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INTRODUCTION 

 
 Let H be the class of functions analytic in U and 
H[a, n] be the subclass of H consisting of functions of 
the form: 
 

n n 1
n n 1f (z) a a z a z ... +

+= + + +  

 Let A be the subclass of H consisting of functions 
of the form: 

2
2f (z) z a z ... . = + +  

 Let F and G be analytic functions in the unit disk 
U. The function F is subordinate to G, written F G� , if 
G is univalent F(0) = G(0) and F(U)⊂G(U). In general, 
given two functions F(z) and G(z), which are analytic in 
U, the function F(z) is said to be subordination to G(z) 
in U if there exists a function h(z), analytic in U with 
h(0) and | h(z) | 1<  for all z∈U such that F(z) = G(h(z)) 
for all z∈U. 
 Let CC →2:ϕ  and let h be univalent in U. If p is 
analytic in U and satisfies the differential subordination 

(p(z)),zp '(z))  h(z)ϕ � . 
  
Then p is called a solution of the differential 
subordination. The univalent function q is called a 
dominant of the solutions of the differential 
subordination, p  q� . If p and (p(z)),zp '(z)) ϕ are 
univalent in U and satisfy the differential 
superordination  h(z)  (p(z)),zp '(z))ϕ� then p is called a 
solution of the differential superordination. 
 An analytic function q is called subordinant of the 
solution of the differential superordination if q p� . 
Denote by D : A Aα → the operator defined by: 

1

z
D f (z) :   f (z),  1

(1 z)
α

α +
= ∗ α > −

−
 

 
where, (*) refers to the Hadamard product or 
convolution. Then implies that: 
 

(n)n 1
n

0

z(z f (z))
D f (z) , n N N {0}

n!

−

= ∈ = ∪ . 

 
We note that  D0f(z) = f(z) and D'f (z) zf '(z)= . 
  
The operator Dnf is called Ruscheweyh derivative of n-
th order of f. 
 Noor[1] defined and studied an integral operator 

nI : A  A→  analogous to Dnf as follows: 

Let n 0n 1

z
f (z) ,  n N  

(1 - z) +
= ∈  and let ( 1)

nf −  be defined such 

that: 

    ( 1)
n n

z
f (z) *  f (z)  

1 z
− =

−
  (1) 

Then: 
 

  
1

( 1)

n n n 1

z
I f (z) f (z) * f (z) *  f (z)

(1 z)

−

−

+
= =

−
� �
� �
� �

  (2)  

 
 Note that 0I f (z) zf '(z)=  and 1I f (z) f (z)= . The 
operator Inf(z) is called the Noor Integral of n-th order 
of f. Using (1), (2) and a well- known identity for Dnf 
we have: 
 
  n n 1 n 1(n 1)I f (z) nI f (z) z(I f (z)) '+ ++ − =  (3) 
 
 Using hypergeometric functions 2 1F , (2) becomes: 

n 2 1I  f (z) [z  F (1,1;n 1,z)]*  f (z)= +  
 
where, 2 1F (a,b;c,z) is defined by: 
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2 1

2

F (a,b;c,z) 

ab z a(a 1)b(b 1) z
 1   ....

c 1! c(c 1) 2!
+ += + + +

+
 

 The following definitions can be found in[2]. 
 
Definition 1: Let f∈A Then f ∈ S* (the starlike 
subclass of A) if and only if for z ∈U: 
 

[ ]n
0

n

z I f (z) '
Re   0,  n N

I f (z)

� �	 	> ∈
 �
	 	� 


. 

 
Definition 2: Let f ∈A. Then f ∈N(n)*, 0n N∈  if and 
only if Inf ∈S* (the starlike subclass of A) for z ∈U. 
 
Definition 3: Let f ∈A. Then M*(n) for N0 if and only if 
there exists g ∈N(n)* such that, for z ∈U: 
 

n

n

z[I f (z)]'
Re    0

I g(z)
� �

>
 �
� 


. 

 In the present study, we apply a method based on 
the differential subordination in order to obtain 
subordination results involving Noor Integral operator 
for a normalized analytic function f: 
 

[ ]n
1 2

n

z I f (z) '
q (z)    q (z)

I f (z)
� � , 

and  
[ ]
[ ]

n
1 2

n

z I f (z) '
q (z)  q (z)

I g(z)
� � . 

 
 In order to prove our subordination and 
superordination results, we need the following 
definition and lemmas in the sequel. 
 
Definition 4: Miller and Mocanu[3] . Denote by Q the 
set of all functions f(z) that are analytic and injective on 

z  {U E(f ) where E(f ) : {    U :  lim f (z) }→ξ− = ξ ∈ ∂ = ∞ and 
are such that: 
 

f '( )  0  for   U E(f ).ξ ≠ ξ ∈∂ −  
 

Lemma 1: Miller and Mocanu[4]. Let q(z) be univalent 
in the unit disk U and let θ and φ be analytic in a 
domain D containing q(U) with φ(w) ≠ 0 when 
w∈q(U). 
Set: 

Q(z) : zq '(z)  (q(z)) ,  h(z) : (q(z)) Q(z)= φ = θ +  

Suppose that: 
 
• Q(z) is starlike univalent in U and 

• zh`(z)
Re 0 

Q(z)
� �

>
 �
� 


for z ∈U. 

If  
(p(z))  zp '(z)  (p(z)) 

(q(z))  zq '(z)  (q(z))
θ + φ

θ + φ�
 

 
then p(z) q(z)�  and q(z) is the best dominant. 
 
Lemma 2: Shanmugam, et al.[5]. Let q(z) be convex 
univalent in the unit disk U and Ψ and  γ  in C with: 
 

    zq ''(z)
Re 1   0

q '(z)
� �ψ+ + >
 �γ� 


  (4) 

 
 If p(z) is analytic in U and 

p(z) zp '(z)ψ + γ q(z) zq '(z)ψ + γ�  then p(z) q(z)� and q is 
the best dominant. 
 
Lemma 3: Bulboaca[6]. Let q(z) be convex univalent in 
the unit disk U and ϑ and υ be analytic in a domain D 
containing q(U). Suppose that: 
 
• zq '(z) (q(z))ϕ  is starlike univalent in U and 

• '(q(z))
Re 0

(q(z))
� �ϑ >
 �ϕ� 


 for z ∈U. 

 
 If p(z) H[q(0),1] Q∈ ∩ , with p(U) D⊆  and 

(q(z)) zp '(z) (p(z))ϑ + ϕ  is univalent in U and 
 

(q(z))  zq '(z) (q(z)) 
(p(z))  zp '(z) (p(z))

ϑ + ϕ
ϑ + ϕ�

 

then q(z) p(z)�  and q(z) is the best subordinant. 
 
Lemma 4: Miller and Mocanu[3]. Let q(z) be convex 
univalent in the unit disk U and  C∈γ . 

 Further, assume that Re {  } >0γ . If 
p(z) H[q(0),1] Q∈ ∩  with p(z) zp '(z)+ γ is univalent in U 
then q(z) zq '(z) p(z) zp '(z)+ γ + γ� implies q(z) p(z)�  and 
q(z) is the best subordinant. 
 

SANDWICH RESULTS 
 
 By making use of Lemmas 1 and 2, we prove the 
following subordination results. 
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Theorem 1: Let q(z) ≠ 0 be univalent in U such 
that z q '(z)

q(z)
 is starlike univalent in U and: 

 

  
zq ''(z) zq '(z)

Re 1  q(z) -   0
q '(z) q(z)

  ,  C,  0.

� �α+ + >
 �γ� 


α γ ∈ γ ≠
   (5) 

 If f ∈A satisfies the subordination: 
 

n n n

n n n

 
z[I f (z)]' z[I f (z)]'' z[I f (z)]'

1 -  
I f (z) [I f (z)]' I f (z)

z q '(z)
 q(z)  

q(z)

� �
α + γ +� �

� �

γα +�

 

 
then 
 

    n

n

z[I f (z)]'
  q(z)

I f (z)
�   (6) 

 
q(z) is the best dominant. 
 
Proof: Our aim is to apply Lemma 1. Setting 

n

n

z[I f (z)]'
p(z) :

I f (z)
= . By computation shows that: 

 
n n

n n

zp '(z) z[I f (z)]'' z[I f (z)]'
 1 -  

p(z) [I f (z)]' I f (z)
= +  

which yields the following subordination: 
 

z p '(z) z q '(z)
 p(z)   q(z)

p(z) q(z)
, C.

γ γα + α +

α γ ∈

�
 

 By setting ( ) :   and   ( ) :  ,   0
γθ ω = αω ϕ ω = γ ≠
ω

, it can 

be easily observed that θ(ω) is analytic in C and ϕ(ω) is 
analytic in { }0/C   and that ϕ(ω) ≠ 0 when { }0/C . 

Also, by letting q '(z)
Q(z)  zq '(z) (q(z))  z 

q(z)
= ϕ = γ  and 

q '(z)
h(z)  (q(z)) Q(z)   q(z)   z 

q(z)
= θ + = α + γ .

 
We find that Q(z) is starlike univalent in U and that: 
 

z h '(z)
Re  

Q(z)

zq ''(z) zq '(z)
 1  q(z) -   0.

q '(z) q(z)

� �

 �
� 


� �α= + + >
 �γ� 


 

 

Then the relation (6) follows by an application of 
Lemma 1. 
 
Corollary 1: If f ∈A and assume that (5) holds then: 
 

n

n

z[I f (z)]'' 1 Az (A - B)z
1   

[I f (z)]' 1 Bz (1 Az)(1 Bz)
++ +
+ + +

�  

 

implies n

n

z[I f (z)]' 1 Az 1 Az
 ,  -1 B A 1 and

I f (z) 1 Bz 1 Bz

+ +
≤ < ≤

+ +
�  is the 

best dominant. 
 

Proof: By setting 1α = γ =  and 1 Az
q(z) :  

1 Bz

+
=

+
where 

1 B A 1− ≤ < ≤ . 
 
Corollary 2: If f ∈A and assume that (5) holds then: 
 

n

2

n

z[I f (z)]'' 1 z 2z
1   

[I f (z)]' 1 - z 1 - z

+
+ +�  

 

implies n

n

z[I f (z)]' 1 z 1 z
  and  

I f (z) 1 - z 1 - z

+ +
�  is the best dominant. 

 
Proof: By setting 1α = γ =  and 1 z

q(z) :
1- z
+= . 

 
Corollary 3: If f ∈A and assume that (5) holds then: 
 

Azn

n

z[I f (z)]''
1  e Az

[I f (z)]'
+ +�  

 

implies Az Azn

n

z[I f (z)]'
 e  and  e

I f (z)
�  is the best dominant. 

 
Proof: By setting 1α = γ =  and Azq(z): = e , |A| < π . 
Theorem 2: Let q(z) be convex univalent in the unit 

disk U and γ in C satisfies zq ''(z) 1
Re  1   0,   C

q '(z)
+ + > γ ∈

γ

� �

 �
� 


.  

 If f in *
(n ) 0M  for n N∈  and exists *

(n )g  N∈  such that  
 

n

n

z[I f (z)]'
I g(z)

 is analytic in U and the subordination 

z[I f (z)]' z(I f (z))'' z(I g(z))'n n n{1+ [1+ - ]}
I g(z) (I (z))' I g(z)n n n
q(z) +  zq'(z), Cγ γ ∈�

 

holds then: 
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     n

n

z[I f (z)]'
q(z)

I g(z)
�   (7) 

 
and q(z) is the best dominant. 
 
Proof: Our aim is to apply Lemma 2. Setting 

n

n

z[I f (z)]'
p(z) :

I g(z)
= . By computation shows that: 

 
n n n

n n n

z[I f (z)]' z(I f (z)) '' z(I g(z)) '
zp '(z)  1 -  

I g(z) (I f (z)) ' I g(z)
= +

� �
� �
� �

 

which yields the following subordination 
p(z)   z p '(z) q(z)  z q '(z),  C+ γ + γ γ ∈� . Thus in view 
of Lemma 2,  (7) holds. 
 
Theorem 3: Let q(z) ≠ 0 be convex univalent in the 
unit disk U. Suppose that: 
 

  Re  q(z)  0,  ,  C, 0  for  z U 
� �α > α γ ∈ γ ≠ ∈
 �γ� 


  (8) 

 

and z q '(z)
 

q(z)
 is starlike univalent in U. If 

n

n

z[I f (z)]'
H[q(0),1] Q

I f (z)
∈ ∩  where f ∈A, 

n n n

n n n

z[I f (z)]' z[I f (z)]'' z[I f (z)]'
  1 -

I f (z) [I f (z)]' I f (z)
α + γ +
� � � �

 � 
 �
� 
 � 


 is univalent in  

 
U  and the subordination 

n

n

n n

n n

z q '(z)
q(z)  

q(z)

z[I f (z)]'
I f (z)

z[I f (z)]'' z[I f (z)]'
1  -

[I f (z)]' I f (z)

γ
+ α

� �

 �
� 


� �
+γ +
 �
� 


�

 

 
holds, then:  
    n

n

z[I f (z)]'
q(z)  

I f (z)
�   (9) 

and q is the best subordinant. 
 
Proof: Our aim is to apply Lemma 3. 
 

Setting n

n

z[I f (z)]'
p(z) :

I f (z)
= . By computation shows that: 

 
n n

n n

zp '(z) z[I f (z)]'' z[I f (z)]'
 1 -  

p(z) [I f (z)]' I f (z)
= +  

 

which yields the following subordination 
z q '(z) z p '(z)

 q(z)   p(z)  for ,  C.
q(z) p(z)

γ γα + α + α γ ∈�  

 By setting ( ) :   and ( ) :  ,   0
γθ ω = αω ϕ ω = γ ≠
ω

 it can 

be easily observed that θ(ω) is analytic in C  and ϕ(ω) 
is analytic in { }C \ 0  and that  ϕ(ω) ≠ 0 when 

C \ {0}ω∈ . Also, we obtain 

 '(q(z))
Re  Re  q(z)  0

(q(z))

θ α
= >

ϕ γ
� � � �

 � 
 �

� 
� 

.

 Then (9) follows by an application of Lemma 3. 
 
Theorem 4: Let q(z) be convex univalent in the unit 
disk U and Cγ ∈ . Further, assume that { }Re 0.γ >  If 

n

n

z[I f (z)]'
H[q(0),1]  Q,  

I g(z)
∈ ∩  with 

n n n

n n n

z[I f (z)]' z(I f (z)) '' z[I g(z)]'
{1  [1 ]}

I g(z) (I f (z)) ' I g(z)
+ + −  is univalent in 

U then  

n n n

n n n

q(z) zq '(z) 

z[I f (z)]' z(I f (z)) '' z(I g(z)) '
 {1  [1 } -  ]}

I g(z) (I f (z)) ' I g(z)

+ γ

+ +�
 implies: 

 

    n

n

z[I f (z)]'
q(z) 

I g(z)
�  (10) 

 
and q(z) is the best subordinant. 
 
Proof: Our aim is to apply Lemma 4. Setting 

n

n

z[I f (z)]'
p(z) :  

I g(z)
= . By computation shows that 

n n n

n n n

z[I f (z)]' z(I f (z)) '' z(I g(z)) '
 zp '(z)  1 -  

I g(z) (I f (z)) ' I g(z)
� �

= +
 �
� 


 which 

yields the following subordination 
z)  z q '(z) p(z) z p '(z),     Cq( + γ + γ γ ∈� . Thus in view of 

Lemma 4, we obtain (10). By combining Theorems 1 
and 3 and Theorems 2 and 4 to get the following 
Sandwich theorems. 
 
Theorem 5: Let 1 2q (z) 0,  q (z) 0 ≠ ≠  be convex 
univalent in the unit disk U satisfy (8) and (5) 

respectively. Suppose that and i

i

z q '(z)
,  i 1, 2

q (z)
 =  is starlike 

univalent in U. 



J. Math. & Stat., 4 (1): 32-36, 2008 
 

36 
 

 If 

n

n

n n n

n n n

z[I f (z)]'
H[q(0),1]  Q where f A,

I f (z)

z[I f (z)]' z[I f (z)]'' z[I f (z)] '
 1 -  

I f (z) [I f (z)]' I f (z)

∈ ∩ ∈

α + γ +
� � � �

 � 
 �
� 
 � 


 is 

univalent in U and the subordination 
1

1
1

n n n

n n n

2
2

2

z q '(z)
q (z)   

q (z)

z[I f (z)]' z[I f (z)]'' z[I f (z)]'
   1 -

I f (z) [I f (z)]' I f (z)

 z q '(z)
 q (z)  

q (z)

γ+

� �� �	 	α + γ +
 �� �
	 	� �� 


γα +

�

�

  

holds, then: 

   n
1 2

n

z[I f (z)]'
q (z)   q (z)

I f (z)
� �  (11)  

and q1(z) is the best subordinant and q2(z) is the best 
dominant. 
 Theorem 5 reduces to the following known result 
obtained by Ali et al.[7] 
 
Corollary 4: Let the assumption of Theorem 5 holds 

with q1(0) = q2(0) = 1. Then 1 2

z[f (z)]'
 q (z)   q (z)

f (z)
� �  

and q1(z) is the best subordinant and q2(z) is the best 
dominant. 
 
Proof: By setting 1α = γ = and n = 1. 
 
Corollary 5: Let the assumption of Theorem 5 holds. 

Then 1 2

z[f (z)]''
 q (z) 1  q (z)

[f (z)]'
+� �  and q1(z) is the best 

subordinant and q2(z) is the best dominant. 
 
Proof: By setting 1α = γ = and n = 0. 
 
Theorem 6: Let q1(z), q2(z) be convex univalent in the 
unit disk  U  such that 

2

2

zq ''(z) 1
Re 1  0,  C,Re{ } 0.

q '(z)

� �	 	+ + > γ ∈ γ >
 �γ	 	� 

  

If *
(n) 0f  M for n N∈ ∈  and exists *

(n)g N∈  such that  

n
1

n

z[I f (z)]'
H[q (0),1] Q,  

I g(z)
∈ ∩  with  

 

         n n n

n n n

z[I f (z)]' z(I f (z)) '' z(I g(z)) '
{1  [1 -  ]} 

I g(z) (I f (z)) ' I g(z)
+ +  

 
 
 

is univalent in U, then 
 

 

1 1

n n n

n n n

2 2

q (z)  zq '(z) 

z[I f (z)]' z(I f (z)) '' z(I g(z)) '
  {1  [1 -  ]}

I g(z) (I f (z)) ' I g(z)

q (z)  zq '(z)

+ γ

+ +

+ γ

�

�

 

 
 implies: 

   n
1 2

n

z[I f (z)]'
q (z)  q (z)

I g(z)
� �  (12) 

and q1(z) is the best subordinant and q2(z) is the best 
dominant. 
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