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Abstract: Two classes of the bottleneck transportation problem with an additional budget constraint 
are introduced. An exact approach was proposed to solve both problem classes with proofs of 
correctness and complexity. Moreover, the approach was extended to solve a class of multi-commodity 
transportation network with a special case of the multi-period constrained bottleneck assignment 
problem. 
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INTRODUCTION 

 
 The bottleneck transportation problem with an 
additional budget constraint referred as the constrained 
bottleneck transportation problem (CBTP) is an 
extension of the classical minimum cost flows 
problem[1] dealing with finding an appropriated 
allocation of commodity from a set of suppliers to a 
group of customers in order to minimize the maximal 
operation time under supply capacity, demand 
requirement and budget constraints, Mathematically, 
the problem can be formulated as two following models. 
 
Model I 
Minimize T 
Subject to  T ≥  PijXij         i = 1, 2,...,m,  j = 1, 2,...,n 
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Model II 
Minimize T 
Subject to  T ≥  PijYij            i = 1, 2,...,m,  j = 1, 2,...,n 
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   MYij - Xij ≥ 0       i = 1, 2,...,m,  j = 1, 2,...,n 
   Xij≥ 0,  Yij = {0,1} i = 1, 2,...,m,  j = 1, 2,...,n 
 
 From the above models, the following terms can be 
defined; 
* m and n represent the number of suppliers and 

customers, respectively, 
* Xij represents the amount of commodities 

transported from supplier i to customer j,  
* Pij represents the transportation time per unit of Xij 

in case of model I or represents the total 
transportation time regardless of Xij in case of 
model II, 

* Yij represents the 0-1 variable related to Xij that if 
Xij ≥ 0 then Yij = 1 otherwise Yij = 0 

* Si represents the capacity of supplier i, 
* Di represents the requirements of customer j, 
* M represents a large positive number with at least 

equal to the minimum between the maximal 
capacity among suppliers and the maximal 
requirement among customers, 

* T represents the amount with at least equal to the 
maximal total transportation time, 

* Cij represents the transportation cost per unit of Xij  
* B represents the upper bound of total transportation 

cost. 
 The major difference between both models is the 
representation of T. In the first model, T is proportional 
to Xij with a constant Pij while T is equal either Pij or 0, 
otherwise. The zero-one variable, Yij is introduced in 
the second model related with Xij in order to identify T.  
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 The aim of this study is to propose an exact 
algorithm to solve both models. Correctness and 
complexity of the approach will be illustrated. 
Extensions to the multi-commodity case will also be 
presented. 
 
The proposed approach: The general idea for solving 
both models more efficiently as compared to the direct 
approach such that the use of state of the art LP and ILP 
software, is to conduct a binary search scheme on the 
optimal value of T under tolerance ε with minimum 
transportation cost. If the cost is still over the available 
budget B for some specific T, a next higher value of T 
will be tried. Otherwise, a next smaller value of T will 
be used and both cases are conducted until an ε-
convergence of T is verified. In case of Model I, the 
proposed approach can be summarized algorithmically 
as follows. 
 
Algorithm I 
Step o: Solve the following transportation problem. 

Minimize 
m n

*
ij ij

i 1 j 1
C* X Z

= =

=∑∑  

Subject to   
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 Xij≥ 0 i = 1, 2,...,m,  j = 1, 2,...,n 
 
Then, check whether Z* is less than or equal to B or not. 
If yes then proceeds step 1. Otherwise, there is no 
feasible solution. Let T0 = ij ij ijMax {P X }∀ , Tu= T0 and 
T1= 0. 
Step 1: Then, let T*= (Tu+ T1) /2 and solve the 
transportation problem from step 0 with bounded 
variable constraints as follows: 
   0 ≤ Xij ≤ T*/Pij    ∀ i,j 
Step 2: Check whether Z* is less than or equal B or not. 
If yes then let Tu= T* and proceed to step 3. Otherwise, 
Let T1= T* and repeat steps 1-2 again. 
Step 3: Check if Tu - T1 is less than or equal to ε, then 
the last obtained solution from step 1 is an optimal 
solution with T* under tolerance ε. If not, repeat steps 1-
2 again. 
   To verify the correctness and efficiency of the 
proposed algorithm, the following two theorems are 
proven as follows: 
 

Theorem 1: Algorithm I terminate with a feasible 
solution under ε-optimality of T. 
 
Proof: Let there exist T0< T* be the optimal value of T 
with a feasible solution, X0

ij  ∀ i,j and the total cost Z0< 
B. Then, solve the transportation problem from step 1 
with bound T0/ Pij  for all Xij. If Z*> B then T0 does not 
exist as claimed. Otherwise, Tu= T0 leading  to the fact 
that Tu- T1< T*- T1

 ≤ ε. Therefore, T0 is optimal within 
tolerance less than ε  while T* is optimal within the 
range including ε. 
 
Theorem 2: Complexity of Algorithm I can be 
bounded within O((Log2 T0/ε )m3n3 Log(n+m)) 
 
Proof: Generally, a transportation problem can be 
solved in polynomial time O(m3n3 Log(n+m)) using 
dual network simplex algorithm[2]. The proposed 
algorithm solves a number of transportation problems 
until an ε-convergence is identified in the optimal T*. 
The number of solved problems relies on the initial T0 
and ε  under binary search. Let r be the desired number. 
T0 /2r= ε must hold in order to achieve required 
tolerance. Therefore, r= Log2 T0/ε, implying that 
complexity of the algorithm is as stated. 
 For Model II, the proposed approach can be used 
and stated as the following algorithm. 
 
Algorithm II 
Step o: Solve the transportation problem as described 
in step 0 of algorithm I. Then, Check whether Z*< B or 
not. If yes then proceeds step 1 Otherwise, there is no 
feasible solution. 
Step 1: Solve the following bottleneck transportation 
problem. 
Minimize  T    =   T* 
Subject to T ≥  PijYij     i = 1, 2,...,m,  j = 1, 2,...,n 
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   MYij - Xij ≥ 0  i = 1, 2,...,m,
                    j = 1, 2,...,n 
   Xij≥ 0,  Yij = {0,1} i = 1, 2,...,m,  
                   j = 1, 2,...,n 
Step 2: Let C*ij= ∞  if Pij ≥ T*, otherwise, set C*ij= Cij , 
∀ i,j and then, solve the transportation problem with the 
objective function, 

Minimize 
m n

*
ij ij
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Step 3: If Z* > B then let T* = Min{Pij, ∀ Pij> T*} and 
repeat step 2 again. Otherwise, the last obtained T* and 
Xij is an optimal solution. 
 The validity of algorithm II is obvious since the 
obtained T* from step 1 represents a lower bound on T. 
Step 2-3 is used to check and identify whether there 
exists a solution under budget B or not leading to the 
fact that the first feasible solution detected has the 
optimal T as desired. Nevertheless, a key computational 
factor in this algorithm deals with solving the 
bottleneck transportation problem in the first step. A 
recommended algorithm is proposed as an exercise in 
Ahuja et al.[3]. The procedure starts searching for a 
feasible solution under an initial maximum Pij for all 
 Xij > 0 by solving a transportation problem with 
prohibition on upper-bound allocation of Xij with Pij  
larger than the initial maximal value. If no solution is 
detected, the next smallest Pij which is larger than the 
previous assigned, will be set as the new maximum. 
Then, continue in the similar steps until a first feasible 
solution is detected and terminated as an optimal 
solution. Next, complexity of algorithm will be 
analyzed under the following theorem. 
 
Theorem 3: Algorithm II can be bounded within 
O(m4n4 Log(n+m)) 
 
Proof: Similar to algorithm I, step 0 of algorithm II can 
be bounded within O(m3n3 Log(n+m)) using the dual 
simplex network algorithm. In step 1,a sequence of 
transportation problems is solved at most no more than 
mn times due to alternating all possible Pij for all i,j. 
Therefore, step 1 has a complexity of O(m4n4Log(n+m)) 
which is similar to the case of repeating steps 2 – 3. 
Hence, the theorem is as stated. 
 A special case of both models I and II is when m = 
n, Si and Dj for all i and j are equal to 1 and Xij is 
restricted to either 0 or 1. Both models become the 
same problem of minimizing the maximal Pij under the 
assignment constraints and an additional constraint. 
This problem referred as “The Constrained Mini-Max 
Linear Assignment Problem” can be solved within 
O(n5)[4]. 
 
Extensions to a multi-commodity case:  
The algorithms proposed in the previous section can be 
extended to solve two classes of multi-commodity 
transportation network represented as following 
mathematical programming models. 
 
Model III 
Minimize  T 
Subject to   

   T ≥  PijkXijk i = 1, 2,...,m, 
    j = 1, 2,...,n, k = 1, 2,...,s 

   
n

ijk ik
j 1

X S
=

=∑    i = 1, 2,...,m, 

     k = 1, 2,...,s 

   
m

ijk jk
i 1

X D
=

=∑   j = 1, 2,...,n, 

     k = 1, 2,...,s 

   
m n s

ijk ijk
i 1 j 1 k 1

C X B
= = =

≤∑∑∑  

   Xijk ≥ 0  i = 1, 2,...,m, 
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Model IV 
Minimize  T 
Subject to  T ≥  PijkYijk i = 1, 2,...,m, 
    j = 1, 2,...,n, k = 1, 2,...,s 
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   MYijk - Xijk ≥ 0 i = 1, 2,...,m, 
   j = 1, 2,...,n, k = 1, 2,...,s 
  Xijk≥ 0,  Yijk = {0,1} i = 1, 2,...,m, 
    j = 1, 2,...,n, k = 1, 2,...,s 
 The index k represents the order of commodity up 
to the total number of s. In both cases, algorithms I and 
II from the previous section can be adapted to solve 
respectively and can be summarized as following 
algorithm III and algorithm IV. 
 
Algorithm III 
Step o: Solve the following transportation problems for 
k = 1, 2,...,s. 
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 Then, check whether Z* = Σ∀ k

*
kZ  is less than or 

equal to B or not. If yes then proceeds step 1 Otherwise, 
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there is no feasible solution. Let T0 =Max∀ijk{PijkXijk}, 
Tu= T0 and T1 = 0. 
Step 1: Then, let T*= (Tu+ T1) /2 and solve s 
transportation problems from step 0 with bounded 
variable constraints as follows. 
   0 ≤ Xijk ≤ T*/Pijk ∀ i,j 
Step 2: Check whether Z* is less than or equal B or not. 
If yes then let Tu= T* and proceed to step 3 Otherwise, 
Let T1= T* and repeat steps 1-2 again. 
Step 3: Check if Tu- T1 is less than or equal to ε, then 
the last obtained solution from step 1 is an optimal 
solution with T* under tolerance ε. If not, repeat steps 
1-2 again. 
 
Algorithm IV 
Step o: Solve the transportation problem as described 
in step 0 of algorithm I. Then, check whether Z*< B or 
not. If yes then proceeds step 1. Otherwise, there is no 
feasible solution. 
Step 1: Solve the following bottleneck transportation 
problems for k = 1, 2,...,s. 
Minimize T       =  T*

k     
Subject to  T ≥  PijkYijk i = 1, 2,...,m, 
     j = 1, 2,...,n 

   

n

ijk ik
j 1

X S
=

=∑   i = 1, 2,...,m 

   
m

ijk jk
i 1

X D
=

=∑   j = 1, 2,...,n 

   MYijk - Xijk ≥ 0     i = 1, 2,...,m, 
         j = 1, 2,...,n 
   Xijk≥ 0,  Yijk = {0,1} i = 1, 2,...,m, 
          j = 1, 2,...,n 
Let T* = Min∀k{ T*

k } 

Step 2: Let C*ijk= ∞   if Pijk ≥ T*, otherwise, set C*ijk= 
Cijk,∀ i,j,k and then, solve the transportation problems 
for all possible k with the objective function, 

Minimize 
m n

*
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Step 3: If Z*> B then let T* = Min{Pijk, ∀ Pikj> T*} and 
repeat step 2 again. Otherwise, the last obtained T* and 
Xijk is an optimal solution. 
 Correctness and validity of both algorithms III and 
IV are obvious since algorithm III is terminated with a 
feasible solution at convergence of T* within ε similar 
to previous stated Theorem I and algorithm IV is 
terminated with the first detected feasible solution with 
T* as the optimal value. Complexities of both 
algorithms are just multiplications of s to the 
complexity of algorithms I and II respectively. 

 Again, the special structure in this case is when m 
= n, Sik and Djk, for all possible i,j,k are 1 and all Xijk 
are either 0 or 1 leading to the same problem statement 
of both models III and IV. If index k represents time 
period no., the problem becomes the multi-period mini-
max constrained linear assignment problem by which 
can be solved using algorithm IV with modifications on 
applying algorithms for the linear sum assignment 
problem to solve the corresponding transportation 
problem in steps 0 and 2 and algorithms for the 
bottleneck assignment problem to solve the 
corresponding bottleneck transportation problem in step 
1. These algorithms are summarized and can be found 
in Burkard and Derigs[5]. It is well known that 
complexity of both linear sum and mini-max 
assignment problem is 0(n3). Therefore, complexity of 
algorithm IV for this special case is within 0(n5s2) since 
the procedure bottleneck is to the iteration of steps 2 
and 3 at most n2s times with solving the assignment 
problems s times in each iteration. 
 

CONCLUSION 
 
 Two classes of the constrained bottleneck 
transportation problem have been defined and solved by 
a proposed approach within reasonable worse case 
times. The approach can also be extended efficiently 
and effectively to solve a class of multi-commodity 
problem including the special case with the assignment 
constraints. 
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