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 Abstract: Nonlinear phenomena play a crucial role in applied mathematics and physics. Explicit 
solutions to the nonlinear equations are of fundamental importance. Various methods for obtaining 
explicit solution to nonlinear evolution equations have been proposed. In this letter homotopy 
perturbation method (HPM) is employed for solving one-dimensional non-homogeneous parabolic 
partial differential equation with a variable coefficient and a system of nonlinear partial differential 
equations. The final results obtained by means of HPM, were compared with those results obtained 
from the exact solution and the Adomian Decomposition Method (ADM). The comparison shows a 
precise agreement between the results, and introduces this new method as an applicable one which it 
needs less computations and is much easier and more convenient than others, so it can be widely used 
in engineering too. 
 
Keywords:   One-dimensional non-homogeneous parabolic partial differential equation; system of 
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INTRODUCTION 
 

      Nonlinear phenomena play a crucial role in applied 
mathematics and physics. Explicit solutions to the 
nonlinear equations are of fundamental importance. 
Various methods for obtaining explicit solution to 
nonlinear evolution equations have been proposed. 
Hirota’s dependent variable transformation, the inverse 
scattering transform, and the Bäcklund transformation 
are the most important ones. A common feature to all of 
these methods is that they are using the transformations 
to reduce the equation under study into simpler one, and 
then solve it. Unlike classical techniques, the nonlinear 
equations are solved easily and elegantly with out 
transforming or linearizing the equation by using the 
homotopy perturbation method (HPM). It provides an 
efficient explicit solution with high accuracy, minimal 
calculations, and avoidance of physically unrealistic 
assumptions. 
      The HPM was first proposed by He, and has been 
shown to solve a large class of nonlinear problems 
effectively, easily, and accurately with    
approximations   converging   rapidly     to        accurate  
solutions. The HPM was proposed to search for limit 
cycles or bifurcation curves of nonlinear equations.  
      In a heuristic example was given to illustrate the 
basic idea of the HPM and its advantages over the δ - 

 
method, the method was also applied to solve boundary 
value problems, and heat radiation equations[1, 2, 3-7]. 
     In this study, we implemented the HPM for finding 
the approximate solutions of one-dimensional non-
homogeneous    parabolic    partial     differential 
equation with a variable coefficient and a system of 
nonlinear partial differential equations[8, 9]. 
 
      These two equations are as fallows: 
 

( , ) exp( )(cos sin ),t xx xxu x t u x t tu φ= + = + − −              (1) 
        `q 
Where the initial condition is ( ,0) ( )u x f x x= = and the 
boundary conditions are: 

sin
(0, ) sin , (1, ) 1 .

t
u t t u t

e
= = +                              (2) 

Which it is easily can be seen that it has an exact 
solution of ( , ) exp( )sinu x t x x t= + − [8]. 
For the second equation, let’s consider the system of 
nonlinear partial differential equations[9]: 
 

t x y

t x y

u uu vu

v uv vv

= +��
� = +��

                                                          (3) 

 
With the initial conditions  
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2( , ,0) ,
( , ,0) .

u x y x

v x y y

� =�
�

=��
                                                          (4) 

 
MATERIALS AND METHODS 

 
       Homotopy-perturbation method: To explain this 
method, let us consider the following function: 
 

( ) ( ) 0,A u f r− =        r ∈ Ω                                         (5) 
With the boundary conditions of 

( , ) 0,
u

B u
n

∂ =
∂

              r ∈Γ                                        (6) 

Where A, B, ( )f r  and Γ  are a general differential 
operator, a boundary operator, a known analytical 
function and the boundary of the domain Ω , 
respectively. 
Generally speaking, the operator A can be divided in to 
a linear part L and a nonlinear part N. Eq. (5) can 
therefore, be written as: 
 

( ) ( ) ( ) 0.L u N u f r+ − =                                           (7) 

By the homotopy technique, we construct a 
homotopy ( , ) : [0,1]v r p RΩ× →  which satisfies:  

[ ]
[ ]

0( , ) (1 ) ( ) ( )

( ) ( ) 0,

[0,1], ,

H v p p L v L u

p A v f r

p r

= − − +

− =
∈ ∈ Ω

                               (8)                                                                                           

Or 

0 0( , ) ( ) ( ) ( )

[ ( ) ( )] 0,

H v p L v L u pL u

p N v f r

= − + +
− =

                             (9) 

                                                                               
Where [0,1]p ∈  is an embedding parameter, while 0u  
is an initial approximation of Eq. (5), which satisfies 
the boundary conditions. Obviously, from Eqs. (8) and 
(9) we will have:  

0( ,0) ( ) ( ) 0,H v L v L u= − =                                        (10) 
( ,1) ( ) ( ) 0.H v A v f r= − =                                      (11) 

 
The changing process of p from zero to unity is just that 

of ( , )v r p from 0u  to ( )u r .In topology, this is called 

deformation, while 0( ) ( )L v L u− and ( ) ( )A v f r− are 

called homotopy. 

According to the HPM, we can first use the embedding 
parameter p as a “small parameter”, and assume that the 

solutions of Eqs. (8) and (9) can be written as a power 
series in p: 

2
0 1 2 .....v v pv p v= + + +                                        (12) 

Setting 1p =  results in the approximate solution of Eq. 

(5): 

0 1 2
1

lim .....
p

u v v v v
→

= = + + +                                      (13) 

The combination of the perturbation method and the 
homotopy method is called the HPM, which eliminates 
the drawbacks of the traditional perturbation methods 
while keeping all its advantages. The series (13) is 
convergent for most cases. However, the convergent 
rate depends on the nonlinear operator ( )A v . Moreover, 
the following suggestions were made by He: 
(1) The second derivative of ( )N v with respect to v 

must be small because the parameter may be 
relatively large, i.e. 1p → . 

(2) The norm of 1 N
L

v
− ∂

∂
 must be smaller than one so 

that the series converges[1, 2, 3 -7]. 
 
Analysis the method: To investigate equation. (1), we 

first construct a homotopy by separating the linear and 

nonlinear parts of the equation; we apply homotopy-

perturbation to Eq. (1) using Eq. (8) as fallows:  
 

0

2

2

2 2

( , )( , )
( , ) (1 )( )

( , ) ( , )
(

(1 0.5 )(1 0.5 ) 0

v x tv x t
H v p p

t t

v x t v x t
p

t x

x x t t

∂∂= − − +
∂ ∂

∂ ∂− −
∂ ∂

− + − − =

                  (14) 

 
Substituting Eq. (12) in to Eq. (14) and rearranging the 

resultant equation based on powers of p-terms, one has: 

0
0: ( , ) 0,p v x t

t
∂ =
∂

                                        (15) 

2
1

1 02

2 2 2

2 2 2

: ( , ) 1 ( , )

0.5 0.5 0.5

0.25 0.5 0,

p v x t v x t
t x

t x xt t x

x t x t xt

∂ ∂− − +
∂ ∂

+ − + − +

+ − =

                            (16) 

2
2

1 22
: ( , ) ( , ) 0.p v x t v x t

tx

∂ ∂− + =
∂∂

                            (17) 
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With the following conditions: 

0 0 0
sin( )

( ,0) , (0, ) sin( ), (1, ) 1 ,

( ,0) 0, (0, ) (1, ) 0, 1,2,.....i i i

t
v x x v t t v t

e
v x v t v t i

� = = = +�
�
� = = = =�

     (18) 

 
In order to obtain the unknowns, we should solve Eqs. 

(16) and (17), considering the initial conditions of Eqs. 

(18), and having the initial approximations of Eq. (12). 

So we have: 

0 ( , )v x t x=                                                           (19) 

2 3 2
1

2

1 1
( , ) ( 2 2 )( )

4 3
1

(1 )
2

v x t x x t t

x x t

= − − + + + +

− +
                    (20) 

4 3 2
2 10

1.666666667 1 1
( , )

6 24 10
v x t t t t= − − +

×
                   (21) 

In the same manner, the rest of components were 

obtained using the maple package. 

According to the HPM, we can conclude that 

0 1
1

2

( , ) lim ( , ) ( , ) ( , )

( , ) .....
p

u x t v x t v x t v x t

v x t
→

= = + +

+
                  (22)              

Therefore, substituting the values of 0 ( , )v x t , 1( , )v x t  

and 2 ( , )v x t  from Eqs. (19), (20) and (21) in to Eq. (22) 

yields: 

2 3 2

2 4 3 2
10

1 1
( , ) ( 2 2 )( )

4 3
1 1.666666667 1 1

(1 )
2 6 24 10

u x t x x x t t

x x t t t t

= − − + + + +

− + − − +
×

          (23) 

 

The comparison of the results of HPM and exact 

solution are illustrated in figs. 1, 2 and 3 respectively. 

      To investigate Eqs. (3) we first construct a 

homotopy as fallows: 

1

1 1
1

1
2

( , , )
(1 )

( , , ) ( , , )
( ) ( , , )

0
( , , )

( , , )( )

v x y t
p

t

v x y t v x y t
v x y t

t x
p

v x y t
v x y t

y

∂� �− +� �∂	 


∂ ∂� �− −� �∂ ∂
� �=

∂� �
� �∂	 


          (24)   

2

2 2
1

2
2

( , , )
(1 )

( , , ) ( , , )
( ) ( , , )

0
( , , )

( , , )( )

v x y t
p

t

v x y t v x y t
v x y t

t x
p

v x y t
v x y t

y

∂� �− +� �∂	 


∂ ∂� �− −� �∂ ∂
� �=

∂� �
� �∂	 


          (25) 

And the initial approximations are as fallows: 

2
1,0 1 0

2,0 2 0

1, 2,

( , , ) ( , ,0) ( , , )

( , , ) ( , ,0) ( , , )

( , ,0) ( , ,0) 0,

1,2,3,....
i i

v x y t v x y u x y t x

v x y t v x y v x y t y

v x y v x y

i

� = = =
�

= = =�
�

= =�
� =�

                (26) 

      And 

 

1 1,0 1,1

2 3
1,2 1,3

2 2,0 2,1

2 3
2,2 2,3

( , , ) ( , , ) ( , , )

( , , ) ( , , ) .....

( , , ) ( , , ) ( , , )

( , , ) ( , , ) .....

v x y t v x y t pv x y t

p v x y t p v x y t

v x y t v x y t pv x y t

p v x y t p v x y t

= + +�
�

+ +�
� = + +�
� + +�

                 (27) 

 

Substituting Eqs. (27) in to Eqs. (24) and (25) and 

arranging the coefficients of p powers, we have 

 

1,00 ( , , )
: 0,

v x y t
p

t

∂
=

∂
                                                (28) 

 

1,1 1,01
1,0

1,0
2,0

( , , ) ( , , )
: ( , , )

( , , )
( , , ) 0,

v x y t v x y t
p v x y t

t x
v x y t

v x y t
y

∂ ∂
− −

∂ ∂
∂

=
∂

             (29) 
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1,2 1,12
1,0

1,0
1,1

1,1
2,0

1,0
2,1

( , , ) ( , , )
: ( , , )

( , , )
( , , )

( , , )
( , , )

( , , )
( , , ) 0,

v x y t v x y t
p v x y t

t x
v x y t

v x y t
x

v x y t
v x y t

y
v x y t

v x y t
y

∂ ∂
− −

∂ ∂
∂

−
∂

∂
−

∂
∂

=
∂

             (30) 

 

1,3 1,23
1,0

1,1
1,1

1,0
1,2

1,2
2,0

1,1
2,1

1,0
2,2

( , , ) ( , , )
: ( , , )

( , , )
( , , )

( , , )
( , , )

( , , )
( , , )

( , , )
( , , )

( , , )
( , , ) 0.

v x y t v x y t
p v x y t

t x
v x y t

v x y t
x

v x y t
v x y t

x
v x y t

v x y t
y

v x y t
v x y t

y
v x y t

v x y t
y

∂ ∂
− −

∂ ∂
∂

−
∂

∂
−

∂
∂

−
∂

∂
−

∂
∂

=
∂

            (31) 

And 

2,00 ( , , )
: 0,

v x y t
p

t

∂
=

∂
                                                (32)    

 

2,1 2,01
2,0

2,0
1,0

( , , ) ( , , )
: ( , , )

( , , )
( , , ) 0,

v x y t v x y t
p v x y t

t y
v x y t

v x y t
x

∂ ∂
− −

∂ ∂
∂

=
∂

            (33) 

2,2 2,02
1,1

2,0
2,1

2,1
1,0

2,1
2,0

( , , ) ( , , )
: ( , , )

( , , )
( , , )

( , , )
( , , )

( , , )
( , , ) 0,

v x y t v x y t
p v x y t

t x
v x y t

v x y t
y

v x y t
v x y t

x
v x y t

v x y t
y

∂ ∂
− −

∂ ∂
∂

−
∂

∂
−

∂
∂

=
∂

            (34) 

 

2,3 2,03
1,2

2,2
2,0

2,2
1,0

2,1
1,1

2,1
2,1

2,0
2,2

( , , ) ( , , )
: ( , , )

( , , )
( , , )

( , , )
( , , )

( , , )
( , , )

( , , )
( , , )

( , , )
( , , ) 0.

v x y t v x y t
p v x y t

t x
v x y t

v x y t
y

v x y t
v x y t

x
v x y t

v x y t
x

v x y t
v x y t

y
v x y t

v x y t
y

∂ ∂
− −

∂ ∂
∂

−
∂

∂
−

∂
∂

−
∂

∂
−

∂
∂

=
∂

            (35) 

Solving equations (28) through (35), and using the 

initial conditions (Eqs. (26)), one can find the fallowing 

results: 

2
1,0 ( , , ) ,v x y t x=                                                         (36) 

3
1,1( , , ) 2 ,v x y t x t=                                                      (37) 

4 2
1,2 ( , , ) 5 ,v x y t x t=                                                    (38) 

5 3
1,3 ( , , ) 14 .v x y t x t=                                                   (39) 

And 

2,0 ( , , ) ,v x y t y=                                                          (40) 

2,1( , , ) ,v x y t yt=                                                         (41) 

 2
2,2 ( , , ) ,v x y t yt=                                                      (42) 

3
2,3 ( , , ) .v x y t yt=                                                       (43) 

According to the HPM, we can conclude that 

3

1 1,
1

0

( , , ) lim ( , , ) ( , , ),k
p

k

u x y t v x y t v x y t
→

=

= =�                 (44) 

3

2 2,
1

0

( , , ) lim ( , , ) ( , , ).k
p

k

v x y t v x y t v x y t
→

=

= =�                (45) 

After putting Eqs. (36) through (39) into Eq. (44) and 
Eqs. (40) through (43) into Eq. (45) the final results can 
be obtained as fallows: 
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2 3 4 2 5 3( , , ) 2 5 14 .....,u x y t x x t x t x t= + + + +              (46) 

2 3( , , ) ......v x y t y yt yt yt= + + + +                            (47) 

RESULTS AND DISSCUSION 
 

          The final functional and numerical results are 
shown in table (1) and figures (1) Through (3). for 
equation (1) and equations. (3) respectively. In fact, in 
equation (1) the final results obtained from HPM were 
compared with the results of the exact solution, and in 
equation. (3) they compared with the results of the 
Adomian Decomposition Method[9] which it is another 
approximate method for  solving      nonlinear      partial 
differential equations. It is obvious that; considering 
more power of p leads us to the more accurate results. 
 

Table 1: Obtained results form the HPM in comparison 
to the ADM for Eq. 3. 

 

CONCLUSION 
 

      In this letter, the homotopy perturbation method 
(HPM) was used for finding the approximate solutions 
of one-dimensional non-homogeneous parabolic partial 
differential equation with a variable coefficient and a 
system of nonlinear partial differential equations. In can 
be concluded that the HPM is very powerful and 
efficient technique in finding exact solutions for wide 
classes of problems. It is worth pointing out that the 
HPM presents a rapid convergence for the solutions. 
      The obtained solutions are compared with the exact 
solutions and the ADM[9]. the two solved examples 
show that the results of the present method are in 
excellent agreement with those obtained by the exact 
solution and ADM. The HPM has got many merits and  
much more advantages than the ADM. This method is 
to overcome the difficulties arising in calculation of 
Adomian Polynomials. Also the HPM does not require 
small parameters in the equation, so that the limitations 
of the traditional perturbation methods can be 

eliminated, and also the calculations in the HPM are 
simple and straightforward. The reliability of the 
method and the reduction in the size of computational 
domain gives this method a wider applicability. The 
results show that the HPM is a powerful mathematical 
tool for solving systems of nonlinear partial differential 
equations having wide applications in engineering. 

t

u(
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t)
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Fig. 1:  Numerical compression of the results obtained 

by the HPM and the exact solution for Eq.1.  
(x=0.1) 

Fig. 2:  The HPM result for u(x, t) for Eq. 1(x=0.1) 

HPM 2 3 4 2 5 3( , , ) 2 5 14 .....,u x y t x x t x t x t= + + + +  

HPM 2 3( , , ) ......,v x y t y yt yt yt= + + + +  

ADM 2 3 4 2 5 3( , , ) 2 5 14 .....,u x y t x x t x t x t= + + + +  

ADM 2 3( , , ) ......v x y t y yt yt yt= + + + +  
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Fig. 3:  Result of the exact solution  for u(x, t) for 

Eq.1(x=0.1) 
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