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Abstract: In the present study, we proposed a three-term of preconditioned gradient memory 
algorithms to solve a nonlinear optimization problem. The new algorithm subsumes some other 
families of nonlinear preconditioned gradient memory algorithms as its subfamilies with Powell's 
Restart Criterion and inexact Armijo line searches. Numerical experiments on twenty one well-known 
test functions with various dimensions generally encouraged and showed that the new algorithm was 
more stable and efficient in comparison with the standard three-term CG- algorithm.  
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INTRODUCTION 

 
 

        

We consider the  unconstrained optimization problem 
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where 1: ℜ→ℜnf  is a continuously differentiable 

function in nℜ and nℜ  is the n-dimensional euclidean 
space .Conjugate gradient methods were very useful for 
solving (1).They were of the form  
       kkkk dxx λ+=+1                  (2) 
and 
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where kg  denoted by )( kxf∇ , kλ  is a step-length 

obtained by a line search, and kβ is a scalar . The 
memory gradient algorithm for problem (1) was first 
presented in  Cragg and Levy [4] with the ordinary 
gradient method. This method has the advantage of 
high speed convergence since it produces a sequence of 
quadratic convergent points. 
 
          A new three-term memory gradient method for 
problem (1) whose search directions are defined by  
 

    21 −− ++−= kkkkkk ddgd αβ                           (4) 
and  

kkkk dxx λ+=+1                                                 (5) 

where kβ and kα  are parameters and kλ  is a step-size 
considered in Sun [8] and obtained by means of a one 
dimension search. The self-scaling Variable Metric 
(VM) algorithms were introduced, showing significant 
improvement in efficiency over earlier methods. The 
search direction  
       

kkk gHd −=                                               (6) 

kH  is an approximation to the inverse Hessian 1−G . 

For a given 1H , the matrix kH  was updated to 1+kH  
by a formula from the class of self-scaling updates 
satisfying the following QN-like condition given in 
Cohen [3]  
 kkkk VyH ρ=+1                  (7) 
where 

kkk xxV −= +1                                         (8) 
        There were infinite numbers of possible updates 
which satisfy the QN-condition. The class of these 
updates were written as (See Gill and Murray[5]) 
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kk σθ ,  parameters and           
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         (10) 

         The parameter kθ was chosen such that 

]1,0[∈kθ  different choice of kθ defines different 
updates and different search conjugate directions (See 
Al-Assady and Al-Bayati[1]), the Davidon-Fletcher-
Powell (DFP) update was defined as (9) where 1=kσ  

with 0=kθ  while Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) was defined as an updated corresponds to 

1=kθ . Oren found that a proper scaling of the 
objective function improve the performance of 
algorithms that use Broyden family of update where 

kkkkkk YHYYV ΤΤ=σ . This choice for the scalar 

parameter kσ  was made primarily because in this case 

kσ requires the quotient of two quantities which were 
already computed in the updating formula. For more 
details see Yabe and Takano[9]. 
        In this study, we considered a new three-term PCG 
algorithm for problem (1) whose search directions were 
defined by  
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by using a new line-search parameter and  a positive 
definite matrix kH . 

 
The Three-Term Memory Gradient 

Algorithm (TMG): 
 

        Consider the three term memory gradient method 
(4) and (5). Conditions are given on kβ  and kα to 

ensure that kd is a sufficient descent direction at the 

point kx .  Now let 1−+−= kkkk dgS β  and assume that  
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where 01 >∆  and 02 >∆  are constants 
it follows from (12) that  

111 .)1( −−
ΤΤ ∆+≥− kkkkkkkk dgdggg ββ                     (14)       

 
Theorem: 
          If kx  is not a stationary point for problem (1) 
then:  
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Moreover, if kd  is descent then: 
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for the prove of this theorem see [6]. 
 
Outline of the Three-Term Memory Gradient 
Algorithm  (TMG): 
 

Step1: let nx ℜ∈0 be initial point, 01 >∆ , 

02 >∆ ,compute 0g ; if 00 =g and 0x is a stationary 

point of (1) stop; else set 00 gd −= ,let 1=k  and go 
to step2.  
 
Step2: let kkkk dxx λ+=+1 ; the step size kλ  is 
defined in the following way 

{ })1,0[:0min 1 ∈=>= ΤΤ
+ µµαλ wheredgdg kkkkk  

Step3: compute 1+kg ; if 01 =+kg  and 1+kx  is a 

stationary point of (1) stop; else let 1++ kk ,go to 
step4. 
 
Step4: set 21 −− ++−= kkkkkk ddgd αβ  where 
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kθ  angle between kg , 2−kd  and 
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A NEW THREE-TERM PRECONDITIONED 

GRADIENT MEMORY ALGORITHM 
 

       In this section we introduced a line search rule to 
find the best step-size parameter along the search 
direction at each iteration . We studied the convergent 
analysis of the modified Armijo step-size rules fully 
described in Armijo [2] given in step3 of the following 
new algorithm. 
 

Outline of the New Three-Term Preconditioned 
Gradient Memory algorithm (NEW): 

 
Step1: Let nx ℜ∈0 be initial point, compute 0g ; if 

00 =g and 0x is a stationary point of (1) 

stop; else let 1H  is any positive definite 

matrix usually IH =1  and ε is a small 

positive value , let 1=k  set 111 gHd −=   
 
Step2: if ε<kg  then stop! Else go to step3 

 
Step3: kkkk dxx α+=+1 the step size kα  is chosen 

by the modified Armijo line search rule, 
namely: for given ,1>q  

kr
k q −=∈ λµ   ),1,0(1 and kr is the smallest 

non negative integer such that  
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Step4: compute 1+kg ; if 01 =+kg  and 1+kx  is a 

stationary point of (1) stop; else let 1+= kk , go to 
step5. 
 
Step5: 
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and 1+kH  is updated by 
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Step 7: If the available storage is exceeded, then 
employ a restart option either with nk =  or 

kkkk gggg Τ
++

Τ
+ > 111 . 

Step 8: Set 1+= kk and go to step 2 
 
The convergence analysis of the new proposed 
algorithm: 
       Consider the new three-term Preconditioned 
gradient memory defined in (11). Let 

11 −−+−= kkkkkk dHHgS β  and order to ensure that 

kd  is a sufficient descent direction at the point kx . we 

assumed that for 67.01 =∆  and 32 =∆  then: 
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from (22) we proposed the following property: 
 
Property 1: 
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where 1kθ  is the angle between kg  and 11 −− kk dH  

 
Case 2. To ensure that 0<kβ  let 
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where 1kθ is the angle between kg  and 11 −− kk dH . 

Thus a new choice for kβ  will be given by  

   ],[ 21 kkk βββ −∈         (27) 
                                                

111
1 .

cos067.1
1

  
−−+

=
kk

k

k
k dH

g

θ
β           (28) 

                                                

111
2 .

cos067.1
1

 
−−−

=
kk

k

k
k dH

g

θ
β             (29) 

where 1kθ is the angle between kg  and 11 −− kk dH .  
 
from (23) we proposed the following property: 
 
Property 2: 
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Case 1. To ensure that 0>kα  let 
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where 2kθ is the angle between kg  and 22 −− kk dH  

 
Case 2. To ensure that 0<kα  let 
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where 2kθ is the angle between kg  and 22 −− kk dH  

 
Thus a new choice for kα  is given by 
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where 2kθ is the angle between kg  and 22 −− kk dH .  
 
The descent property of the new proposed 
algorithm: 
           If kx  is not a stationary point for problem (1) 

then the search directions kd  of the new proposed 
algorithm are descent directions i.e. 
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Proof: For 1=k  ,it is clear that 111 gHd −=  where 

IH =1  identity matrix is a descent direction since for 
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The above inequality kkkk SgSg ΤΤ −=  imply that  
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RESULTS AND DISCUSSION 

  
 In this section we report some numerical results 
obtained by newly-written Fortran procedure with 
double precision.  
 
Table 1: Comparison between the standard Three Term Memory 

Gradient (TMG) algorithm and New proposed algorithms 
using different values of 5≤N≤1000 for the 1st group of test 
functions 

N.  TMG NOF(NOI)  New NOF(NOI) 
of Test -------------------------------- ---------------------------- 
test function 5 10 100 1000 5 10 100 1000 
1 GEN- 117 169 374 365 42 74 100 100 
 Trid1 58 84 185 181 27 43 56 56 
2 Shanno 1980 71 50 246 40 56 28 34 
  990 34 24 272 25 35 21 25 
3 QF1 54 125 1187 1765 16 26 114 532 
  24 60 591 883 11 16 62 273 
4 Gen- 1583 1655 1835 1015 124 120 118 124 
 Rosen 778 814 904 508 78 75 79 78 
5 NON- 653 857 791 826 76 150 108 132 
 Digonal 306 389 367 385 49 97 64 88 
6 TPQ 125 211 1259 1839 20 30 144 656 
  62 105 5919 920 13 19 77 335 
7 GQ2 28 26 26 28 16 18 24 30 
  13 12 12 13 11 12 15 18 
8 GEN- 195 203 223 239 28 28 30 30 
 Powell 97 101 111 119 17 17 18 18 
9 Tridia 75 245 2965 3507 22 74 452 1266 
  37 122 1482 1754 16 43 234 641 
10 APQ 49 119 1171 1655 14 28 132 672 
  24 59 585 828 10 17 72 344 
11 GEN- 2804 2940 3240 3528 78 78 80 88 
 Helical 1399 1467 1617 1716 46 46 47 47 
12 dqudratic 2595 2589 2583 2007 42 36 30 24 
  1297 1294 1291 1003 28 24 20 17 
13 GEN-beal 819 859 963 1067 24 24 24 26 
  409 429 481 533 15 15 15 16 
General total of 1107 10069 1667 18087 542 742 1384 3714 
7 functions 5494 4970 13569 9160 346 459 480 1456 
 
 In comparison of algorithms the function 
evaluation is normally assumed to be the most costly 
factor in each iteration and the number of iterations. 
The actual convergence criterion employed was 
||gk||<1×10−6 for the two algorithms, twenty one well-
known test functions[9] (Appendices 1 and 2) and with 
dimensionality ranging (5-1000) are employed in the 
comparison. We solve each of these test function by 
the: 
 
• Three Term Memory Gradient algorithm (TMG)  
• The New proposed (New) algorithm 

 
 All  the  numerical  results are summarized in 
Table 1, 2 and 3. They present the Number of 
Iterations(NOI) versus the Number of Function 
Evaluations (NOF) while Table 3 give the percentage 
performance of the new algorithm based on both (NOI) 
and (NOF) against the original (TMG) algorithm.  
 The important thing is that the new algorithm 
solves each particular problem measured by (NOI) and 
(NOF) respectively, while the other algorithm may fail 
in some cases. Moreover, the new proposed algorithm 
always performs more stably and efficiently.  
 
Table 2: Comparison between the standard Three Term Memory 

Gradient(TMG) algorithm and New proposed algorithms 
using different value of 5≤N≤1000 for the 2nd group of test 
function 

N.  TMG NOF(NOI) New NOF (NOI) 
of Test ------------------------- ----------------------------- 
test function 5 10 100 1000 5 10 100 1000 
1 Biggsb F F F F 8 24 140 1234  
      7 15 73 620 
2 GEN-PowelI F F F F 94 94 102 106  
      53 54 57 57 
3 GEN-Cubic F F F F 68 68 68 70 
      39 39 39 40 
4 GEN- QDP F F F F 18 18 478 128 
      12 13 248 70 
5 Fred F F F F 32 32 32 32 
      24 24 24 24 
6 Sinquad F F F F 66 58 220 260 
      43 36 130 150 
7 EX-with host F F F F 68 68 68 70 
      39 39 39 40 
8 GEN- Wood  F F F F 444 426 444 430 
      244 231 246 234 

 
Table 3: Percentage performance of the standard Three Term 

Memory Gradient (TMG) algorithm against and New 
algorithm for 100% in both NOI and NOF 

N Costs  New  
5 NOF NOI 95.107 93.70 
10 NOF NOI 92.63 90.76 
100 NOF NOI 91.70 96.46 
1000 NOF NOI 79.47 84.11 

 
 Namely there are about (7-16)% improvements of 
NOI for all dimensions Also there are (5-21)% 
improvements of NOF for all test functions.  

 
CONCLUSIONS 

 
 In this study, we have three parameter family of 
preconditioned gradient algorithm suitable to solve 
nonlinear unconstrained optimization problems. The 
directions dk generated by the algorithm satisfy both the 
sufficient descent and lie search condition, with an 
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inexact line search under standard Wolfe line search 
condition. We have proved the global convergence of 
the new algorithm and examines[7] their computational 
performances.  
 Computational experience shows that the new 
proposed algorithm performs better than the standard 
three parameter family of preconditioned gradient 
memory method.  

APPENDIX 
 
Appendix 1: All the test functions used in Table (1) are 
from[2]: 
Generalized tridiagonal-1 function: 

( ) ( )
n 1

2 4
2i 1 2i 2i 1 2i

i 1

f (x) x x 3 x x 1
−

− −
=

= + − + − +� , 

0x [2.,2.,...,2.,2.]= .  
 
Non-diagonal (Shanno-78) Function (Cute): 

n
2 2 2

i 1 i 1
i 2

f (x) (x 1) 100(x x )−
=

= − + −� , 

0x [ 1., 1.,..., 1., 1.]= − − − − .  
 
Quadratic QF1 function: 

n
21
i n2

i 1

f (x) ix x
=

= −� , 

0x [1.,1.,...,1.,1.]= .  
 
Generalized rosen brock banana function:  

n / 2
2 2 2

2i 2i 1 2i 1
i 1

f (x) 100(x x ) (1 x )− −
=

= − + −� , 

0x [ 1.2,1.,..., 1.2,1.]= − −  
 
Generalized Non diagonal function: 

n
2 2 2

1 i i
i 2

f (x) [100(x x ) (1 x )
=

= − + −� ,  

0x [ 1.,..., 1.].= − −  
 
Tri-diagonal perturbed quadratic function: 

n 1
2 2 2
i i i 1 i i 1

i 2

f (x) x ix (x x x )
−

− +
=

= + + + +� , 

0x [0.5,0.5.,...,0.5,0.5]= .  
 
Generalized quadratic function GQ2: 

n
2 2 2 2
1 i i 1

i 2

f (x) (x 1) (x x 2)−
=

= − + − −� , 

0x [1.,1.,...,1.,1.]= .  
 
Generalized Powell3 function: 

2i 3i i 3i
2

2ii 2 i

n / 3
x x x x 21

2 x1 (x x )
i 1

f (x) {3 [ ] sin( ) -exp[-( 2) ]}π +

+ −
=

= − − −� , 

0x [0.,1.,2.,...,0.,1.,2.]= .  
 
Tri-diagonal function: 
 

n
2 2

1 i i 1
i 2

f (x) ( x 1) i( x x )−
=

= γ δ − + α − β� , 

0x [1.,1.,...,1.,1.] , 1 ,  1 ,  1 , 1 = α = β = γ = δ = .  
 
Almost perturbed quadratic function: 

n
2 21
i 1 n100

i 1

f (x) ix (x x )
=

= + +� , 

0x [0.5,0.5,...,0.5,0.5]= .  
General helical function: 

( )
n / 3
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f (x) 100x 10* H 100(R 1) x
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x
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D-quadratic Function (CUTE): 

( )
n 2

2 2 2
i i 1 i 2

i 1

f (x) x cx dx
−

+ +
=

= + +� , 

0x [3.,3.,...,3.,3.]  ,  c 100,d 100= = = .  

 
Generalized Beale Function:  

[ ] 22 2
n / 2 2i 2i 2i 1 2i

22i 1
2i 1 2i

1.5 x (1 x ) 2.25 x (1 x )
f (x)

2.625 x (1 x

−
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−

� − + − + − −� �=
� + − −� �

� , 

0x [ 1., 1.,..., 1., 1.]= − − − − .  
 
Appendix 2: All the test functions used in Table (2) are 
from[2] 
 
Biggsb1 Function (CUTE): 

 
n 1

2 2 2
i i 1 i n

i 1

f (x) (x 1) (x x ) (1 x )
−

+
=

= − + − + −� , 

0x [1.,1.,...,1.,1.]= .  
 
Generalized Powell function: 

2i 3i i 3i
2

2ii 2 i

n / 3
x x x x 21

2 x1 (x x )
i 1

f (x) {3 [ ] sin( ) -exp[-( 2) ]}π +

+ −
=

= − − −� , 

0x [0.,1.,2.,...,0.,1.,2.]= .  
 
Generalized Cubic function: 
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n / 2
3 2 2

2i 2i 1 2i 1
i 1

f (x) [100(x x ) (1 x ) ]− −
=
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Quadratic diagonal perturbed function: 

2n n
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= =
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Extended fred function: 

2
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2
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( 13 x (5 x ) (x 2)(x ))
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( 29 x (1 x ) (x 14)(x )) ,

−
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=
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=
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�

0x (1.,2.,...,n)   Τ=  
Sinquad Function (CUTE): 

( )
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i i n 1 i n 1
i 1

f (x) (x 1) sin(x x ) x x (x x )
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0x [0.1,0.1,...,0.1]= .  
Extended white and holst function: 

n / 2
3 2 2

2i 2i 1 2i 1
i 1

f (x) c(x x ) (1 x )− −
=

= − + −� , 

0x [ 1.2,1.,..., 1.2,1]  ,   c 100= − − = .  
 
Generalized wood function: 

2 2 2 2 2
4i 2 4i 2 4i 3 4i 4i 1n / 2

2 2 2
4i 1 4i 2 4i

i 1

4i 2 4i 2

100(x x ) (1 x ) 90(x x )

f (x) (1 x ) 10.1(x 1) (x 1)

19.8(x 1)(x 1)

− − − −

− −
=

− −

− + − + −
= + − + − + −

+ − −
� , 

0x [ 3., 1., 3., 1.,..., 3., 1., 3., 1.]= − − − − − − − − .  
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