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Abstract: The possibility of using the decimal numbers in cryptography as the base of the encryption and 
decryption is proposed by introducing the "Rounding Theorem". Until now, cryptosystems are used the 
integer numbers to avoid the fractions of the decimal numbers. That is to avoid losing the original plaintext 
after the decryption. This theorem is proved that there is no lost for any bit of information during 
communications when using a cryptosystem that is based on decimal numbers. The purpose of moving from 
integer numbers to decimal numbers is the decimal numbers are much faster during calculations than the 
integer numbers. We design a new function called "The Rounding off Function", which plays the primary role 
in proving this theorem. The security of using the decimal numbers in cryptosystems is studied and analyzed. 
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INTRODUCTION 

 
 This paper is introduced that there is no losing 
of the information when the cryptosystem depends on 
decimal numbers. Using the decimal numbers in 
cryptography gives the risk of losing some information 
of the plaintext (as an integer number) during the 
encryption and the decryption; as we all know that the 
decimal numbers are not specific numbers as the 
integers. There is always a fraction in decimal numbers, 
especially when we talk about the recurring type such 
as ...4747474747.0  and the nonrecurring or not exact 
type such as pi. Despite this fact, the questions are, if 
the plaintext is an integer number then, is there 
possibility for constructing a secure cryptosystem 
depends on the decimal numbers and which concept can 
control the fraction of the decimal numbers?  
Mathematically, if we have the 

value �
�

�
�
�

�∗
41282519.0
41282519.0

43567
�

�
, then the result would 

be 43567 . We want to discuss the result of this value 
when it should be done by the computer. Therefore, if 

we define the result of �
�

�
�
�

�∗
41282519.0
41282519.0

43567
�

�
as 

integer then the computer program would give 
43567 exactly. However, if we give order to the 
computer program to define the same value as real 
number then the result would be either as 

�123680655.43567  or as �78659205.43566 , that 
means there would be some fractions. But, in either 
case of the real number definition, the rounding off will 
handle the calculations and put it as 43567 exactly.  
Our observation is, these fractions cannot change the 
mathematical result. The question is, why these 
differences in the result should stay under the 
controlling of the theoretical result? In our example, 
why the computer cannot gives the result either as 

�8976120655.43567 or as �10436205.43566  where 
it is obvious, for these two numbers, the result after the 
rounding off would be either 43568  or 43566  
respectively, which they are not the same as the 
mathematical (theoretical) result, there would be some 
differences These differences lie in the interval (0,1). 
Here, we prove that these “differences” cannot overstep 
out of the controlling of the mathematical result and we 
prove that it will be not possible for the computer to 
give the last two numbers through introducing a 
theorem called “Rounding theorem”. For this concept, 
we design a function called “Rounding off function” 
that plays the main role of proving this theorem. 
Our concern relates to involve the decimal numbers in 
the cryptography field, because of the advantages for 
the security and the speed of the communications 
regarding this kind of numbers. For instance, when we 
want to calculate the value 4567842 , then the time 
needed is more than 394000 millisecond. From the 
other hand, and on the same processor, the time needed 
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to calculate the value 456784.02  is less than 1 millisecond. 
According to this fact, we can compare between using 
the large prime and integer numbers and using decimal 
numbers, even if both of the two different types of the 
numbers have the same key size.   
The theory of the security of any cryptosystem that is 
based on the decimal numbers, it depends on the 
properties of this kind of numbers. The unknown keys 
are decimal numbers and that means the attacks should 
be through using the methods of the approximation 
(numerically). However, the methods of the 
approximation will not give the exact values, the 
attacker needs to the exact value of the key with the 
same number of digits. This strong point does not exist 
in other cryptosystems that depend on integer numbers 
because the attacker does not know really how many 
digits he will lose during the approximation. The 
methods of recovering the keys in the decimal 
cryptosystem should depend on numerical methods 
then, defiantly, the attacker will face the cumulative 
error. Therefore, he will not get the same decimal 
number. From the other hand, there are no numerical 
methods in applying the algorithms of this new decimal 
cryptosystem, so we can call it as ‘one way operation’, 
the user applies the cryptosystem without losing for any 
bit information, but the attacker will lose some of the 
information because approximation. 
This paper contains three sections. In the first section, 
we define the terms that we use to prove the Rounding 
theorem[2,3,4,6]. In the second section, we construct a 
cryptosystem depends on the decimal numbers[1]. In the 
third section, we discuss the security regarding the 
decimal numbers[5].  
 

THE ROUNDING OFF FUNCTION 
 
 We use the term “decimal numbers” from the 
viewpoint of the mathematics not from the viewpoint of 
the computer. So that, the decimal numbers are the 
numbers that belong to the uncountable interval )1,0(  
and they have the expressions �321 jjj.0  

where
∞

=1rrj is an arbitrary sequence of integers 

between 0 and 9. 
 
Definition 1: Let r be any real number, denoted by 

��� i1i21n1n21 jjjj.JJJJr −−=  where both of 
n

1iiJ
=

and  
∞

=1kkj  are arbitrary sequence of integers 

between 0 and 9. We call the first sequence n

1iiJ
=

 the 

integer part of the real number r , which is the part 
before the decimal point, while we call the second 

sequence 
∞

=1kkj  the decimal part of the real number 

r , which is the part after the decimal point. 
As we said in section one, mathematically, if we have 

such like the value: �
�

�
�
�

�⋅
x
x

m , with 0x ≠ , then the 

result would be m , no matter what the type of the 
number x  is. We want to discuss the result of this 
value when it should be doing by the computer. The 

very important note here is, If we define 
x
x

 and 

�
�

�
�
�

�⋅
x
x

m as integers then the results would be 

respectively 1 and m  exactly. But if we give order to 

the computer program to define 
x
x

 and �
�

�
�
�

�⋅
x
x

m  as a 

real numbers then the division of 
x
x

 would not equal to 

1 exactly, and the value of �
�

�
�
�

�⋅
x
x

m  would not equal to 

m exactly. There would be some difference, this 
difference lie in the interval )1,0( , and these differences 
disappear when we define them as an integers. Here, in 
this section we prove that this “differences” cannot 
overstep out of the controlling of the mathematical 
result. What we mean by ‘the controlling’ of the 
mathematical result is, the computer calculations cannot 

give the result of �
�

�
�
�

�⋅
x
x

m in a way that makes the 

decimal part of the number and the last digit of its 
integer part change the exact value m after applying the 
rounding off on the number.  
 
Definition 2: Let }1,0{)1,0(:R → be a function given 
by 

�
�
	

≥≥≥
<

=− 5jand4jwhenor5j,1

4j,0
)jjjj.0(R

211

1
k1k21 ��

)1,0(jjjj.0 k1k21 ∈∀ − �� , where �,2,1i,Zji =∈  We 
call R  the rounding off function. 
 
It is easy to check that R is well-defined function. 
 
Definition 3: For any real number r , we mean by 
Round(r) is the integer number that resulted after 
applying the rounding off on r. 
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So, if �� k1k21 jjjj.Jr −= where J is the integer part 
and �� k1k21 jjjj − is the decimal part of the real 
number r respectively, then  

�
�
	

=+
=

=
−

−

1)jjjj.0(Rwhen,1J

0)jjjj.0(Rwhen,J
)r(Round

k1k21

k1k21

��

��
,  

where (.)R  is the rounding off function. 
 
Theorem 1: (Rounding theorem) 
Let m be any integer number and let x be any decimal 
number belong to the interval )1,0( , then  the computer 
calculations give  
 

[ ] m)x/x(mRound =⋅  (1) 
 
if and only if the number ( )x/xm ⋅ takes the form of 
either 
 
i- �� r1r21 jjjj.0m −+ ,where 0)jjjj.0(R r1r21 =− �� , 

or; 
ii- �� r21 hhh.0)1m( +− ,where 1)hhh.0(R r21 =�� . 
 
Proof 
We have [ ] m)x/x.(mRound = . We want to prove the 
number ( )x/xm ⋅  gives the same theoretical result only 
if condition (i) or (ii) is satisfied. The proof will be by 
using the contradiction. 
1- In condition (i) assume that 

1)jjjj.0(R r1r21 =− �� . Then according to the 
definition (3), Eq. (1) would be m1m =+  which 
gives a contradiction. 

and,  
2- In condition (ii) assume that 

0)hhhh.0(R r1r21 =− �� . Then by applying the 
definition (3), Eq. (1) would be m1m =−  which gives 
a contradiction again.  

From the other side, it is obvious if ( )x/xm ⋅  has the 
form either in condition (i) or (ii) then 

[ ] m)x/x(mRound =⋅ . 
 
Rounding theorem concludes that the decimal part that 
occurs by the computer calculation cannot change the 
theoretical results as an integer number.  
 
For example, we choose three integer numbers: 

531234543686916875743967, 762345667898m  ,= . For 
any decimal number x, we give the order to the 
computer to calculate the value of ( )x/xm ⋅ many times 

for each number, each time with different x, and we 
define the output two times, as integer (that means 
applying the rounding off) and as real number (that 
means the number as it is). The table below shows the 
results: 
 
Table 1: computer calculations are matched with the theoretical 

calculations 

x
m ,for different x

x
� �⋅� �
� �

 x
Round m

x

 �� �

� �� 

� �� �

 

234566789876.0000401890808430592 234566789876 
234566789876.0000120415831719936 234566789876 
234566789875.9999838940855009280 234566789876 
687574396791.0000701068806193152 687574396791 
687574396790.9999675488383329359 687574396791 
687574396791.0001826968713035776 687574396791 
123454368653.0000077198064615424 123454368653 
123454368653.0000077198064615424 123454368653 
123454368652.9999936460576260096 123454368653 

 
THE DECIMAL CRYPTOSYSTEM 

 
 Of course, if we want to design a cryptosystem that 
depends only on the decimal numbers, then we must 
design it such that it will not depend on group structure, 
finite field, discrete logarithm or prime numbers. We 
construct the cryptosystem by using nonlinear function; 
this function produces the decimal numbers under this 
cryptosystem. We use the notation J(.); we will call it 
Jay function to represent this function. All the keys in 
this cryptosystem are decimal numbers except the 
plaintext, which is an integer number. 
 This cryptosystem is symmetric and asymmetric, it 
depends on a sharing secret key between the users and 
each one of the users has their private key to construct 
his public key by using the main equation of the 
cryptosystem, which is: 
 
     Y = (J(g))x (2) 
 
where, g is the secret key, x is a random decimal 
number as the private key and Y is the public key. x 
and Y are changed every block message. That mean the 
decimal cryptosystem is depended on one time key.  
 Then we construct the encryption and decryption 
algorithms by assisting of what we call it the encryption 
key: k which is also random decimal number; so the 
encryption algorithms are: 
 
   C1 = (J(g))k and c2 = Yk*m (3) 
 
where, c1 is decimal number, c2 is a real number and m 
is an integer number which represent the plaintext. 
Then we build the decryption Algorithm as follows: 
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     x
1 2m c c−=  (4) 

 
Theorem 2: In the decimal cryptosystem, if the 
decryption algorithm is x

1 2m c c−=  then, 
mathematically,  m is the same plaintext before the 
encryption. 
 
Proof: When the user does the calculation of Eq. 4, 
then he gets the message m because: 
 

   
x k x k

1 2
x k k

c c ((J(g)) ) Y m

((J(g)) ) Y m

− −

−

= ∗ ∗

= ∗ ∗
 (5) 

 
by using Eq. 2, we get, 
 

   
x k k

1 2c c Y Y m

m

− −= ∗ ∗
=

 (6) 

 This proof should be enough no matter what the 
type of the numbers are, because the left hand side of 
the equation is equal to the right hand side. 
 However, the issue here is not that simple because 
the calculations have been done by the computer 
program, there would be fraction, so that we want to 
make sure that the plaintext before the encryption is the 
same after the decryption. This point is actually an 
advantage for the security of the system because the 
attacker will never know how many digits after the 
decimal point he will lose after applying any backward 
substitution. Below we will prove that even with using 
the   computer   program,   then the decryption 
algorithm (4) still gives the same integer plaintext, but 
before we give this prove we have to say that the nature 
of decimal cryptosystem depends on using the decimal 
numbers but the calculations is not done numerically or 
iteratively. That means, there is no numerical method 
involved with this cryptosystem and each number is 
used only one time for each block message, so that, 
there is no cumulative error on the algorithms of this 
cryptosystem.  
 
Proposition:  In the decimal cryptosystem, if the 
decryption algorithm is x

1 2m c c−=  then the computer 
program gives m as the same plaintext before the 
encryption. 
 
Proof: Recall the decryption algorithm: 
     a

1 2m c c−=  (4) 
By using theorem (2) we get:  

a k k
1 2c c m(A A )− −=  

 
 The calculations of the computer give the number 

a
1 2c c−  as a real number; it means have the integer part 

and the decimal part. 
 Now by applying Rounding theorem on the 
equation above we will get: 
 

k kRound m(A A ) m−
 �=
� �

, 

 
if and only if 
 

  
a

1 2 1 2 r 1 r

1 2 r 1 r

c c m 0.j j j j where

R(0.j j j j ) 0

−
−

−

= +
=

� �

� �

 (7) 

or 
 

 
a

1 2 1 2 r 1 r

1 2 r 1 r

c c (m 1) 0.h h h h where

R(0.h h h h ) 1

−
−

−

= − +
=

� �

� �

 (8) 

 
 That means after the decryption we will get the 
same integer number that represents the plaintext m.  
 For example, we give three messages 
32541276897621, 67119840812567 and 
33681209794882 as a plaintext, we will see below two 
decryption texts for each plaintext because we apply 
Eq. 4 separately by using different encryption keys. The 
advantage of doing this approach is to show that the 
different decimal parts still give the same plaintext.  
 
Table 2: The decryption algorithm gives the same plaintext 
Decryption text Output text 
32541276897621.00260110963784 32541276897621 
32541276897620.99539530885990 32541276897621 
67119840812567.00772929190656 67119840812567 
67119840812566.99331773334745 67119840812567 
33681209794882.00868674765136 33681209794882 
33681209794881.99427518909312 33681209794882 

 
THE SECURITY 

 
 The security of this new cryptosystem depends on 
new theory from the viewpoint of the cryptography. As 
we mentioned in section one, this cryptosystem does 
not depend on group structure, finite field or discrete 
logarithmic equation and most importantly, it does not 
depend on the integer numbers. It depends on nonlinear 
equation and the concept of the decimal numbers. 
Practically, the methods of the attack will fail because 
they will face the dealing with numerical methods to 
recover the unknown keys because of the nonlinear 



J. Math. & Stat., 4 (1): 15-20, 2008 
 

 19 

equations and the decimal numbers, which is the thing 
that will produce the ‘cumulative’ error. 
 
The size of the key: For some cryptosystems that are 
depending on group structure and/or finite field; there is 
no doubt that the plaintext before the encryption is the 
same plaintext after the decryption exactly. Also for 
these cryptosystems, the attacker knows exactly what 
numbers that he should trial, so that they trend to use a 
huge size for the keys to increase the possibilities of 
solving the algorithms that depend on these keys. 
However, these cryptosystems will be compromised 
once we have high-speed computers.  
For the decimal cryptosystem, the attacker has the 
problem of what exactly the numbers that he should 
trial. Even if we fixed the digits after the decimal point 
then still the difficulty in following the numbers that 
picked randomly by the computer itself and also, the 
difficulty in following the numbers that resulted from 
applying the algorithms of this cryptosystem. 
According to this fact, this theory of the security does 
not really depend on the size of the key because 
regardless of the time needed for doing the calculations, 
the decimal cryptosystem depends on decimal numbers 
between 0 and 1 which they belong to uncountable set 
of numbers. Therefore, increasing the size of the key 
will not increase or decrease the security of the 
cryptosystem. 
 
The security of algorithms: We have explained in 
details in section two how the decryption algorithm 
gives the same plaintext because it is an integer 
number. If the plaintext was not integer number, then 
definitely we cannot apply the decimal numbers in 
cryptography, because as we saw, if we put the 
plaintext in Eq. (4) as a real number then it will not give 
the same integer plaintext integer number, unless we 
apply the rounding theorem on it. 
If the attacker is working with ‘numerical methods 
field’ then he can accept a ‘small error’. But, he is 
working with the ‘cryptography field’ so that he cannot 
accept any error. This fact will protect the keys of the 
decimal cryptosystem. 
  
Attack 1: Theoretically, the ‘Brute-Force attack’ can 
break the decimal cryptosystem. Practically, this attack 
will fail because it should deal with the imprecise 
decimal numbers under the “backward substitution” and 
this will produce “cumulative and truncation error”.  
Brute-force attack is typically a known-plaintext attack. 
Now, the attacker will begin with backward substitution 
by using this information together with the algorithms 

of the decryption and the public key, so that he will get 
the private and then the secret keys. Table (3) gives the 
results of applying this attack, by following the 
algorithms in section two, the attacker does not get the 
exact keys, a small error in the first step produce a big 
error in the last step. We have to mention here that we 
are using 9 digits after the decimal point just for the 
purpose of the example. Therefore, the steps of the 
attack will be: 
Given the plaintext m : Apply this information on Eq. 
(4) recover the private key will produce 1a ε+  where 
a is private key and 1ε  is the first error. By using 
backward substitution again on the public keys 
algorithms to recover the secret key will produce 

2g ε+  
where g  is secret key and 2ε  is the second cumulative 
error. This time, 2ε  is not ‘small’ error. 
 
Table 3: The numerical and the exact keys under Brute-Force attack 
Numerical Exact  Numerical Exact 
private key private key secret key secret key 
0.400815612 0.400815615 0.528707461 0. 528276284 
0.011651216 0.011651225 0.584109290 0.584332768 
0.264849994 0.264857933 0.044618588 0.044648984 
0.586213572 0.586213551 0.507733388 0.507734815 
0.887074006 0.887074043 0.551950283 0.551851077 
 
 This attack shows us that the attacker cannot apply 
the rounding theorem on a and g because they are not 
integer numbers, so that the errors ε1 and ε2 will not be 
zero. Moreover, the relation between the error and the 
number of digits of the decimal number is directly 
proportional  and  finally,   the   trial  and  error  method 
might be helpful for the attacker to adjust the keys. 
Therefore, we can notice that, in the decimal 
cryptosystem, the attacker have to apply the attack itself 
and then he have to begin with the adjusting.  
 
Attack 2: Ciphertext-only attack and chosen-ciphertext 
attack will fail because we change the encryption key 
for every block message. 
 
Attack 3: All the algorithms of the decimal 
cryptosystem depend on nonlinear function and the 
decimal numbers, so that if the attacker wants to choose 
any algorithm to attack separately then he should use 
one of the numerical methods. Any numerical method 
has an error percentage, and he will come back again to 
the same theory in the first attack. Moreover, the 
attacker does not have a system of nonlinear equations 
to recover the unknown variables in each algorithm, 
which is the only way for him to get the keys without 
errors.  
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There is a claim that Newton method can find the 
solution of the nonlinear equation of decimal 
cryptosystem. We test this claim and we found that 
there is no Newton’s for nonlinear equation with two 
variables unless there is a system of equations and even 
with that, there is no prove until now that this 
cryptosystem can be solving by using Newton method. 
Moreover, Newton method is still one of the numerical 
methods which will also produce error. The 
approximation or any (fitting method) will not work 
because the attacker needs exactly the same numbers, 
not approximated numbers. 
 

CONCLUSION 
 
 In the field numerical methods, we can accept the 
error that occur during applying the methods, because 
this concept depending on “iterative” procedures. In 
cryptography, we cannot accept any error. The risk was 
by using the decimal numbers, we proved that there is 
no error could be occur in applying the new decimal 
cryptosystem. 
We achieve this proof by putting the rounding off 
operation as a function, so that we could calculate 
exactly the effect of the decimal numbers and we could 
control the cases that resulted by using the encryption 
and decryption through this new concept.   
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