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Abstract: Problem statement: In this study, the researcher considers the problem of estimation of the 
mean of the truncated exponential distribution. Approach: This study contracted with maximum 
likelihood and unique minimum variance unbiased estimators and gives a modification for the 
maximum likelihood estimator, asymptotic variances and asymptotic confidence intervals for the 
estimators. The properties of these estimators in small, moderate and large samples were investigated 
via asymptotic theory and computer simulation. Results: It turns out that the modified maximum 
likelihood estimator was more efficient than the others and exists with probability 1. Conclusion: The 
modified maximum likelihood estimator was always exist, fast and straightforward to compute and 
more likely to yield feasible values than the unique minimum variance unbiased estimator. Its variance 
was well approximated by the large sample variance of the other estimators. 
 
Key words: Truncation modified maximum likelihood estimator, fisher information, simulation, 

exponential distribution 
 

INTRODUCTION 
 
 Suppose that X be a random variable with 
exponential Probability Density Function (PDF) of 
mean (1 / )θ , then the PDF of the random variable Y, the 
truncated version of X truncated on the right at b, is 
given by: 
 

y b 1e (1 e ) , if 0 y b
f (y; )

0, otherwise

−θ −θ −�θ − < ≤�θ = �
��

 (1) 

 
where, b is a known constant. 
 In practice, the exponential distribution has been 
widely used as a model in areas ranging from studies on 
the lifetimes of manufactured items[1,2] to research 
involving survival or remission times in chronic 
diseases[3]. But in some situations, an estimate is 
desired of the mean among the elements of the 
population belonging to a certain group. For example, 
in life testing problems from an exponential 
distribution, separate estimate for the lifetime mean 
might be required for bulbs whose survival times are 
limited to be less than a constant b. In this case these 
survival times might follow a truncated exponential 
distribution. The families of truncated distributions 
provide densities that are useful in modeling such 
populations[4-8]. 
 The truncated exponential distribution can occur in 
a variety of ways. It may directly seem to be a good fit 
as a distribution for a given available data set, or it may 
result from the type of sampling used when the 

underlying distribution is assumed to follow the 
exponential distribution[6,9].There are different 
approaches for sampling selection from a subset of a 
larger population[10,11] . 
 This study deals with Maximum Likelihood 
estimator, (ML) and unique minimum variance 
unbiased estimator, (UM), of the mean of truncated 
exponential distribution and shows that the maximum 
likelihood estimator does not always exist, its existence 
depends upon the value of the mean of the random 
sample and exists with probability approaching 1 as 
n��. A Modified Maximum Likelihood estimator, 
(MML), is considered and compared with the other 
estimators. The results of a large scale simulations 
indicate that the modified maximum likelihood 
estimator is more efficient and more likely to satisfy the 
feasibility condition, namely ˆ0 b / 2< µ <  for 0< θ < ∞ . 
 Before proceeding with the estimation problem, it 
can be shown that the mean, say ( )µ θ , of the truncated 
exponential distribution given in (1) is: 
 

b 11
( ) b(e 1)θ −µ θ = − −

θ
 (2) 

 
 This function is monotonic decreasing and 
continuous on (0, )∞ with possible range (0,b/2). 
 

MATERIALS AND METHODS 
 
Maximum and modified maximum likelihood 
estimators: Assume that Y1,Y2,…Yn be a random 
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sample of size n taken from the truncated exponential 
distribution given in (1). The likelihood function, say 
L(θ) is: 
 

n b nL( ) (1 e ) exp( n y)−θ −θ = θ − − θ  (3) 
 
where, y  is the sample mean. Maximizing this 
likelihood we get the maximum likelihood estimator for 
θ. It follows that: 
 

b b 1

b 1

log L( ) / n / nbe (1 e ) ny

n[1 / b(e 1) y]

−θ −θ −

θ −

∂ θ ∂θ = θ − − −
= θ − − −

 

 
 Since the log-likelihood function is defined and 
differentiable on an open interval (0, )∞ , the maximum 
value of L(θ), if it exists, occurs at a stationary point θ* 
at which log L( ) / 0∂ θ ∂θ =  and does not occur at any 
boundary point of the interval (0, )∞ [12]. Setting 

log L( ) / 0∂ θ ∂θ = us get the equation:  
 

b 11 / b(e 1) y 0θ −θ − − − =  (4) 
 
 It can be shown that the left-hand side of Eq. 4 is 
monotonic decreasing in θ; as θ tends to 0 it tends 
to b / 2 y−  and as θ tends to infinity it tends to ( )y− . 

Hence the solution to (4) is unique if it exists and it 
exists if and only if 0 y b / 2< < and hence 
when 0 y b / 2< < , there exists a stationary point, say θ*, 
that satisfy Eq. 4 and 0< θ* <�. Clearly θ* is the unique 
maximum likelihood estimator of θ when 0 y b / 2< < . 
When y b / 2≥ , the Eq. 4 does not have a solution in the 
domain (0, �) and hence the likelihood function L(θ) 
does not have a maximum. The proper definition of the 
ML-estimator of θ  is therefore:  
 

*, if Y b / 2ˆ
does not exist if Y b / 2

�θ <�θ = �
≥��

 

 
 As n��, we have Y  converges in probability to 
the mean ( )µ θ  of the truncated exponential p.d.f. given 
in (1). Because the density in (1) is monotone 
decreasing, a simple geometrical argument shows that 
the mean ( )µ θ  must lie in the left half of the interval (0, 
b) and hence ( )µ θ <b/2. Then P(Y b / 2) 1< → as n��, 
so that the MLE θ* exists with probability approaching 
1 as n��. Therefore, using the invariance property of 
the maximum likelihood method[13,14], the maximum 
likelihood estimator, 1µ̂ , of ( )µ θ is given by: 

1

Y, if Y b / 2
ˆ

doesnot exist, if Y b / 2

� <�µ = �
≥��

 (5) 

 
 The same argument as before shows that the MLE 
estimator 1µ̂ exists with probability approaching 1 
as n → θ . 
    Under the regularity conditions[15-17], this estimator 
possesses the major properties of the maximum 
likelihood estimator, that is 1µ̂  is consistent, asymptotic 
efficient and best asymptotically normal estimator with 
mean µ(θ) and asymptotic variance, 1ˆavar ( )µ , attains 
the Cramer Rao lower bound. 
 The modification to the MLE 1µ̂ , given in (5), is 
based on finding an estimator which is close as possible 
to the MLE 1µ̂ and is more likely to satisfy the 
feasibility condition 0 ( ) b / 2< µ θ <  than the unique 
minimum variance unbiased estimator. This suggested 
estimator, say 2µ̂ , can be written as: 
 

2

Y, if Y b / 2
ˆ

b / 2, if Y b / 2

� <�µ = �
≥��

 (6) 

 
which corresponds to the modified maximum likelihood 
estimator, say θ ,of θ ,given by: 
 

*, if Y b / 2

0 if Y b / 2

�θ <�θ = �
≥��

 

 
 The same argument as before shows that 1µ̂ = 2µ̂  
and θ̂ = θ with probability approaching 1 as n��. 
 
Unique minimum variance unbiased estimator: It is 
obvious that the distribution in (1) represents a regular 
case of the exponential class of probability density 

functions of the continuous type and hence 
n

i
i 1

y
=
�  is a 

complete sufficient statistics for θ and �. Then by using 
the theorem of Lehmann and Scheffe[13], the unique 
minimum variance unbiased estimator, say 3µ̂ , of � is 
given by: 
 

3ˆ Yµ =  (7) 
 
 The variance of 3µ̂ , say 3ˆvar ( )µ , is given by: 
 

2 2
3 2

1ˆvar ( ) 1 e (e 1)
n

ζ ζ −� �µ = − ζ −� 	θ
  (8) 

 
where, bζ = θ . 
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Asymptotic variances of the estimators: The 
asymptotic variance of 1µ̂ , say 1ˆavar ( )µ , is the 
reciprocal of the Fisher information:   
 

2 2 2d
E( log L( ) / )( )

d
−µ− ∂ θ ∂θ

θ
 

 
where, L( )θ is in (3) and � is in (2). Thus: 
 

2 2
1 2

3

1ˆavar ( ) [1 e (e 1)
n

ˆavar ( 2)
ˆavar ( )

ζ ζ −� �µ = − ζ −� 	θ
= µ
= µ

 (9) 

 
 Moreover, it is easy to show that 1ˆavar ( )µ � 2b / 2n  
as 0θ → . 
    Having   obtained   the   asymptotic   variance  of iµ̂ , 
i = 1,2,3,the asymptotic relative efficiency, ijARE of  

iµ̂ relative to jµ̂ for i � j, i = 1,2,3, is: 
 

j
ij

i

ˆavar ( )
ARE 1

ˆavar ( )

µ
= =

µ
 

 
and the relative efficiency of iµ̂  relative to jµ̂  for i � j, 

i = 1,2,3, is defined by: 
 

j
ij

i

ˆMSE( )
RE

ˆMSE( )

µ
=

µ
 

 
where, MSE is the mean-squared error.   
 
Interval estimation of ( )µ θ : Approximate 100(1-�) 
percent confidence interval for ( )µ θ in (5-7) can be 
constructed by the standard normal limiting distribution 
and the modification of Slutsky's theorem 6 given 
by[13]: 
 

* *

2

* *

2

1/ 2
1/ 2 2 b b 2

i / 2 *

1/ 2
1/ 2 2 b b 2

i / 2 *

1ˆP z n b e (e 1) ( )

1ˆ z n b e (e 1)

1 , when Y b / 2

− θ θ −
α

− θ θ −
α

� � ��µ − − − < µ θ� 
 �θ� 	��

�� � �< µ + − − 

 �θ� 	 ��

= − α <

 

 
and 
 

i /2 i /2

b bˆ ˆP( z ( ) z ) 1 ,
2n 2n

when Y b / 2

α αµ − < µ θ < µ − = − α

≥
 

for all i = 1, 2, 3, where /2zα is the 100(1-�) percent 
point of the standard normal distribution. 
 
The simulation technique: In order to investigate the 
properties and the values of the estimators 1µ̂ , 2µ̂  and 

3µ̂  a large scale simulation investigation was made for 
the exponential p.d.f. truncated on the right. To get the 
biases, variances and the mean-squared errors 
numerically, the simulation technique with the help of 
MATLAB, the language of technical computing version 
6.5 is used[18]. These are computed for 50,000 samples 
of sizes (n = 20, 30, 50, 100, 200) generated from the 
truncated exponential distribution. Pseudo-random 
uniform numbers were obtained from the function 
RAND of the MATLAB. The transformation to the 
truncated exponential distributed variable is given by: 
 

1
i i

i

Y F (U )

1
log[1 U (1 e )]

−

−ζ

=

= − − −
θ

 

 
Where: 
F(.) = The distribution function of the truncated 

exponential random variable 
Ui = Uniformly distributed random variable on 

(0,1)[10] 
 
 For each combination of (n, )ζ , 50,000 trials have 
been done to find 50,000 values of each estimator. 
These estimators are then used to estimate the means, 
the values of the biases, the variances and the mean-
squared errors for each estimator. A computer 
simulation experiment was run to compare three 
methods of estimation of the mean of truncated 
exponential distribution. Simulations were performed 
for sample sizes n = 20, 30, 50, 100, 200 with the 
truncation points taking values ζ  = 0.05, 0.25, 0.5, 
1.0(1.5)10.0. For each combination of values of n and 
ζ , 50,000 random samples were generated from the 
truncated exponential distribution and for each sample 
the mean ( )µ θ was estimated by each of the three 
methods: (a) the method of Maximum Likelihood 
(ML), described before; (b) the method of Modified 
Maximum Likelihood (MML); and (c) the method of 
Unique Minimum variance unbiased estimator (UM). 
 

RESULTS 
 
 The simulation results for estimation of the mean 
of  truncated exponential distribution are shown in 
Table 1-3. 



J. Math. & Stat., 4 (4): 284-288, 2008 
 

287 

Table 1: Percentage of the absolute values of the biases of the estimators ML and MML for θ = 1 
ζ 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
n Method 0.05 0.25 0.5 1.0 2.5 4.00 5.50 7.00 8.50 10.0 
20 ML 0.24 0.97 1.42 1.24 0.01 0.04 0.04 0.03 0.03 0.02 
 MML 0.12 0.42 0.51 0.29 0.03 0.04 0.04 0.03 0.03 0.02 
30 ML 0.20 0.75 0.98 0.62 0.07 0.09 0.09 0.08 0.08 0.08 
 MML 0.09 0.30 0.31 0.10 0.07 0.09 0.09 0.08 0.08 0.08 
50 ML 0.15 0.51 0.56 0.18 0.07 0.09 0.10 0.10 0.08 0.10 
 MML 0.07 0.19 0.15 0.00 0.07 0.09 0.10 0.10 0.10 0.10 
100 ML 0.10 0.30 0.20 0.01 0.01 0.00 0.01 0.01 0.02 0.02 
 MML 0.05 0.10 0.05 0.00 0.01 0.00 0.01 0.01 0.02 0.02 
200 ML 0.07 0.14 0.05 0.01 0.01 0.02 0.03 0.03 0.03 0.03 
 MML 0.03 0.04 0.01 0.01 0.01 0.02 0.03 0.03 0.03 0.03 

 
Table 2: Percentage values of the (n θ2 )var of the ML, MML and UM estimators and the (n θ2) avarun of ML and UM estimators for  θ = 1 

ζ 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
n Method 0.05 0.25 0.5 1.0 2.5 4.0 5.5 7.0 8.5 10.0 
20 ML 0.01 0.23 1.1 5.6 39.0 69.7 87.6 95.5 98.4 99.4 
 MML 0.01 0.25 1.3 6.6 39.2 69.7 87.6 95.5 98.4 99.4 
 UM 0.02 0.52 2.1 7.9 39.1 69.6 87.5 95.5 98.5 99.5 
30 ML 0.01 0.24 1.2 6.2 39.3 70.0 87.8 95.7 98.6 99.6 
 MML 0.01 0.26 1.4 6.2 39.4 70.0 87.8 95.7 98.6 99.6 
 UM 0.02 0.52 2.1 7.9 39.1 69.6 87.5 95.5 98.5 99.5 
50 ML 0.01 0.25 1.3 7.0 39.1 69.6 87.5 95.5 98.5 99.5 
 MML 0.01 0.29 1.6 7.6 39.1 69.6 87.5 95.5 98.5 99.5 
 UM 0.02 0.52 2.1 7.9 39.1 69.6 87.5 95.5 98.5 99.5 
100 ML 0.01 0.28 1.5 7.7 39.0 69.4 87.2 95.1 98.1 99.1 
 MML 0.01 0.33 1.8 7.9 39.0 69.4 87.2 95.1 98.1 99.1 
 UM 0.02 0.52 2.1 7.9 39.1 69.6 87.5 95.5 98.5 99.5 
200 ML 0.01 0.33 1.8 7.9 39.1 69.6 87.5 95.5 98.5 99.5 
 MML 0.01 0.39 2.0 7.9 39.1 69.6 87.5 95.5 98.5 99.5 
 UM 0.02 0.52 2.1 7.9 39.1 69.6 87.5 95.5 98.5 99.5 
 avar 0.02 0.52 2.1 7.9 39.1 69.6 87.5 95.5 98.5 99.5 

 
Table 3: Percentage values of the relative efficiencies of the ML and UM estimators relative to the MML estimator 
                                                                                                     ζ 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
n Method 0.05 0.25 0.5 1.0 2.5 4.0 5.5 7.0 8.5 10.0 
20 ML 16.9 67.70 89.2 112.8 100.6 100.0 100.0 100.0 100.0 100.0 
 UM 50.3 54.20 63.6 83.8 100.2 100.2 100.0 99.9 99.9 99.9 
30 ML 53.1 72.00 97.3 112.7 100.1 100.0 100.0 100.0 100.0 100.0 
 UM 50.1 55.80 68.4 90.4 100.6 100.5 100.3 100.0 100.1 100.1 
50 ML 54.4 80.20 107.2 107.8 100.0 100.0 100.0 100.0 100.0 100.0 
 UM 49.9 58.90 75.9 95.6 99.9 100.0 100.0 100.0 99.9 99.9 
100 ML 56.8 94.00 112.8 101.6 100.0 100.0 100.0 100.0 100.0 100.0 
 UM 50.5 66.10 87.3 99.2 99.7 99.7 99.6 99.6 99.6 99.6 
200 ML 60.2 107.30 107.3 100.1 100.0 100.0 100.0 100.0 100.0 100.0 
 UM 52.0 76.30 96.1 99.8 100.0 100.0 100.0 100.0 100.0 100.0 

 
DISCUSSION 

 
 Apart from the case 2.5ζ >  when all the estimation 
methods have comparable performance, Table 1 shows 
that the MML estimator has, consistently, the lowest 
absolute bias of the two biased estimators of �, its 
advantage being particularly marked in small  samples 
n = 20, 30 and in moderate samples n = 50. Table 2 
shows that the MML estimator has slightly larger 
variance than the ML estimator when 2.5ζ < , but its 

variance is small and in most cases relatively 
insignificant compared to the bias in its contribution to 
the mean-squared error. The UM estimator has the 
largest variance of the three estimators of � 
when 2.5ζ < . The variance of the MML estimator is 
well approximated by the asymptotic variance of ML 
and UM estimators given by (9) and the last line of 
Table 2. Table 3 gives the percentage values of the 
relative efficiencies of ML and UM estimators defined 
as the ratio of the means square errors, relative to the 
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MML estimator. It is obvious from this table that, in 
general, the ML and the UM estimators are less 
efficient than the MML especially when 2.5ζ < and 
their relative efficiencies increase with ζ . 
 

CONCLUSION 
 
 Estimations of the mean of truncated exponential 
distribution have been suggested and their properties 
are studied. It turns out that the modified maximum 
likelihood estimator has several advantages over the 
other estimators. It is always exist, fast and 
straightforward to compute and more likely to yield 
feasible values for the estimated mean than the unique 
minimum variance unbiased estimator. The bias of the 
estimator is small and decreases rapidly as the sample 
size increases. The variance of the MML estimator is 
comparable with those of the ML and UM estimators. 
The variance of the MML estimator is well 
approximated by the large sample variance of ML and 
UM estimators. 
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