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Abstract: Properties of various types of estimators of the regression coefficients in linear logistic 
regression models were considered. The estimators include those based on maximum likelihood, 
minimum chi-square and weighted least squares. The results of a large scale simulation investigation 
evaluating the moment properties of the estimators are presented for the case of logistic model with a 
single explanatory variable. 
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INTRODUCTION 

 
 Assume that y1, y2,...,yg represent g independent 
binomial random variables. For ith group, i = 1, 2,…, g, 
let xi1,xi2,...,xik denote the values on k explanatory 
variable which are thought to influence the individual 
trial probability of success, denoted by Pi. Then the 
linear logistic regression model is: 
 
  i iln(P / Q ) β i 1,2, ,g  ′= = …ix   (1)  
 
where i iQ 1 P= − , 
 
  i i1 ik 0 1 kx (1,x ,..., x ),and β ( , ,..., )′ ′= = β β β  (2)  
 
 The regression coefficients in β are usually 
unknown and there are a number of well-known 
methods of estimation of β, such as maximum 
likelihood, minimum chi- square and weighted least 
squares. 
 
Maximum likelihood: The maximum likelihood 
(ML)[1-4], is the most common method of estimation, 
since these estimates can now be routinely obtained by 
using many statistical packages such as GLIM, 
SHAZAM, MLOGIT, QUAIL, SAS PROC GENMOD 
and S-PLUS. Refer to[5-7] for more details. 
 The kernel of the log-likelihood may be written a: 
 

  i

g
x β

i i i
i 1

L(β) n (p x β ln(1 e ))′
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′ ′= − +∑  (3)  

where pi = yi/ni denotes the observed proportion of 
successes in the ith group. In a matrix form the first and 
second order derivatives of the log- likelihood are given 
by:  
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∂ ′= −
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 (5) 

 
where v1 = diag ((niPiQi)) is a (g x g) diagonal matrix 
and X is the (g x (k+1) design matrix[2] . If we let 

1β
)

denote the ML estimate of β and put 

1 11 1 1β β β β

L(β)D ( ) , V (V ) ,
β = =

∂
= =

∂
) )

)
then 1β

)
is given by the 

solution of the (k+1) equations given by D1 = 0. 
 Applying a standard Newton-Raphson approach[8] 
to solve these equations, if ( )

1β
l

)
 denotes the 

approximation to 1β
)

at the lth stage of iteration we have: 
 
   ( 1) ( ) ( ) 1 ( )

1 1 1 1(X V X) D+ −′β = β +l l l l
) ) )

 (6)  
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where ( )
1V l
)

 and ( )
1D l  denotes 1V

)
and 1D evaluated at 

( )
1β
l

)
. The procedure is to calculate the estimates from a 

linear probability model and to use these as an initial 
values which begins finding a solution. When the 
difference between ( 1)

1
+β l

)
 and ( )

1β
l

)
 is close enough to 

zero, the process stops. This iteration procedure may be 
viewed as a method of reweighted least squares. 
 
Minimum chi- squares: The minimum chi- square 
(MCS) estimator[2,4] which we denote by 2β

)
 is the value 

of β that minimizes: 
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The first and the second order derivatives of R (β) are: 
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Where; 
 
   2 2i i

2 i i i
i i

Q PV diag((n (p q ))
P Q

= −  (12)
  

 Then 2β
)

 is given by the solution of the (k+1) 
equations given by: 
 
    

2D 0=  (13) 
 
 An iterative solution can again be found by using 
Newton- Raphson approach similar to that outlined for 
the maximum likelihood estimation procedure. 

Weighted least squares: The ML and MCS estimation 
methods both require an iteration method of solution, 
although as we have noted the estimates can be 
obtained using many packages (straight forward). A 
none iterative solution can be found by using weighted 
least squares (WLS), which is sometimes referred to as 
minimum logit chi- square estimation[9]. Defining the 
group empirical logits by: 
 
   i

i
i

pz ln( ), i 1,2,...,g
q

= =  (14) 

 
we have, 
 
   1

i i iE(z ) x β o(n )−′= +  (15)
 

 
and 
 
   1 2

i i i i iv(z ) (n PQ ) o(n )− −= +  (16) 
 
 The WLS estimate is the value of β which 
minimizes: 
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 The weights wi = nipiqi are the reciprocal of the 
asymptotic variances of the zi's based on the sample 
proportions of successes. Denoting the WLS estimate 
by 3β

)
, the explicit solution is: 

 
   1

3β (X WX) X Wz−′ ′=
)

 (19) 
 
where 1 2 g(z ,z ,...,z )′ =z and iW diag((w )).=  
  
The WLS method can be applied even if p = 0 or 1 but 
because zi is itself undefined for these extreme cases 
therefore samples with yi = 0 or ni should be exempted 
when the estimation of 3β

)
 is considered. 

 We use β
)

 to denote any estimator from the set 

1β
)

, 2β
)

, 3β
)

. It follows that the three estimators all have 
the same asymptotic properties with E ( )β = β

)

 and: 
 
   1

1COV(β) (X V X)−′=
)  (20) 
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 In the results of a fairly large scale simulation 
investigation that compare the moment properties of the  
estimators for a number of sample sizes and parameter 
configurations when we consider a single explanatory 
variable. These results considerably extend the findings 
made by[10] who considered the particular case g = 3, ni 
= 1,2,3 and showed that the simple WLS method was 
more efficient than the ML and MCS methods of 
estimation under a number of success probability 
configurations. 
  
Numerical results with discussions: In order to 
investigate the properties of the ML, MCS an WLS 
estimators, a large scale simulation was made for the 
case of a single explanatory variable with equally 
spaced values. Without loss of generality, the linear 
logistic regression model was taken as: 
 
  i i 0 1Ln(P / Q ) (i 1), i 1,2,...,g= β + β − =  (21) 
 
 Group numbers g = 5, 10 and sample sizes n = 25, 
50, 100 were used, the simulation run size being, 1000 
in each case. Three pairs of values (β0, β1) were 
examined for each value of g to give coverage of 
markedly different configurations for the groups trial 
probabilities of success, as shown in Table 1. 
 For the model given by Eq. 21, the elements in the 
information matrix are: 
 
  i i 0 1Ln(P / Q ) (i 1), i 1,2,...,g= β + β − =  (22)  
 
where, xi = i-1The asymptotic variances and 
covariances for each of the three estimators are given 
by: 
 

  0 22/ D 1 11

0 1 12

var( ) I , var( ) I / D,

cov ( , ) I / D

β = β =

β β = −

) )

) )  (23) 

 
where 2

11 22 12D I I I= − . 
  
In Table 2, the variances of the estimators of β0 and β1 
as obtained by simulation are given together with the 
approximate values given by 23. The results show that 
the ML estimators gave the largest variances for both β0 
and β1 in all cases. The variance differences for the 
MCS and WLS estimators were generally extremely 
small. The results also show that approximation 23 
which is applicable to all the estimators gave 
satisfactory results especially when n = 100.  

 Table 3 gives the means square errors of the 
estimators and the efficiencies of the MCS and WLS 
estimators relative to ML estimator defined as the ratio 
of the mean square errors. These efficiency results 
suggest that the ML estimation procedure should not be  
 
Table 1: Parameter values (β0,β1) and group trial probabilities of  

success {Pi} used in the simulation investigation 
 β0 β1 {Pi} 
g = 5 
(i) -2.0 0.4 0.119 0.168 0.232 0.310 0.401 
(ii) -1.0 0.5 0.269 0.378 0.500 0.623 0.731 
(iii) 0.5 0.5 0.623 0.731 0.818 0.881 0.924 
g = 10  
(iv) -2.0 2.0 0.119 0.142 0.168 0.198 0.231 0.269 0.310 
   0.354 0.401 0.450  
(v) -0.4 0.2 0.401 0.450 0.500 0.550 0.591 0.646 0.690 
   0.731 0.769 0.802 
(vi) 0.5 0.2 0.623 0.668 0.711 0.750 0.785 0.818 0.846 
   0.870 0.891 0.908 
 
Table 2: Variances of estimators for configurations shown in Table 1 
Configuration ML MCS WLS Approx (23) 
a) β0 
 (i) 0.2118 0.1848 0.1768 0.1889 
 (ii) 0.1143 0.1083 0.1070 0.1143 
n = 25 (iii) 0.1272 0.1187 0.1190 0.1176 
 (iv) 0.1127 0.0998 0.0983 0.1018 
 (v) 0.0603 0.0560 0.0552 0.0586 
 (vi) 0.0661 0.0617 0.0620 0.0688 
 (i) 0.1017 0.0957 0.0940 0.0944 
 (ii) 0.0597 0.0581 0.0579 0.0571 
n = 50 (iii) 0.0627 0.0607 0.0605 0.0588 
 (iv) 0.0538 0.0513 0.0510 0.0509 
 (v) 0.0282 0.0273 0.0273 0.0293 
 (vi) 0.0383 0.0372 0.0370 0.0344 
 (i) 0.0480 0.0464 0.0459 0.0472 
 (ii) 0.0301 0.0297 0.0296 0.0286 
n = 100 (iii) 0.0319 0.0316 0.0315 0.0294 
 (iv) 0.0270 0.0264 0.0264 0.0255 
 (v) 0.0141 0.0139 0.0139 0.0146 
 (vi) 0.0174 0.0172 0.0172 0.0172 
b) β1 (var iances×102) 
 (i) 2.5560 2.2950 2.2240 2.5013 
 (ii) 1.8980 1.7930 1.7740 1.9580 
n = 25 (iii) 3.7530 3.1790 3.2030 3.1078 
 (iv) 0.3037 0.2721 0.2668 0.2903 
 (v) 0.2476 0.2278 0.2234 0.2360 
 (vi) 0.3098 0.2758 0.2761 0.3386 
 (i) 1.3770 1.3120 1.2900 1.2506 
 (ii) 1.0670 1.0370 1.0320 0.9790 
n = 50 (iii) 1.6980 1.6020 1.5880 1.5539 
 (iv) 0.1548 0.1491 0.1486 0.1451 
 (v) 0.1197 0.1144 0.1138 0.1180 
 (vi) 0.1804 0.1718 0.1700 0.1693 
 (i) 0.5923 0.5762 0.5711 0.6253 
 (ii) 0.4945 0.4874 0.4863 0.4895 
n = 100 (iii) 0.8168 0.7977 0.7942 0.7770 
 (iv) 0.0750 0.0740 0.0739 0.0726 
 (v) 0.0593 0.0585 0.0583 0.0590 
 (vi) 0.0865 0.0854 0.0849 0.0846 
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used when the groups sample sizes are less than 100. 
The efficiency differences between the MCS and WLS 
procedures are consistently small and WLS has the 
computational advantage of providing a non-iterative 
fit.  
 
Table 3: Mean square errors and percentage efficiencies of estimators 

relative to the ML estimators for configurations shown in 
Table 1 

Configuration Mean square errors Efficiencies 
a) β0 
 ML MCS WLS MCS WLS 
 (i) 0.2205 0.1851 0.1772 119.1 124.4 
 (ii) 0.1161 0.1087 0.1072 106.8 108.3 
n = 25 (iii) 0.1277 0.1190 0.1197 107.3 106.7 
 (iv) 0.1135 0.1043 0.1079 108.8 105.2 
 (v) 0.0604 0.0560 0.0552 107.9 109.5 
 (vi) 0.0661 0.0618 0.0620 107.0 106.6 
 (i) 0.1027 0.0957 0.0942 107.3 109.0 
 (ii) 0.0597 0.0582 0.0580 102.6 102.9 
n = 50 (iii) 0.0627 0.0607 0.0605 103.3 103.6 
 (iv) 0.0538 0.0531 0.0536 101.3 100.4 
 (v) 0.0284 0.0273 0.0273 104.0 104.0 
 (vi) 0.0383 0.0372 0.0371 103.0 103.2 
 (i) 0.0482 0.0464 0.0460 103.9 104.8 
 (ii) 0.0302 0.0297 0.0296 101.7 102.0 
n = 100 (iii) 0.0319 0.0316 0.0315 101.0 101.3 
 (iv) 0.0270 0.0269 0.0270 100.4 100.0 
 (v) 0.0141 0.0139 0.0137 101.4 101.4 
 (vi) 0.0174 0.0172 0.0172 101.2 101.2 
b) β1 (mean square errors×102) 
 (i) 2.6311 2.3040 2.2240 114.2 118.3 
 (ii) 1.9311 1.7970 1.7752 107.5 108.8 
n = 25 (iii) 3.7684 3.2160 3.3745 117.2 111.7 
 (iv) 0.3051 0.2767 0.2783 110.3 109.6 
 (v) 0.2491 0.2288 0.2255 108.9 110.5 
 (vi) 0.3099 0.2897 0.3099 107.0 100.0 
 (i) 1.3879 1.3120 1.2900 105.8 107.6 
 (ii) 1.0689 1.0370 1.0323 103.1 103.6 
n = 50 (iii) 1.7040 1.6060 1.6028 106.1 106.3 
 (iv) 0.1548 0.1512 0.1518 102.4 102.0 
 (v) 0.1205 0.1144 0.1140 105.3 105.7 
 (vi) 0.1805 0.1744 0.1749 103.5 103.2 
 (i) 0.5936 0.5762 0.5713 103.0 103.9 
 (ii) 0.4951 0.4875 0.4863 101.6 101.8 
n = 100 (iii) 0.8265 0.7986 0.7944 103.5 104.0 
 (iv) 0.0750 0.0746 0.0746 100.5 100.5 
 (v) 0.0593 0.0588 0.0587 100.9 101.0 
 (vi) 0.0867 0.0856 0.0852 101.3 101.8 
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