for skewed

ratios which is greater than one. Similarly, the B/ i - .
ratios signify that the LRR is better than the Caigl ~ data with small and no multicollinearity, the ROBM
ROBM for high value op. Evidently, in this situation, fairly close to LRMB and their performances are muc

the OLS is better than the ROBM. The LRR estimatedetter than the LRR and OLS. The results of Table 8
emerge to be conspicuously more efficient in thesignify that the LRMB seems to perform extremelyiwe
presence of high multicollinearity with no compared to ROBM, LRR and OLS for high
contamination in the model. multicollinearity, evidenced by the values of thé&SHE

ratios which are less than one. The LRMB and ROBM
Heavy tails distribution of the Disturbances, Here are equally efficient whep is zero or low indicated by
we discuss the results of Cauchy, t with 3 degades the MSE ratios which are equal to one.
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Table 11: Bias, RMSE and SE 6{ andﬁ with disturbance distribution contaminated normal

Values ofp?
0 0.5 0.95
Method Bias RMSE SE Bias RMSE SE Bias RMSE SE
B,
oLSs -0.0169 0.4436 0.4433 -0.0299 0.6932 0.6925 3748 6.2794 6.2683
-0.0015 0.3281 0.3281 -0.0042 0.5041 0.5040 0.0679 4.5923 4.5918
ROBM -0.0035 0.2879 0.2879 -0.0138 0.4350 0.4348 .18 4.0224 4.0182
0.0002 0.1867 0.1867 -0.0113 0.2839 0.2867 -0.0573 2.6140 2.6134
LRR -0.0169 0.4436 0.4433 -0.0314 0.6896 0.6889 1260 0.2353 0.2350
-0.0015 0.3281 0.3281 -0.0040 0.5039 0.5038 -®@009 0.1632 0.1629
LRMB -0.0035 0.2879 0.2879 -0.0149 0.4346 0.4343 .0002 0.4716 0.4716
0.0002 0.1867 0.1867 -0.0112 0.2836 0.2834 -0.0055 0.1024 0.1022
B,
oLs 0.0205 0.4820 0.4816 0.0473 0.6992 0.6976 0.391 6.2654 6.2533
-0.0087 0.3159 0.3157 -0.0238 0.4986 0.4981 -@087 4.5926 4.5918
ROBM 0.0127 0.3016 0.3013 0.0252 0.4482 0.4475 4m19 4.0289 4.0242
0.0027 0.1846 0.1846 -0.0046 0.2895 0.2895 0.0437 2.6205 2.6202
LRR 0.0205 0.4820 0.4816 0.0489 0.6957 0.6940 ®.009 0.2379 0.2377
-0.0087 0.3159 0.3157 -0.0240 0.4970 0.4964 -@009 0.1632 0.1629
LRMB 0.0127 0.3016 0.3013 0.0262 0.4491 0.4483 o1 0.4742 0.4740
0.0027 0.1846 0.1846 -0.0048 0.2897 0.2897 -0.0076  0.0990 0.0987

Table 12: MSE ratios of 6 pair wise estimatorsfgfand p, with ~ results are obtained by observing the MSE ratios in
disturbance distribution contaminated Normal Table _10- The results of Table 1]; and 12 for
Values ofp? contaminated data are consistent with the finding

obtained from the t distribution.

P P CONCLUSION

Estimatorl vs Estimator2 0.0 0.5 0.95 0.0 0.5 0.95 h f v i h f
LRMB oLs 042 039 001 039 041 001 The OLS performs poorly in the presence o

0.32 032 0.00 034 034 000 outliers and multicollinearity. The ROBM is not
ROBM 1.00 1.00 001 100 1.00 0.01 syfficiently robust compared with LRR and LRMB
LRR 3‘22 é:gg 3'.33 é:gg 3.912 g:gg whgn the _degree of multlicollinearity is high. T_hB!:IL
032 032 039 034 034 037 estimatoris a better choice than the other estirmah
LRR oLs 11.(())8 11.(())8 8.88 11.88 c())gg (()J.gg eliminating the problem of multicollinearity. Howewy
ROBM 537 251 000 255 241 000 its performanpe was |nfer|olr to ROBM and LRM_B
309 315 000 293 295 o000 When contamination occurs in the data. The empirica
ROBM oLS 042 039 041 039 041 041 study shows that the LRMB has improved the accuracy
032 032 032 034 034 033 of the estimates in the situation when both
) multicollinearity and non-normal disturbances are
The results of Table 9 and 10 illustrate thepresent, The results seem to suggest that the RLMB

summary statistics for the t distribution with 3gdees  ggtimator may provide a robust alternative to tRRL
of freedom. Like the Cauchy distribution, the
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