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Abstract: The onset of Marangoni convection in a horizontal fluid layer with a free surface overlying 
a solid layer heated from below is studied. Problem is focused on the effect of the solid layer depth or 
its conductivity. The viscosity group, Rv, Biot number, Bi, depth ratio, dr and conductivity ratio, kr, are 
significant on determining the critical Marangoni number Mc with the corresponding critical 
wavenumber αc. The characteristics problem is solved numerically. Results show that the temperature-
dependent viscosity destabilizes the fluid system but it behaves oppositely when a higher relative 
thermal conductivity ratio or higher depth ratio is taken. 
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INTRODUCTION 

 
 This study is focused on the instability of 
Marangoni convection which is induced by a surface 
tension gradient. The Marangoni instability arises 
whenever the temperature gradient across the layer 
exceeds a certain critical value. Realistically, all fluid 
posses a temperature-dependent viscosity which 
influences heat transport and the spatical structure of 
the fluid. The first theoretical study was done by[1] 

where he suggested there exists a surface tension 
gradient when he observe a polygonal cellular patterns 
appear in a paint layers even the paint is on the 
underside of a plane, horizontal surface. The principle 
of the exchange of stability has been numerically 
verified for Pearson’s model[2]. 
 Effect of viscosity plays a major role in this study. 
In many fluids with large Prandtl number and in 
particular, in some oils, the fluids posses a temperature-
dependent viscosity as viscosity is more sensitive to 
temperature variations than heat capacity and thermal 
conductivity and the effects are important on the onset 
of convection. A variable viscosity was introduced by[3] 
and starting from his study, effects of variable viscosity 
is discussed in some problems of the Rayleigh-
Bénard[4-7], Marangoni[8-12] and also in Bénard-
Marangoni instabilities[13-14]. The viscosity variation 
across the layer can be sufficiently large which are 
usually well described by exponential laws. 

 Slatchev and Ouzounov[11] studied the steady 
Marangoni convection under the exponential law of 
viscosity dependence on temperature with 
undeformable surface and in microgravity where the 
Marangoni number increases slightly with viscosity 
parameter, N from the critical Marangoni number, Mc 
at the free surface and after reaching a maximum at 
N≈0.7 decreases becoming even smaller than the 
critical Marangoni number, Mc at the free surface. 
Kalitzora-Kurteva et al.[15] also treated the problem but 
with deformable surface for conducting and insulating 
cases. In the case of conducting, the onset of convection 
exists at the short wavelength (α ≠ 0) and at the long 
wavelength (α → 0). However, only one mode exists in 
the insulating case. It shown that the critical values of 
the Marangoni, M and wavenumbers, α depend mainly 
on the viscosity variation and weakly to surface 
deformation. 
 Later, as density may not be neglected, kinematic 
viscosity is taken into consideration instead of the 
dynamic viscosity. Kozoukharova and Roze[12] 
determined the influence of variable viscosity effect 
and surface deformation on the convective threshold for 
the primary steady and oscillatory Bénard-Marangoni in 
a fluid layer and show that the stability threshold for the 
short wavelength mode (α ≠ 0) depends strongly on the 
viscosity variation while the long wavelength (α → 0) 
is determined by the surface deformation. 
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 However, rapid development of modern techniques 
in the recent past has posed challenges in studying 
convective instability problems in much more 
complicated two and multilayer fluid dynamical 
systems. It was studied theoretically and experimentally 
by considering multilayer of fluid, or a fluid layer 
separated at the middle or bounded from the above or 
below by a slab. 
 Scriven and Sternling[16] consider a two layer fluid 
model in which each layer has infinite depth and 
examine the local behavior of the system near the 
interface. They consider the solutocapillary case with 
mass transfer in either direction; here surface-tension 
variations are caused by surface-active materials rather 
than by heat. They allow Cr ≠ 0, so that interfacial 
deformation is permissible and find profound 
differences in behavior from the Pearson’s model. In 
fact they find that Mc = 0, so that the system is always 
unstable. This zero critical value of M occurs for long 
wavelength, α → 0. Smith[17] rationalizes this dilemma 
by reconsidering the one layer model but allowing 
surface deformation and gravity. He neglects buoyancy, 
but since the basic state has a hydrostatic pressure field 
through which the interface deforms, gravity waves are 
generated. These gravity wave stabilize the long wave 
instabilities found by[16], and in most practical situations 
they regain the Pearson[1] result. 
 Even though single layer systems and double layer 
systems heated from below have received a great deal 
of attention in the past, there have been very few 
studies related to the thermal instability and heat 
transfer phenomena in a system with more than two 
layers. Lienhard[18] approach gives exact solutions of 
the stability problem and the numerical solution 
presented is much simpler than previous multilayer 
solutions where he did obtained the critical Rayleigh 
numbers for the case of three and four fluid layers 
separated by equally spaced identical midlayers of 
various thicknesses and conductivities with isothermal 
outer walls and for the symmetric two-layer problem 
with outer walls of finite thermal conductivity. Later, 
Yang[19] study the onset of a system consisting of multi-
layer fluids separated by solid partitions and the 
consequent heat transfer increase due to the fluid 
motion. The solid partitions are found to have optimum 
efficiency in suppressing fluid motion when they are 
uniformly distributed. The equivalent Rayleigh number 
is shown to be the weighted average of the product of 
the thermal conductivity and the height of each layer. 
 Yang[13] consider the lower boundary to be a solid 
plate where it is a perfect insulating boundary condition 
for thermal disturbances which is difficult compared to 
conducting boundary condition. It is found that the 

solid plate with a higher thermal conductivity tends to 
stabilize the system. The role of the plate thickness is 
minor in most of the Bénard-Marangoni experiments, 
while the conductivity of the plate has a significant 
impact on the stability of the system. Char and Chen[20] 
focused on Bénard-Marangoni instability with a 
boundary slab of finite conductivity. They solved the 
problem numerically and later compared to the 
asymptotic of the long wavelength. It shown that the 
critical Rayleigh number, Rc increases with thickness of 
solid layer to the thickness of fluid and thermal 
conductivity of solid layer to the thermal conductivity 
of fluid but decrease with Γ = M/R provided the 
viscosity parameter, B is large. The effect of viscosity 
variation to the thermal conductivity and thickness of 
the boundary slab is also discussed in detail. When the 
viscosity parameter, B is small, it will raise the critical 
Rayleigh number, Rc provided the Biot number, Bi is 
small but behave oppositely when the viscosity 
parameter, B is large. 
 In this study, we consider the onset of Marangoni 
convection in a horizontal fluid layer with the 
influences of the variable viscosity and the solid plate at 
the bottom surface. The problem has been solved 
numerically to obtain a detail description of the 
marginal stability curves for the onset of Marangoni 
convection. 
 

FORMULATION OF THE PROBLEM 
 
 We examine a horizontal fluid layer 
of depth df which is bounded on top by a deformably 
free surface and at the bottom is subject to a fixed heat 
flux. The fluid layer is overlying a solid layer of depth 
ds. We chose rectangular axes with the x and y axes in 
the plane of the rigid lower boundary and the z axes 
vertically upwards, so that the bottom surface is given 
by z = −ds, the solid-fluid interface is given by z = 0 
and in the undisturbed state the free surface is located at 
z = df.  The  geometry  of  the  problem  are  shown  in 
Fig. 1.  
 

 
 
Fig. 1: Physical model 
  
The density of the fluid is subjected to Newtonian’s 
law: 
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                  0 0[1 a(T T )]ρ = ρ − −                                (1) 
 
where T is the temperature of the fluid, ρ0 is its value at 
a reference temperature T0 and a is the positive 
coefficient of the thermal fluid expansion. Following 
Kozhoukharova and Rozé[14] we consider the kinematic 
viscosity to be temperature dependent. Here, a linear 
law for the kinematic viscosity is selected 
 
 0 0(T T )ν = ν + ζ −  (2) 
 
where ν0 is viscosity at the reference temperature T0 
and 

0T/ T |ζ = ∂ν ∂ is assumed constant. The surface 

tension, σ is assumed to be a linear function of the 
temperature, 
 
 0 0(T T )= − γ −σ σ  (3) 
  
where σ0 is the value of σ at the temperature T0 and the 
constant γ is positive for most fluids. The fluid is 
assumed to be an incompressible fluid with variations 
of viscosity satisfying the continuity equation together 
with the momentum and the heat equation. These 
equations are, respectively 
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where iU (i x,y,z)=  are the velocity components, Tf is 
the temperature of the fluid, ρ0 is its density value at a 
reference temperature T0, µ = ρ0ν is the dynamic 
viscosity, κf is the fluid thermal diffusivity and the 
pressure inside the fluid is denoted by p. Since our 
study is focused only for surface tension effect, the 
buoyancy forces are neglected in Eq. 5. 
 For the solid layer, the energy equation takes the 
form 
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j j

T T
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∂ ∂= κ
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 (7) 

 
where κs is the solid thermal diffusivity and Ts is the 
temperature of the solid. 

 When motion occurs, the upper free surface of the 
layer will be deformable with its position at 
 d f dz d z (x, y, t)= + δ  (8) 
 
At the free surface, we have the kinematic condition, 
 

 d
z

z
U

t
∂δ=

∂
 (9) 

 
together with the conditions of continuity for the 
normal and tangential stresses, 
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 f z

f f

U U
( ) (f x,y)

z x x
∂ ∂ ∂σµ + = =
∂ ∂ ∂

 (11) 

 
and the heat transfer balance subjected to Newton’s law 
is of the form 
 

 f
f f g

T
k h(T T ) 0

z
∂ + − =
∂

 (12) 

 

where Pg is the gas pressure, H is the mean curvature of 

the surface, given by 2
d dH 1/ 2 z= ∇ , 2

d∇  is the two 

dimensional Laplacian operator 2 2 2 2/ x / y∂ ∂ + ∂ ∂ , h is 

the heat transfer coefficient between the fluid and gas 

phases and Tg is the temperature of the ambient gas. 
 We shall investigate the linear stability of a basic in 
which the fluid is at rest ( (0,0,0))=U , the temperature 
gradient across the layer, 0T T z= − β  where 

0 gh(T T ) / k hdβ = − + , the kinematic viscosity, 

0 zν = ν − ζβ  and the pressure is hydostatic 
2 21

0 0 2p p g a (z d ) (z d)� �= + ρ − + −� �β , where g is 

acceleration due to gravity. 
 To simplify the analysis, we formulate the stability 
problem in dimensionless form. We choose df, 2

f fd / κ , 

κf/df, βdf, 2
0 0 f f/dν κρ  for length, time, velocity, 

temperature and pressure respectively. As a results the 
following dimensionless group arises, the Marangoni 
number 2

f 0 0 fM d /= γβ ρ ν κ , the Prandtl number Pr = 
ν0/κf, the Crispation number 0 0 f 0 fCr / d= ρ ν κ σ , the 
Bond number 2

0 f 0Bo gd /= ρ σ , the Biot number 

f fBi hd / k=  and the viscosity group v f 0R d /= ζβ ν . Note 
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that this choice of scaling was chosen for consistency 
with the study of Kozhoukharova and Rozé[14]. 

 
LINEARISED PROBLEM 

 
 We analyze the linear stability of the basic state by 
seeking perturbed solutions for any quantity in terms of 
normal modes in the form 
 

 
Z f s f

s d x y

(U , , , ) [W(Z), (Z),

(Z), ]exp[i( x y) s ]

θ θ η = Θ

Θ δ α + α + τ
 (13) 

 
where α = (αx

2+αy
2)1/2 is the total horizontal wave 

number of disturbance and s is a complex growth rate 
with a real part representing the growth rate of the 
instability and an imaginary part representing its 
frequency. 
 Substituting Eq. 13 into 4-12, we obtain the 
corresponding linearized equations involving only the 
Z-dependent parts of the perturbations to take the 
temperature and the Z-components of the velocity 
denoted by Θ  and W respectively, namely; 
 

 

2 2 2 1 2 2

2 2 2 2 2
v

(D ) W sPr (D )W

R [2(D )DW Z(D ) W] 0

−− α − − α

− − α + − α =
 (14) 

 
 2 2

f(D s) W− α − Θ = −  (15) 
 
 2 2

s(D s) 0− α − Θ =  (16) 
 
subject to 
 
 dW s 0− δ =  (17) 
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Cr
2(1 R )(D )W M ( )
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+ + α + α α + δ =

− − α = − α Θ − δ

 (18) 

 
 f f dD Bi( ) 0Θ + Θ − δ =  (19) 
  
at Z = 1 together with 
 
 W DW 0= =  (20) 
 
 f sΘ = Θ , f r sD k DΘ = Θ  (21) 

 
at Z = 0 and 
 sD 0Θ =  (22) 
 
at Z = -dr where kr = ks/kf is the ratio of the thermal 
conductivity of the solid layer to the fluid layer and dr = 
ds/df is the ratio of the solid layer depth to the fluid 
layer depth. The operator D = d/dZ denotes 
differentiation with respect to Z. 
        Solving Eq. 16 for the solid layer, together with 
the boundary conditions 22 and 23, the thermal 
boundary condition at the solid-fluid interface at Z = 0, 
becomes 
 
 f r r fD k tanh( d )Θ = α α Θ  (23) 
 

SOLUTION OF LINEARIZED PROBLEM 
  
 Proceeding in the manner of Hashim and Arifin[9], 
we seek solutions in the forms 
 
 Z Z

fW(Z) ACe , (Z) Ceξ ξ= Θ =  (24) 

where the exponent ξ and the complex constant A and 
C are to be determines. Substituting these forms into the 
Eq. 14 and 15 and eliminating-A and C, we obtain a 
sixth-order algebraic Eq. For ξ, namely 
 

 

2 2 2 2 2 2 2 2 2
v

2 2 2 2 2

( ) ( ) R [2( ) ( )

Z( ) ( )] 0

ξ − α α − ξ − ξ − α ξ α − ξ

+ ξ − α α − ξ =
 (25) 

 
with six different distinct roots which we denote by 
ξ1,...., ξ6. We can use Eq. 18 to eliminate the free 
surface deflection. 
 

 

1 2
d

2 3
v v

2 2 2 2
v

Cr{ Pr sD W

3 (1 R )DW (1 R )D W

R (D )W /( ( Bo))}

−δ = −

− α − + −

− + α α α +

 (26) 

 
evaluated on Z = 1, leaving the six boundary conditions 
17, 19-21 and 24 to determine the six unknowns C1,....., 
C6 (up to an arbitrary multiplier). The general solution 
to the stability problem is therefore 

 i i

6 6
Z Z

i i f i
i 1 i 1

W(Z) A C e , (Z) C eξ ξ

= =

= Θ =� �  (27) 

 The dispersion relation between M, α, Cr, Bi and 
Bo is determined by substituting these solutions into the 
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Table 1: Critical values of the critical Marangoni numbers Mc and corresponding wave numbers αc for kr = 1 and Cr = 0 
 Rv = −0.5   Rv = 0  Rv = 0.5 
 --------------------------------------------------- ------------------------------------ ---------------------------------- 
 dr Mc αc Mc αc Mc αc 
 0 49.096 0 47.985 0 33.132 0 
Bi = 0 0.01 49.587 0 48.465 0 33.464 0 
 0.5 69.569 1.05 65.507 1.29 43.961 1.45 
 10 75.294 1.46 68.932 1.60 45.576 1.71 
 0 146.741 1.80 131.071 1.98 85.232 2.14 
Bi = 2 0.01 147.291 1.80 131.491 1.99 85.525 2.08 
 0.5 160.062 1.94 140.296 2.15 89.998 2.31 
 10 162.223 2.00 141.441 2.19 90.482 2.35 

 
boundary conditions and evaluating the resulting 6×6 
determinant of the coefficient of the unknowns, which 
can be written in the form D1+MD2 = 0 where D1 and 
D2 is a determinant  6×6   and  independent of 
parameter M. 
 The marginal stability curves in the (α, M) plane 
on which Re(s) = 0 separate regions of unstable modes 
with Re(s)>0 from those of stable modes with Re(s)<0. 
In all the cases investigated in the present study M>0 
and the region above the marginal stability curve 
corresponds to unstable modes. Hence, the critical 
Marangoni number for the onset of convection denoted 
by Mc, is simply the global minimum of M on the 
marginal curves. The marginal stability curves are 
calculated by setting Re(s) = 0 and solving the equation 
D1+ MD2 = 0 for the values of α and M on the marginal 
curve. This procedure was implemented numerically 
using Fortran Powerstation 4.0 IMSL library. 
 

RESULTS AND DISCUSSION 
 
 The onset of Marangoni convection comprising an 
incompressible fluid with variable viscosity overlying 
by a solid layer is investigated numerically. As the fluid 
is  subjected  to a uniform heat flux below and above 
(Bi = 0), the critical wave number (αc) is vanishing and 
the critical Marangoni number Mc attain a constant 
value 48, which is the exact value known for the case of 
single fluid layer[1]. In each case investigated in this 
study, we can identify the critical minima of the 
marginal stability curves in the (α, M) plane which we 
denote by Mc with corresponding critical wave number 
αc and hence determine the ranges of M in which all 
disturbances are stable and those in which unstable 
disturbances exist. In all cases investigated, we use the 
value of the viscosity group, Rv similar to[14] where the 
sign of Rv depends on the type of luid. If the sign of Rv 
is positive (negative), then the kinematic viscosity is an 
increasing (decreasing) function of the temperature. For 
example, the kinematic viscosity of silicon oil decreases 
when the temperature increase and its give the viscosity  
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Fig. 2: Variation of marginal stability curves M with α, 

for different values of the depth ratio, dr 
 
group, Rv = −0.5[14]. From a physical perspective, the 
onset of convection is governed by a sublayer that is 
more unstable than the full layer if the kinematic 
viscosity is increase. If Rν = 0, the viscosity of the fluid 
layer becomes uniform. 
 The critical Marangoni number and wave numbers 
obtained  for different value of Rv and dr when kr = 1, 
Cr = 0 for the case Bi = 0 and Bi = 2 are presented in 
Table 1. From the table we note that increase the value 
of Rv, the critical Marangoni number decreases for both 
cases, Bi = 0 and Bi = 2. 
 In general, the critical Marangoni number Mc 
decreases as viscosity group, Rv increases and the 
viscosity group are destabilizing effect to make the 
system more unstable. For case Bi = 0, with the larger 
depth ratio, the global minimum occurs at short 
wavelength (α ≠ 0) and the critical Marangoni number 
increases. The critical Marangoni number Mc increases 
with dr and the thicker solid layer are clearly a 
stabilizing factor to make the system more stable 
because its might store more thermal energy. Figure 2 
shows the marginal stability curves of the Marangoni 
number M with wave number α for different values of 
dr when kr = 1 and Bi = 0. 
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Fig. 4: Marginal stability curves M vs. α, for different 

values of the viscosity, Rv where Cr = 0, kr = 1, 
dr = 10. The solid lines correspond to Bi = 2 and 
the dashed line to Bi = 0 

 
 For the case shown in Fig. 2, the critical Marangoni 
number, Mc increases with the depth ratio, dr and no 
longer attains at a long wavelength (α → 0). In order to 
show the contributions of viscosity group, in Fig. 3 and 
4, we have reveals that as the viscosity group Rv 
increase, the marginal stability curves shift downwards, 
hence shows that the viscosity group destabilizes the 
no-motion state for all wave number for both Bi = 0 and 
Bi = 2 when kr = 1. As mentioned above, an increase 
the viscosity group Rv, the convective instabilities 
occurring in the sublayer rather than full layer. Figure 4 
shows the marginal stability curves of the Marangoni 
number, M with wave number, α for a range of values 
of the viscosity group, Rv when kr = 1 and dr = 10 in the 
case of Bi = 0 and Bi = 2. We can see that the larger 
ratio  of  depth,  dr =  10 will  destabilize the system at a  
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short wavelength (α ≠ 0) where the critical Marangoni 
number no longer attains at long wavelength (α → 0) 
for Bi = 0. 
 Figure 5 shows directly the relation between the 
depth ratio dr and the critical Marangoni number, Mc. 
Two regions are distinguished in this graph. With the 
depth ratio dr, the critical Marangoni number, Mc 
increases initially, then starts up to a peak value and 
maintain slightly the same value, depending on the 
viscosity, Rv. When dr → 0, Mc becomes lower which 
conclude that the fluid is more unstable compared to a 
larger dr. 
 Figure 6-9 indicates the study of thermal 
conductivity influences to stability curves and is plotted 
for different viscosity groups. The result is very similar 
to the earlier case where the viscosity group always has 
a destabilizing effect on the stability of Marangoni 
convection. 
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Fig. 9: Marginal stability curves Mc vs. kr, for Bi = 0, 

Cr = 0, dr = 1 and different values of the 
viscosity, Rv 

 Figure 7, 8 and 9 depicts the Marangoni number, M 
as a function of the wave number, α. For Bi = 0, the 
curve have a single global minima at the short 
wavelength (α → 0). When kr → ∞, Mc will increase 
and prove that an increase of kr will make the fluid 
become more stable. This is due to the thermal 
disturbances are easily dissipated deep into the solid 
layer. 
 

CONCLUSION 
 
 Viscosity are clearly a destabilizing factor where 
we found that an increase of parameter Rv causes a 
decrease of the critical value of the Marangoni number. 
By increasing the Biot number, the thermal disturbance 
can easily dissipate into the ambient surrounding and 
hence lead to a more stable system. When dr → ∞ and 
kr → ∞, the critical Marangoni number, Mc will also 
increases. In other words, the fluid becomes stable 
when a smaller Rv or larger Bi, dr, kr is taken. 
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