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Abstract: In this study, we establish conditions for ultimate boundedness of solutions for a certain
third order nonlinear differential equation using a complete Yoshizawa function. The result includes

and extends the earlier results in the literature.
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INTRODUCTION

It is well known from relevant literature that
there have been deep and thorough studies on the
qualitative behaviour of solutions of third order
nonlinear differential equations in recent years. Mean
while, many articles have been devoted to the
investigation of boundedness of solutions for various
forms of third order nonlinear differential equations;
see for instance Yoshizawa **' and Reissiq er. al.,'"!
which are background and survey books respectively,
and Ademola et. al.,“J,Afuwape [ZJ, Andres
Bereketoglu and Gyori HJ, Chukwu P ! Ezeilo [6,7.8,9,10,
“J, Ezeilo and Tejumola UZJ, Hara “41, Swick !¢ 7
Tejumola ", and Tun¢ " These works were done
with the aid of complete Yoshizawa and incomplete
Lyapunov functions.

Our observation in relevant literature reveals that
works on the ultimate boundedness of solutions for the
third order nonlinear differential equation (1) using a
complete Yoshizawa function are scarce. The purpose
of this paper is to study the ultimate boundedness of
solutions of the third order nonlinear non-autonomous
ordinary differential equation
X+ f(x, %, %)% + g(x,%) + h(x,%,%) =
p(t' X, 5{1 X) (1)
On setting X =y and X = z equation (1) is equivalent
to the system of differential equations

x=y, y=z

7 =

p(t' Xy, Z) - f(X, Y, Z)Z - g(X, Y) -

h(xy,z) (2)
In which fheC(R3R), peCR"xR3R), g€

C(R? R), R =[0,0) and R = [—o0, ) .

It is supposed that the functions f, g, h and p depend

only on the arguments displayed explicitly, and the
dots, as usual, dente differentiation with respect to the
independent variable t. The partial derivatives

0f(xy,z)

_ 9gxy) _ oh(xyz) _
0x - f);fl)((' Y i)’ 9x - gX (Xl Y), % ;h( )
X,Y.Z Xy,Z
hy(x,y,2), oy = hy(x,y,2) and =

h,(x,y,z) exist and are
continuous. Here we shall use a complete Yoshizawa
function as our basic tool to achieve the desired result.

RESULT AND DISCUSSION

Theorem: In addition to the basic assumptions on
f,g,h andp, suppose there are positive constants
a,b,c,8y81,0,,Ap and M such that the following
conditions are satisfied

e a<f(xy,2) < §ylh(xvy,z)| forall X,Y;
e 0 <g(xy)sgny,for all x and y,

(lyl = Ay) for all
max|y|<a, |8(% y)| < 8, [h(x,0,0);
e H,(x0,0)<cforallx,and 0 < c < ab;
e h(x,y,z)sgnx - +owas [x| = oo;
o g (xy) <0,yf(xy,0) <0 forall x,y;
e (x,,0)=0,h,(x,y,2) =0,
yzh,(x,y,2z)+x yzhy(x,y,0) = 0,
yf,(x,y,2z) = 0 forallx,y,z;
* Ip(txyz) | <M+3;(yl + Iz

b < gxy)
S5

x and

for all X,y,z and t = 0.
Then there exists a constant D whose magnitude
depends on a,b, c,8y8;,8,and Mas well as the
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functions f,gandh such that every solution
(x(t), y(1), z(t)) of the system (2) ultimately satisfies
Ix(D] <D, ly(®| <D, [z(H)] <D
forallt > 0.
For the rest of this article, D;, D,, D3, . . . and the D’s
stand for positive constants. Their identities are
preserved throughout this paper.
The proof of the theorem depends on the fundamental
properties of the continuously differentiable function
V = V(x,y,z) defined as:

V=V, +V, 3)
where
V, = foxh(i, 0,0)dé + a foy g(x,7)dt + ah(x,0,0)y +
% z2 +yz, 4)
b 1
< >a> 2 )
and
_ (xsgnz, if |z| = |x|,
2= {z sgn x, if |z] < |x]. (6)

Observe that V; is a further generalization of the
incomplete Lyapunov function V(x,y,z) in "®, while
V, is the same as a complete signum function in °!. The
required properties of V is contained in the following
lemmas.

Lemma 1. Subject to the conditions of the theorem,
there is a constant D such that
V(x,y,z) > —D,

for all X, y,z and

V(x,v,z) > +oasx? +y? +z2 - .

()

Proof. From (4), it is clear that V; can be rearrange in
the form

V, =b7! f [b — ah; (& 0,0)]h( 0.0)dE
0

+1[b + h(x,0,0)]* +i(az+ )?
2b y , U, 20 y
+a foy[g(x, 1) — bt]dt — %hz (0,0,0)

+o7t foy[(xf(x, 1,0) — 1]tdr. (8)

We now observe, view of hypothesis (i), that the
integral

a_l foy[(xf(x' T 0) - 1]Td’[ > 2—1“ ((xa — 1)y2 (9)
Next, Chukwu’s estimate in b shows quite clearly that
y
af[g(X, ) —br]ldt =0 (10)
0

for [y| = Ay, because the integrand satisfies
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[g(x,7) — btlsgnt =0 for |t] = Ay But if |y| <
Ay, we have
a [1g(x,7) = brldr = —4, [8,|A(x,0,0)] + =]
(11)
for all x and y.
Finall;cl, in view hypothesis (iii)
b~ [[b — ahe (§,0,0)]r(¢,0.0)dE = b~ (b —
ac) [ h(£,0,0)dE. (12)
On combining (9), (10), (11) and (12), (8) becomes
V; 2b7(b - ac) [ h(£,0,0)d¢ + i(aa —1Dy? +
1 2, @ 2 _ % p2 —
. (az +y)* + - [by + h(x,0,0)] - h4(0,0,0)
Ao [811(x,0,0)] + 22| (13)
Now, since a and b are positive constants it follows
that
2 by + h(x,0,0)]2 = 0
2p VY T MBS

for all x and y. Also by hypothesis (iv), for sufficiently
large |x|, |h(x,0,0)] < h?(x,0,0). On gathering these
estimates into (13), we obtain

1
Vl >_

T 2a

X
+b1 [b — aa — 2bcS; A | f h(£,0,0)d¢
0

1
(aa — 1y + E(az +y)?

bA3
2

—i (a + 2b4,8,)h?(0,0,0) — (14)

Since b is a positive constant, it follows by (5) that
b—« ¢ > 0, now assume that §; is so small that

b —ac > 2bcé A, (15)
there exist positive constants D; D, Ds such that
Vi =Dy [} h(£,0,0)d + D,y? + = (az +
J’)z — D3 (16)
Finally, as in [SJ, 101 and “”, (6) yields
V, = —|z|. 17

On gathering the estimates (16) and (17) in (3), we get
V =Dy [} h(§,0,0)dE + D,y? +——(az +y)? — |z| -
D; (18)
In view of hypothesis (iv) of the theorem and the fact
that o« is a positive constant Lemma 1 is immediate.

Lemma 2. Let (x(t), y(t), z(t)) be any solution of the
differential system (2) and the function V =V (t) be
defined by V(t) =V(t,x(t),y(t),z(t)). Then the
limit

V*(t) = limy,_ o+ h
exist and there are positive constants D, and Dg such
that

V*(t) < —D, Ifx? + y? + z% > Dx.

V[x(t+h),y(t+h),z(t+h)]-V[x(t),y(t),z(t)]
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Proof. Let (x,y,2) = (x(t),y(t), z(t)) be any solution
of (2). Also in Pl U and M the limit V*(t)
corresponding to (x,y,z) clearly exists. An elementary
calculation from (2) and (3) will infact yield the
following equation
VE(t) = V,+V, (19)
Where
i(©) = y [} Tag.(x,©) + £ (x,7,0)] de
_(y + aZ) [h(x, Y Z) - h(x' 010)]
—yz[f(x,y,z) _f(x,y' 0)]

- 9&.y) — ah,(x, 0,0)] y?
~laf(x,y,2) - 1]2*

+(y + az)p(t,x,y,2) (20)
and

ysgnz if |z| = |x],
—fxy2)z+ g(x,y)
+h(x,y,z)]sgn x
+p(t,x,y,z)sgnx (21)
if lz| < Ix|,

V,(t) =

Observe that the first component in (20), in view of
hypothesis (v) of the theorem, becomes

y [ gx (6, 0) + T (x,7,0)]dT <0 (22)

for all x and y.The next two components in (20), by
mean value theorem and assumption (vi) of the
theorem, are non-negative. That is for all x, y, z

(v + az)[h(x,y,2) — h(x,0,0)] = y*h,(x,0,y,0) +
az?h,(x,v,0,z) + yzh,(x,y,0,2) +

ayz hy,(x,6,y,0)

>0 (23)
where 0 <0, <1 (i =1,2) and

(yzzg (x,y,2) = f(x,y,0)] = z*yf,(x,y,05) = 0

where 0 < 0; < 1. On gathering estimates (22), (23)
and (24), (20) becomes

v, < - [g(i—y) — ah,(x, 0,0)] y?

—laf(x,y,2) =11z + (y + az)p(t, x,y,2) . (25)
From (21) and (25), we have the following estimates for
(19)
V() < W, + (v + az)p(t, x,y,2)

+ysgn z (26)
if |z| = |x|, and
V() < —[f(x,v,2)z + g(x,y) + h(x,y,2)]sgn x +
(sgnx+y+x 2)p(t,x,y,2z) — W, 27
if |z| < |x|, where
Wy= [%y) — ah,(x, 0,0)] y? + [af (x,v,2z) — 1]22.

Let

Wy =ysgnz+ (y+« z)p(t,x,y,z) (28)
if |z| = |x| and

W, =(sgnx+y+az)p(t,xy,z)

if |z| < |x|where W; and W, are group of terms in
(26) and (27) respectively. Using the inequality
(lyl + 12z])? < 2(y? + z?) and hypothesis (vii) of the
theorem, we get

Wy < Dy (lyl + |z]) + 2D68,(y* + z°) (29)
and

W, < M + Dg(lyl + |2])

+2D¢6,(v? + z%) (30)
where D¢ = max(a,1), D; = max[(1 + DgM),

D6M] and Dg = D6 + 62.
small such that

Let € > 0 be sufficiently

a> % +e (31
Now set
Ws(x,y,2) = Q1 + Q2
where
0, = —l@ - f (x,y,2) — )22 (32)
And
Q. = —[ef (x,,2)2* + f (x,y, 2)zsgnx] + Dglz|

+ 28,D¢z*
(33)
W3 is contained partly in (27) and partly in (30). In
view of hypothesis (i) of the theorem,

Q1 < —-[(a—e)a—1]z2 (34)
Since (< —€)a > 1 by (31), and

Q, < —(ea —26,D6)z* + (a + Dg)|z| (35)
provided 6, is chosen so small that

ea > 28,Dq .
An estimate for Q,will be calculated for the two cases

when |Z| is arbitrarily large and when |Z| is bounded.

When |Z| is arbitrarily large, say|Z| =Dy, 0< Dy <

oo then
Q, < —1provided € > 28,Dga™?!

On gathering the estimates @, and Q, when |z | = Dy
and for all x, y,

we have
W; < —[(a —e€)a—1]z2 -1 (36)

when|Z|SD, € < 28,Dga™! and for all x,y, we

obtain from (33) that
Q; = —[ef (x,y,2) — 26,D¢]2*
+[ f(x,y,2)+Dg 1 |z|
< —[ea — 26,D¢]z*
+[6olh(x,y,2)| + Dg]lz|
< [8olh(x,y,2)| + Dgllz| (37)
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where we have used the hypothesis (i) and the fact that
[ea — 28,D¢] 2> 20

forall z if ea > 26,D4 and 52 is chosen so small.

A combination of (33) and (37) when | zI< D, and for
X,y yields

W; < [(a — €)a — 1]z% + Dy[84|h(x,y, 2)| + Dg]
(38)

Next, we let W, be group of terms contained partly in
(27) and partly in (30), defined as

Wy =- [(@ ~ ahy(x,, z)) y + g, y)sgnx] +
Dglyl + 268,Dgy* +

M (39)
Again, the terms in W4 will be estimated for two cases:

When |yl is arbitrarily large, say, |yl=D,; on

applying hypotheses (ii) and (iii) of the theorem, we
obtain

W, < —[(b —ac) —28,D6]y* + (b + Dg)|y| + M

< —[(b — ac) = 26,D6]y* + Dy [ly| + 1]

where D, = max[b+ Dy, M ].

Choosing 52 so small that

b—oc>206,D, (40)
then

W, < =Dppy* + Dy (lyl + 1) < -1 (41)
provided ly= D, where

D,=[(b-oc)- 252D6] > 0.
In the casel y IS D, , we obtain

W, < —[(b — ac) — 28,Dg]y* + DgDy + g8(x,y)| +
M < Dy3 [max|y|SD10|g(x,y)| +1] <
D13 [lh(xl Oﬁo)l + 1]

where  D,; =max[l, DD, +M],

D,y >0for ally, provided that (40) holds.
Utilizing the estimates (36) and (41) in (27), we obtain
V(@) <

—h(x,y,x)sgnx — [(a — €)a — 1]z2 —2 (43)
for |Z| 2Dy, ly2D,, when xI2|zl, provided that
&, is chosen so small so that b — ac > 26,D¢

On gathering the estimates (38) and (42) in (27), we
have

V<

—h(x,y,x)sgnx —

[(a — €)a — 1]z*+Dy[8o|h(x, y,2)| +
D13 [51|h(xt 0,0)' + 1]]

(42)

and  since

(44)
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for |zI< D, 1 y|< Dy, when | x>l z1.
Next, we find a suitable similar upper bound for (26)
| z 2l x|. To see this, let

Ws = = [252 — ah, (x,,2)| y? + 28,0572 + Dy 1y

where W, the group of terms is partly contained in

(26) and (29).
Now
Ws < —[(b—ac) — 252D6]y2 + Dy lyl < _Dlzyz +

when

Dyl 45)
provided | y = D,, , say.
In the case | y IS D, , then
Ws < —[((b — ac) — 28,D6]y? + D;D14
< Dy5 (46)

sinceDlzy2 20, forall yand D, =D.D,,.

Finally, let W, be the group of terms partly contained in
(26) and (29), defined as

We = —[af (x,y,2z) — 1]z% + D,|z| + 26,D¢z* <
—D,ez% + Dy|z| <D (47)
provided 0, is chosen so small that &za —1>20,D, .
Summing (45) and (47)

for, | z I2l x| we obtain

V* < =Dy,y* + Dylyl +D < -1 (48)
provided |y[= D, and D,, >0. But in the event
that | yI< D,, the inequality in (26) together with (46)
when | z 2] x| yields

V* < =Dyez% + Dy|z| + Dys < —1
provided| z |2 D, .

Proof of the Theorem:

Asin P\ let Dy =max[D,,,D,,
estimate (26) and (27) when:

Y’ +2"22D5  1xI<D

(49)

D,,,D,]. We now
. 8, that is when
y? + x* is large in comparison with | x |;

| x1. . . .
. is large in comparison with

IxI>D, but y>+z><2D;, The final

2 2
yt+z , say

estimate will follow on combining (i) and (ii).

In the first case we estimate V'~ in (43), (48)
and (49). When | z I2] x | and (43) is used, we

obtain
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V'<-2—h(x,y,2)sgnx — [(a —€)a—1]z> < -1
(50)

provided | z[2 D,gsince  h(x,y,z)sgnx — +ooas

| x|— oo, then—h(x,y,z)sgnx= |h(x, y, Z)| <D
forall x,y,z.

When (48) and (49) are used, and| z [>] x|, we have
V* < —1provided y? + z% > 2D% (51)

From (50) and (51) when| z [>] x|, we conclude that
V* < —1 whenever y? + z% > 2D%, (52)

In the second case we consider V*in (43) when
| x =] z 1, we have

V* < —h(x,y,2)sgnx — [(a — €)a — 1]z>
+Do[8o|h(x,y,2)| + Dg] + Dy3[6:|h(x,0,0)| + 1]

< —[(1 = 6oDg)|h(x,y,2)| — 8;D13|h(x,0,0)|] + Dig
since h(x,y,z)sgnx=lh(x,y,z)| when |x| is

sufficiently large, [(¥—€)a—1]z> >0for all z
provided(@—€)a >1 and D,y = D;Dy+ D,;.
It 50 is chosen so small that 1> é'ODg and by

hypothesis (iv) of the theorem, we obtain

V" <—1 provided| x > D, (53)

but | yland | z lare small. It is now clear from (52) and

(53) that
Vr< -1
whenever
x%+y?+ 272> D% +2D%4
This completes the proof of the Theorem.

Remark 1: Whenever f(x,y,z) =f(x,y) and
h(x,y,z) = h(x), the hypotheses and conclusion of
theorem coincide with those of Chukwu [SJ, except
hypotheses (i) and (iii) of the theorem which are
considerable weaker than those in !

Remark  2: If f(x,%,%) = ¢(X), g(x,%) = ¢(x)x and
p(t, x,%,%) = p(t) then (1) reduces to the case studied
by Ezeilo "%,

Remark 3: Suppose f(x,y,z) = a > 0, where a is
constant, g(x,y) = gx)y, h(x,y,z) = h(x) and
p(t,x,y,z) = p(t), then the system (2) specializes to
that investigated by Ezeilo and Tejumola in ',
Moreover, the hypotheses and conclusion of the
theorem coincide with those in [13], Theorem 1.
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CONCLUSION

Obtaining ultimate boundedness of solutions for the
nonlinear non-autonomous third order differential
equation (1) using a complete Lyapunov function or the
integral domain has remained difficult because it is
computationally intensive. I n this paper, conditions
obtained using a complete Yoshizawa functions
(according to Chukwu [SJ) are exact, see for instance [SJ,
(101 3 U131,
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