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Abstract: Problem Statement: There have been many cases in real life where two independent
sources have ranked n objects, with the interest focused on agreement in the top rankings. Spearman's
rho and Kendall's tau coefficients assigned equal weights to all rankings. As a result, the literature
proposed several weighted correlation coefficients with emphasis on the top rankings, including the
top-down, weighted Kendall's Tau and Blest’s correlation coefficient. Approach: This article
introduced a new weighted rank correlation coefficient that was sensitive to agreement in the top
rankings. It presented the limiting distribution under the null hypothesis of independence and provided
a summary of quantiles of the exact null distribution for n = 3(1)9. Results: The article summarized
the power comparison between the new weighted coefficient and other weighted coefficients, and
showed that the new weighted rank correlation coefficient provided the locally most powerful rank
test. Conclusions/Recommendations: The new weighted correlation should be used along with other
weighted coefficients when the interest focused on agreement in the top rankings, in order to make an
effective inference.
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INTRODUCTION

Every year many students want to apply for
postgraduate courses and research, leading to a large
number of applicants to universities. Postgraduate
committee can choose only few of them, according to
some criteria such as GPA and the average of their
grades in the major courses that they have studied
before. Since the number of the applicants is large, the
aim is to minimize the effort and the cost of
interviewing all the candidates while choosing the best
among them. In such cases, a measure which gives
more weight to those who have higher grades is
required. Many other cases in life require more weight
for values in the top in order to reach decision. For
instance, a couple of panels of judges in one of the
Olympic game wants to choose the best participants.

For such cases, correlation measures that give more
weighted for the top rankings were presented by,
To review these measures briefly, let {(Xj, Y;), 1<i<n}
be an independently and identically distributed (i.i.d.)
sample from a bivariate distribution where q; is the rank
of Y whose corresponding X has rank i among {X;}.
Throughout we assume that no ties occur among the
variables being considered. If ties occur, the average of

weighted score can be used. Iman and Conover'

introduced the top-down correlation coefficient, R,, as:

R, =[Z":sisqi —n]/(n—S,) )

Where, S; is Savage scorel” defined as:

S, =31/
j=i

Shieh®™ proposed the weighted Kendall's Tau, Ry,
which is given by:

L = 2 > sgn(i- jsgn(q; —q;) )

m(m - l) I<j<i<m

Where, m is the number of top rankings taken into
account and sgn(a) =-1,0o0r 1,ifa<,=0r>0.

A graphical approach was proposed by, leading
to a correlation coefficient Ry, which is given by:

R=2FL 12 Sii-iyg,

n(n+1)*(n-1)% )

n—1
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A new weighted rank correlation, Ry, that depends
on weighted scores, will be introduced along with its
asymptotic distribution under the null hypothesis of
independence. Then some exact and approximated
quantiles of R,, are summarized. Power comparisons
between R,, and other reviewed coefficients will be
presented. Finally, an example is given for illustration.

MATERIALS AND METHODS

A new weighted rank correlation: Let (X;, Y)),
(1<i<n) be an i.i.d. sample from a bivariate distribution
and let (i, q;), i = 1, 2,..., n, be paired rankings of 1
objects, where q; is the rank of the Y values whose
corresponding X has rank i among all {X;}. We define
weighted scores as:
Wi=w “)

Where, i is the rank of the order observations in a
sample of size n and O<w<1.

The new weighted rank coefficient Ry, is obtained

by computing the ordinary Pearson correlation
coefficient, r, on the weighted scores,
R, = [ZW“% - alj /(na, —a,) 5)
i=1

Where, a, =w (1-w"/(1-w)’ and
a,=w(l-w™)/(1-w?).

In another form, we can write R,, as:
O 3 e T e Y ©)

Y Sl e, @ /)" | [a, - (a, /)]

The statistic R,, has a maximum value of 1.
However, its minimum possible value is only -1 for
n = 2, similar as the top-down correlation and for
0 —c jt increases from -1 towards approximately a
value in the range from -2E -6 to -3E -4, depending on
the value of w.

The asymptotic distribution of R,: Now, the
asymptotic distribution of Ry, is derived under Hy, the
null hypothesis of independence. The alternative
hypothesis of a positive dependence in the rankings can
be detected using any of several statistics. The weighted
rank correlation R, is more sensitive to agreement in
the top ranks than to agreement in the bottom. For a test
of Hy that is equally sensitive to agreement among
ranks at all levels, Spearman's rho or Kendall's tau
correlation coefficient can be used. If the marginal
distributions are normal and the alternative hypothesis

is bivariate normal with positive correlation, the
Pearson correlation coefficient, T, provides the most
powerful test of Hy against the alternative. Under H,,
the asymptotic distribution of R,, is given by the
following theorem:

Theorem 1: Under the null-hypothesis of
independence, E(R,,) = 0, V(R,) = 1/(n-1) and the
asymptotic distribution of (n-l)”2 R, is the standard

normal distribution.

Proof: The mean and the variance of the R,,, under Hy,
EQ w'™) =
nE(wHE(W") = (1/n)w*(1-w")*/(1-w)* = a,/n, then

by substituting in (5) we directly obtain that E(R,,) = 0.
For the variance,

are computed as follows. Since

VR,)=varR,)=nV(Fw'")/ (na, -a,)*
Where
V(Zw =0y (Zw) v (Ew®)
+n(n—Deov(w', w*)cov(w ,w)

with

V') =Vw)=(1/m) w”

~(rmYw) = (l/n)[az —%}
and

cov(wi, w') = cov(w',w") = E(w'w*) = E(w)E(W")

_ 1 ik Zwi ’
_n(n—l)zww [ ]

ik n

) n(nl—l) (Cw'y _Zwﬁ)_(zwi jz

n

Therefore

) 2
i+ ) _ l _y _ 1 a _
V(Zw )_n[n@z n)j +n(n 1)(n(n_l)<n az]

1 a
=—(, -
n—1 n

and
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n’ 1 a
(az __l) =

VR )=—2
®v) (na,—a,)’ n—1 n° n-1

Using a,(R,,f)=[a,~(a,/m)]"?(w'=n"\fa;) and
a“(Q“i,g)z[az—(al/n)]’”z(wqi —n"\/a_,), we can write

R,=>"a,R,.0Na,(Q,.g). That is, R, is written as a
linar rank statistic. Under H,, using Theorem V.1.8 in
Hijek and Sidak"!, the distribution of the statistic R,

for n —» oo is asymptotically normal with mean 0 and
variance 6, =V(R, )=(m-1)".

Exact and approximate quantiles of R,: When the
null hypothesis is true, all permutations of ranks (I, q;),
1<i<n, are equally likely where w can take any value
between 0 and 1, exclusive. Then, exact and
approximate quantiles of R, can be computed for
chosen values of w, say 0.3, 0.6 and 0.9. Exact
quantiles for n = 3(1)9 are summarized in Table 1 and
for large n, approximate quantiles are shown in Table 2.

Power comparison: Let X=X"+AZ and Y=Y +AZ,
where X', Y and Z are independent random variables
and assume that X and Y have probability density
functions f(x) and g(y), respectively, while the
distribution of Z is arbitrary. If f(x) and g(y) are
continuous almost everywhere and satisfy the

conditions f If'(x)ldx <o and f lg'(y)ldx <o, then

from (6) and Hajek and Siddk"™, Theorem I1.4.11, the
locally most powerful rank test of H,:A=0 versus

H,:A>0 is the test with rejection region R, >c for

some suitable chosen constant c.

The power comparisons, from a bivariate normal
population, between Ry, for chosen values of w and the
top-down, weighted Kendall's tau and Blest's
correlation , as given in (1), (2) and (3), respectively,
are shown in Table 3. From Table 3, we note that Ry,
has better power than other correlation coefficients,
especially for w = 0.9 at small sample size (e.g., n = 8)
and at significant level a = 0.05, as shown in Fig. 1.

Table 2: Approximate quantiles for the weighted correlation, Ry

Table 1: Exact quantiles for the weighted correlation, Ry, w n 0.90 0.95 0.975 0.99 0.995 0.999
w n 090 0.95 0.975 0.99 0.995 0.999 03 10 0.8895 0.8991 0.9205 09902 09911 0.9992
1102536 0.8961 0.9214 0.9903 0.9911 0.9991

70 Gool 00954 10000 10000 10000 10000 12 02377 08965 09057 09278 09907 09933
5 09035 09363 09920 09995 1.0000 1.0000 1302474 08978 09062 09263  0.9906 0.9932

6 0.8930 09170 0.9905 09947 0.9993  1.0000 15 0.1983  0.8981 0.9058 0.9256 0.9908 0.9916

7 0.8897 09143 09448 0.9924 0.9950 0.9996 20  0.1994 0.5273 09017 09097 09280 0.9911

8 08875 09150 09246 0.9907 0.9927 0.9993 30 0.0475 0.2274 09041 09064 09120 0.9914

9 0.8884 0.8990 0.9205 0.9904 0.9927 0.9992 40  0.0376  0.2377 0.9056 0.9059 0.9079 0.9316

0.6 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 50 0.0465 0.2450 0.2479 0.9066 0.9072  0.9320
4 08366 09412 1.0000 1.0000 1.0000 1.0000 60 -0.0040 0.0779 0.2500 0.9071 09072 09147

5 0690 08824 09170 09848 1.0000 1.0000 70 -0.0018 0.0576 0.2532 0.9075 09076 0.9151

6 0.6811 0.7714 09015 0.9617 09761 0.9956 80 0.0014 0.0601 0.2557 0.9079 0.9079 0.9108

7 0.6525 0.7371 0.8595 09160 0.9600 0.9883 90  0.0040 0.0626 0.2577 0.9081 0.9081 0.9104

8 0.6021 0.7136 0.7989 0.8969 0.9248 0.9710 100 -0.0107 0.0645 0.2592 0.2615 0.9083  0.9090

9 05762 0.6966 0.7704 0.8780 0.9096 0.9678 0.6 10 05457 0.6752 0.7460 0.8576 0.8981  0.9590

09 3 1.0000 1.0000 1.000  1.0000 1.0000 1.0000 11 05291 0.6519 0.7275 0.8439 0.8842  0.9500
4 08018 0.8394 1.0000 1.0000 1.0000 1.0000 12 05108 0.6317 0.7173 0.8162 0.8673  0.9217

5 0.6801 0.7932 0.8906 0.9282 1.0000  1.0000 1304795 0.6275 0.7141 0.7907 0.8584 0.9187

6 0.6063 0.7329 0.8133 0.8945 09442 0.9634 15 0.3898 0.6001 0.6914 0.7685 0.8438 0.9081

7 05525 0.6809 0.7716 0.8475 0.8900 0.9415 20 03156 05675 0.6308 0.7311 0.7728  0.8658

8 05081 0.6314 0.7205 0.8060 0.8500 0.9141 30 02875 0.3861 0.5997 0.6582 0.7380  0.8539

9 04731 05920 0.6818 0.7704 0.8199 0.8975 40 0.1901 03405 0.6017 0.6358 0.6902 0.7885

50 0.1683 0.3333 04216 0.6212 0.6437 0.7642

107 — oo n=8a=005 60 0.1623 03246 03640 0.6174 0.6275 0.7106

70 0.1161 0.2366 0.3581 0.6193 0.6297 0.7121

80 0.0943 0.1940 03531 0.6211 0.6240  0.7093

08 90 0.0983 0.1961 0.3560 0.6234 0.6302 0.7109

100 0.0764 0.1985 0.3584 04384 0.6259 0.6563

06 09 10 04441 0.5580 0.6476 0.7360 0.7870 0.8710

5 11 04243 05282 0.6138 0.7022 0.7511  0.8276

£ 1203949 05056 0.5888 0.6762 0.7294  0.8206

04 13 03766 04781 0.5664 0.6675 0.7135 0.7970

15 03610 04531 0.5263 0.6071 0.6527 0.7455

o 20 03065 0.3868 0.4523 0.5286 0.5724  0.6699

30 02423 03147 03838 04575 05022  0.5643

40 02162 02766 0.3345 03975 04400 0.5327

00 ——— 50 0.1889 02484 0.3002 0.3579 0.4083 0.4907

00 01 0203 04 05 06 07 08 09 10 60 0.1738 0.2326 0.2798 0.3403 03868  0.4768

tho 70 0.1634 0.2179 0.2657 03201 03584 0.4337

. . 80 0.1471 0.1972 02465 0.2995 0.3329 0.4037
Fig. 1: Power curves of randomized tests of 90 0.1469 0.1961 0.2408 0.2928 03317 0.4178
independence for n =8 100 0.1355 0.1834 0.2235 0.2718 0.3038 0.3736
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Table 3: Powers of randomized tests of independence

p 0 00.1 00.2 00.3 00.4 00.5 00.6 00.7 00.8 00.9
n=38§ Rg 0.0416 0.0510 0.0638 0.0777 0.0976 0.1215 0.1561 0.2075 0.2830 0.4106
R, 0.0516 0.0756 0.1057 0.1472 0.2023 0.2705 0.3584 0.4748 0.6138 0.7879
Ry 0.0503 0.0760 0.1103 0.1593 0.2242 0.3059 04171 0.5555 0.7265 0.8970
R 0.0280 0.0410 0.0565 0.0781 0.1072 0.1463 0.2023 0.2783 0.3871 0.5600
Roas 0.0526 0.0712 0.0966 0.1252 0.1621 0.2097 0.2698 0.3471 0.4519 0.6041
Ros 0.0536 0.0735 0.1012 0.1321 0.1737 0.2245 0.2904 0.3765 0.4861 0.6385
Ros 0.0524 0.0745 0.1063 0.1466 0.1974 0.2627 0.3450 0.4601 0.5975 0.7759
Ross 0.0518 0.0769 0.1117 0.1551 0.2120 0.2878 0.3877 0.5143 0.6690 0.8488
Roo 0.0528 0.0775 0.1132 0.1645 0.2319 0.3135 0.4258 0.5656 0.7340 0.9055
n=12 Ry 0.0425 0.0581 0.0758 0.1012 0.1306 0.1677 0.2228 0.3006 0.4177 0.6081
R, 0.0508 0.0795 0.1247 0.1858 0.2639 0.3646 0.4911 0.6411 0.7931 0.9340
Ry 0.0544 0.0933 0.1492 0.2274 0.3309 0.4595 0.6192 0.7760 0.9161 0.9863
R, 0.0841 0.1104 0.1421 0.1787 0.2209 0.2713 0.3295 0.4058 0.5001 0.6306
Roas 0.0407 0.0590 0.0840 0.1141 0.1548 0.2098 0.2726 0.3609 0.4714 0.6206
Ros 0.0402 0.0591 0.0863 0.1192 0.1612 0.2185 0.2889 0.3844 0.5083 0.6758
Ros6 0.0376 0.0568 0.0864 0.1230 0.1732 0.2400 0.3289 0.4448 0.5969 0.7803
Ross 0.0381 0.0602 0.0977 0.1499 0.2199 0.3128 0.4392 0.5922 0.7596 0.9218
Roo 0.0366 0.0647 0.1081 0.1748 0.2627 0.3828 0.5411 0.7090 0.8771 0.9786
n=20 Rg 0.0302 0.0473 0.0727 0.1089 0.1618 0.2334 0.3325 0.4711 0.6527 0.8641
R, 0.0521 0.0978 0.1637 0.2595 0.3821 0.5369 0.7046 0.8554 0.9575 0.9966
Ry 0.0544 0.1078 0.1914 0.3212 0.4887 0.6704 0.8310 0.9435 0.9924 0.9999
R 0.0496 0.0694 0.0947 0.1285 0.1662 0.2158 0.2717 0.3448 0.4395 0.5856
Ro2s 0.0496 0.0694 0.0947 0.1285 0.1662 0.2158 0.2717 0.3448 0.4395 0.5856
Ros 0.0493 0.0719 0.1003 0.1387 0.1831 0.2440 0.3125 0.4048 0.5251 0.7029
Ros 0.0501 0.0735 0.1075 0.1525 0.2075 0.2819 0.3714 0.4859 0.6444 0.8340
Ros 0.0500 0.0903 0.1450 0.2204 0.3252 0.4556 0.6048 0.7606 0.8969 0.9827
Roo 0.0542 0.1049 0.1847 0.3082 0.4611 0.6396 0.8059 0.9287 0.9862 0.9996
n=30 Rg 0.0569 0.0987 0.1591 0.2517 0.3640 0.4994 0.6658 0.8155 0.9323 0.9923
R, 0.0511 0.1104 0.2068 0.3492 0.5303 0.7226 0.8727 0.9622 0.9945 0.9998
Ry 0.0501 0.1235 0.2554 0.4493 0.6682 0.8446 0.9504 0.9932 0.9995 1.0000
R 0.0519 0.0780 0.1133 0.1617 0.2242 0.3068 0.4102 0.5312 0.6750 0.8344
Rozs 0.0519 0.0780 0.1133 0.1617 0.2242 0.3068 0.4102 0.5313 0.6751 0.8347
Ros 0.0568 0.0855 0.1285 0.1831 0.2563 0.3467 0.4650 0.5967 0.7410 0.8954
Ros 0.0548 0.0847 0.1283 0.1846 0.2580 0.3569 0.4817 0.6269 0.7784 0.9296
Ros 0.0501 0.0887 0.1452 0.2283 0.3381 0.4767 0.6396 0.8016 0.9236 0.9901
Roo 0.0513 0.1184 0.2341 0.3985 0.5958 0.7793 0.9105 0.9792 0.9980 1.0000

RESULTS AND DISCUSSION

Numerical Example: To illustrate our new weighted
rank correlation, we use a data set, in Table 4, that was
also used by The data set considers two techniques,
A and B, used to select the most effective variables out
of 20 variables for evaluation of some software
packages.

We see that the two techniques agree strongly on
the top six variables. However, there is large
disagreement between these techniques after that. In
such circumstances, we may want to place more
emphasize on the top rankings rather than equity over
all ranking values. Therefore, we calculate some
different weighted rank statistics, along with our
weighted rank correlation at different weighted values.
For each statistic the corresponding p-values are
evaluated, these values are given in Table 5.

From Table 5 we can conclude that at different
weight values, our weighted rank correlation and the

Table 4: Example: Two techniques A and B for selecting the most
effective variables out of 20 variables for evaluation of some
software packages.

A

B

1
11
1
17

2
12
2
18

3
13
4
14

4
14
3

16

5
15
6
12

6 7

16 17
5 20
9 11

8 9

18 19
13 15
8 10

10
20
19
7

Table 5: Example: Weighted rank correlation statistics and their p-

values

Statistic p-value
Blest's Rank Ry 0.5602 <0.01
Top-down R, 0.8206 <0.001
Weighted Kendal Rx (m = 6) 0.7333 <0.01
Weighted rank Ry,
R, 0.9999 <0.001
Ro.s 0.9977 <0.001
Ros 0.9851 <0.001
Ros 0.9786 <0.001
Ros 0.9434 <0.001
Rog 0.7135 <0.001
top-down correlation provide strong  evidence

(p-value <0.001) against
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independence of A and B. The criteria behind choosing
the weight depends on the degree of emphasis the user
may wish to apply to top ranks. However, we suggest
the weight w = 0.9 since as shown in Table 3, our new
weighted rank with w = 0.9 has higher power than other
rank correlation coefficients.

CONCLUSION

This article proposed a new weighted rank
correlation coefficient that was sensitive to agreement
in the top rankings. Under the null hypothesis of
independence, the proposed coefficient's limiting
distribution was derived along with the exact and
approximated quantiles for different sample sizes. As
shown, the test that depended on the new weighted rank
correlation coefficient was the locally most powerful
rank test. Therefore, when interest focused on the top
rankings, we recommended using the new weighted
rank correlation coefficient, together with other
weighted coefficients, to reach an effective decision.

A generalization of this article, when more than
two independent sources rank n objects with focus on
top rankings, known as a Concordance measure, will be
presented somewhere else.

230

REFERENCES

Blest, D.C., 2000. Rank correlation-An alternative
measure. Aust. N. Z. J. Stat., 42: 101-111. DOI:
10.1111/1467-842X.00110

Genest, C. and J. Plante, 2003. On Blest's measure
of rank correlation. Can. J. Stat., 31: 35-52.
http://direct.bl.uk/bld/PlaceOrder.do?UIN=132308
135&ETOC=RN&from=searchengine.

Hijek, J. and Z. Sidak, 1967. Theory of Rank
Tests. Academic Press, Inc. New York; London, pp
297, ISBN-10: 0123172500.

Iman, R.L. and W.J. Conover, 1987. A measure of
top-down correlation. Technometrics, 29: 351-357.
http://portal.acm.org/citation.cfm?id=37097.37105.
Shieh, G.S., 1998. A weighted Kendall's tau
statistic. Stat. Probability Lett., 39: 17-24. http://
cat.inist.fr/?aModele=afficheN&cpsidt=1618157.
Shieh G.S., Bai Z. and Tsai W. 2000. Rank Tests
for independence-with a weighted contamination
alternative. Stat. Sinica, 10: 577-593.
http://www3.stat.sinica.edu.tw/statistica/j10n2/j10n
212/j10n212.htm.



