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Abstract: In this study, we investigate the breaking of long-waves propagating on shallow water with 

linear friction on the sloping bottom. A complete set of equations is presented and a numerical method 

is developed to simulate the wave propagation. The method uses an up-wind difference scheme for the 

nonlinear convective term and the central difference scheme for other derivative terms. Various 

numerical examples have been conducted to investigate the effect of friction coefficient and drag 

coefficient on wave propagation and breaking. 
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INTRODUCTION 

 

 Long-wave breaking on shallow water with a 

sloping bottom has been a matter of interest for most 

scientists over the last two centuries. Many attempts 

have been made to investigate and model such 

breaking. The first significant contribution was made by 

Carrier and Greenspan
[3]
 who investigated the 

behaviour of a wave as it climbs up a sloping beach 

with no friction on the bottom. Okeke
[14]

 investigated 

long-wave breaking on a sloping beach with governing 

linear differential equations. Kurkin and Pelinovsky
[11]

 

studied the mechanism of the spatial-temporal focusing 

of the edge waves in the self zone and proposed to find 

the localized anomalous high wave generating in the 

process of the wave packet focusing. Recently, Li and 

Jeng
[12]

 used the conventional Kortegweg-de Vries 

(KdV) equation to discuss the phenomena of nonlinear 

water wave propagation above the seabed with variable 

depth. However, friction on the bottom was not 

considered in the above papers, and consequently the 

results obtained do not agree well with the real wave 

propagation behaviour, particularly for the propagation 

of waves in the shallow water region. A very significant 

contribution on the study of the effect of bottom friction 

is due to Wu and Tian
[26]

, who studied the breaking of 

long waves propagating along an open channel with 

linear friction on the even bottom and derived an 

analytical solution for the estimation of breaking time 

and location. Based on Wu and Tian’s work, this paper 

conducts an extensive numerical investigation to 

investigate the effect of bottom friction on wave 

propagation and breaking on shallow water with 

sloping bottom. 

 

GOVERNING EQUATIONS 

 

 For the case where the undisturbed water depth is a 

linear function of the horizontal x coordinate as shown 

in Fig. 1. 

 The governing equations are as follows: 
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Fig. 1: Wave profile and coordinate system 
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where mxhxh −=
0

)( , θtan=m , ),( txuu =  is the 

horizontal component of water velocity, h and ),( txξ  

represent respectively the undisturbed water depth and 

the water surface elevation, g denotes the gravitational 

acceleration, k is the drag coefficient, x and t are 

respectively horizontal coordinate and time. 

 

NUMERICAL SCHEME 

 

 The governing equations for the problem in 

question can be written as: 

 

,0
),()(

),(
=

+
+

∂

∂
+

∂

∂
+

∂

∂

txxh

ku

x

tx
g

x

u
u

t

u

ξ

ξ
 (1) 

( )[ ] .0),()(
),(

=+
∂

∂
+

∂

∂
utxxh

xt

tx
ξ

ξ
 (2) 

 

 For the following time derivatives, we use the 

forward difference scheme, 
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 For the following spatial derivatives, we use the 

central difference scheme, 
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 Thus by substituting (7) and (6) into (2), we obtain, 
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 For the nonlinear convective term 
x

u

u

∂

∂
, we use 

the upwind difference scheme. By using Taylor’s 

theorem, the forward and backward difference formulae 

can be obtained respectively as follows: 
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 The upwind difference scheme is defined by: 
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 where 

+

u  and 
−

u  are defined by (9a) and (9b). 
For convenience in presentation, we introduce the sign 
function as below 
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 Therefore, the finite difference scheme can be 

written as follows: 
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 where all of the variables are as defined in section 

2. 

 

NUMERICAL RESULTS 

 

 Letting 10
0
=h meters, we have 

mxxh −= 10)(   where θtan=m  and the initial 

water level disturbance is chosen as
[26]

: 
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Fig. 2: Numerical results of evolution of long-waves for 

θ  = 0.0 with different drag coefficients 
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Fig. 3: Numerical results of evolution of long-waves for 

θ  = 0.5 with different drag coefficients 
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Fig. 4: Numerical results of evolution of long-waves for 

θ  = 0.7 with different drag coefficients 
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Fig. 5: Numerical results of evolution of long-waves for 

θ  = 0.9 with different drag coefficients 
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Fig. 6: Numerical results of evolution of long-waves for 

k =0.0 m/s with different θ 
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The numerical results for the problem considered here 

are as follows. The vertical axis and the horizontal axis 

represent, respectively, wave height (cm) and distance 

from the centre of the initial wave (m) respectively. 

Fig. 2-5 show the effect of linear friction on long-wave 

propagation and breaking with different slope on the 

sloping bottom. These results also agree with the results 

obtained by Wu and Tian for the case with even 

bottom. Fig. 6-8 show the influence of slope on the long  
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Fig. 7: Numerical results of evolution of long-waves 

for k =0.2 m/s with different θ 
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Fig. 8: Numerical results of evolution of long-waves for  

k =1.4 m/s with different θ  

 

wave propagation and breaking. As noted from the 
Figs., if the slope of the bottom increases, the distance 
from the centre of the initial wave to the location where 
wave breaking occurs decreases. This is in agreement 
with reality: the slope of beaches affects the distance 
from the source to the beach. 
 

CONCLUSION 

 

 We have successfully simulated the effect of the 

linear friction on the evolution of long wave 

propagation and breaking for the case with sloping 

bottom. If the drag coefficient is less than the critical 

value, long wave breaking will take place. However, if 
the drag coefficient is greater than the critical value, 

long-wave breaking will not occur. This is because for 

the large drag coefficient, the diffusion due to the 

bottom friction is predominant and the motion energy 

of the long-waves is gradually exhausted. It has also 
been found that with the increase in the slope of the 

bottom, the breaking time and the distance from the 
initial wave to the location where wave breaking takes 

place decrease. 
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