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Abstract: SK-partitions were introduced by Sharma and Kaushik, who defined distances (metrics) 
between vectors in terms of partitions of the alphabet set F q , the set of the ring of integers modulo q. 

These distances were applied in Coding Theory. The research examined algebraic and topological 
aspects of SK-partitions and related sets of measures.  A lattice of SK-partitions was introduced and 
shown to have distributive sub lattices. Generator sets of the lattice were obtained and the structure of 
its ideals and filters examined.  Corresponding results for lattices of measures were presented. 
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INTRODUCTION 

 
Measures on the quotient spaces of the 

integers were studied by Niederreiter and Sookoo [9] in 
connection with the uniform distribution of sequences.  
Systems of measures were studied by Maharan [8], who 
considered a family of measures with orthogonality 
properties and also by Schmidt[10], who proved that a 
certain ordered Banach space of vector measures is a 
Banach lattice.  We examined the algebraic aspects of 
systems of measures defined on quotient spaces of the 
integers modulo q for different natural numbers q.  
These measures were defined in terms of SK-partitions 
of the ring of integers modulo q.  Studies in Coding 
Theory involving SK-Partitions were carried out by 
Kaushik[2,3,4,5,6,7], Sharma and Dial [11] and Sharma and 
Kaushik[12,13,14].  From results obtained we deduced 
comparable results for systems of measures. 
 

DEFINITIONS AND NOTATIONS  
 
Notation:  Let F q = {0, 1,…., q-1} be the ring of 

integers modulo q, q∈{2,3,…}. 
 
Definition: Given F q , q 2≥ , a partition P 

={ 110 ,....,, −mBBB } of qF is called an SK-partition if  

1. }0{0 =B , and q-a iB∈ if iBa ∈ , i = 1,2, 

…., m-1 

2. If iBa ∈  and jBb ∈ ; i ,j=0,1,…,m-1, and if 

j precedes i in the order of the partition P, 
written as i>j, then min{a, q-a} > min{b, q-b}. 

3. If i>j ( })1,...,1,0{, −∈ mji and i 1−≠ m , 
then  

ji BB ≥  and 
21 2

1
−− ≥ mm BB , 

where iB  stands for the size of the set iB . 
 
Notation:    Pℑ  is the set of all SK-partitions. 
The concepts of a generator set, an ideal and a filter are 
well known in lattice theory , Birkhoff [1]. 
 
Definition: G is said to be a generator set of a lattice L 
if every element of L is the upper  
bound of elements of G. 
 
Definition:   Let ( ≤,L ) be a lattice. A subset A of L is 
called an ideal, if  

1. AbaAba ∈∨�∈,  

                 2.  Aa ∈  and AcacLc ∈�≤∋∈  
Definition:  Let  ( ≤,L ) be a lattice. A subset H of L is 
called a filter if  

1. HbaHba ∈∧�∈,  

2. Ha ∈  and .HcacLc ∈�≥∋∈  
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Notation: For an SK-partition P of PFq ,  denotes 

the number of classes of P, and [ ]iP  denotes the 

(i+1)th class, for ,...,1,0=i   .1−P  Also if 

},...,,{ 110 −= mBBBP , then 
1

iB  denotes           

�
�
�

�
�
� <∈

2
q

xBx i and 
2

iB  denotes 
�
�
�

�
�
� >∈

2
q

xBx i , 

i=1,2,…,m-1. 
 
Notation: qZZ /  is  the quotient group of integers 
modulo q with the discrete topology. 
 
Definition: Given a partition P of qF , we define a 

measure qZZP /on  µ  as follows: 

.1,...,1,0, if ,)( −=∈=+ qiBijqZi jPµ   

 
THE CLASS-SIZE ORDERING 

 
Definition: Let P and Q be elements of  Pℑ such that  

},....,,{ 110 −= mBBBP  and  

,...}4,3,2{,};,...,,{
110 ' ∈′=

−
mmCCCQ

m
 

where P is an SK-partition of qF  and Q is an SK-

partition of qF ′ ; 

,...}.3,2{, ∈′qq  

mmQP s ′≤⇔≤  and the number of elements of 

qF of weight ω with respect to ≤P  the number of     

elements of qF ′  of weights ω with respect to Q, 

1,...,1,0 −= mω . 
 
Definition: Let Pµ  be a measure on qZZ /  and Qµ  

be a measure on ZqZ ′/ , where  

},...,,{ 110 −= mBBBP  is an SK-partition of qF , and 

}1,...,,{ 10 −= ′mCCCQ  is an SK-partition of qF ′ .  

Also, let { }ℑ∈= PM PP µ .  We define an ordering 

on PM  as: For ,, PQP M∈µµ   

 number of elements of /  

of measure  number of elements of /  of measure 
P Q Z qZ

j Z q Z j
µµ µ≤ ⇔

′≤

.1,...,1,0 −= mj  

Note:  Clearly   QP SQP ≤⇔≤ µµ       

Remark: Clearly, from the above definition 

iiS CBQP ≤⇔≤ , i = 0,1,…,m-1. 

 
Theorem 3.1:  s≤ is a partial ordering on pℑ . 
 
Proof:    Let P, ∋ℑ∈ pQ  QP s≤ and .PQ s≤  

Then  mm ′≤  and mm ≤′ . 
 mm ′=∴                                                                           
(I)      Also, qq ′≤  and qq ≤′  

      qq ′=                                                                           
(II)     We also have  

ii CB ≤ and 1,...,1,0; −=≤ miBC ii  

∴ 1,...,1,0; −== miCB ii                                                    

(III)   From (I), (II) and (III), it follows that P=Q. Hence 

S≤ is antisymmetric.  Also, S≤ is reflexive and 
transitive.  gsdf 
 
Corollary 3.2:  µ≤  is a partial ordering on PM . 

The following example showed that S≤ is not linear.  

Example. Let },,,{ 3210 BBBBP =    

where             }0{0 =B    

           }22,21,2,1{1 =B   

                        }20,19,18,17,6,5,4,3{2 =B  

           }16,15,14,13,12,11,10,9,8,7{3 =B  

and let            },,,,{ 43210 CCCCCQ =  
where             }0{0 =C  

                       }28,27,26,3,2,1{1 =C  

                       }25,24,23,6,5,4{2 =C  

                       }22,21,20,19,10,9,8,7{3 =C  

                       }18,17,16,15,14,13,12,11{4 =C  

11 64 CB =<=  

    PQ S≤/∴  

also 33 810 CB =>=   

 QP S≤/∴ . 
We devised a more convenient notation for an SK-
partition which was expressed in terms of its class-
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sizes, and which would also uniquely determine the 
SK-partition.  
 
Theorem 3.3:  1321 ,....,,, −maaaa are positive, even 

integers satisfying  121 .... −≤≤≤ maaa  

⇔ there exists a unique SK-partition 

},...,,{ 110 −= mBBBP  in 

∋ℑ p .1,...,2,1; −== miaB ii  

 
Proof: Suppose that 121 ,...,, −maaa  are positive, even 

integers such that 121 .... −≤≤≤ maaa  

and that �
−

=

+=
1

1

1
m

i
iaq  

Any class of an SK-partition of qF is of the form  

}),...,1(),(,,....,1,{ xqaxqaxqaxxx −−+−+−++
 
Also, from condition (2) of an SK-partition, iB and 

1+iB can only be classes of an SK-partition  

},....,,{ 110 −= mBBBP  of qF if the elements of 

iB less than 
2
q

are all less than the elements of  

1+iB less than )2,...,2,1(,
2

−= mi
q

. 

The only partition },....,,{ 110 −= mBBBP of 

qF satisfying conditions (1) and (2) of an SK-partition 

must satisfy and following: 
}0{0 =B  

�
�
�

�
�
�

≤≤∈=
2

1 11
1

a
xFxB q  

	�

	
�
�

	�

	
�
�

≤≤+∈= � �
−

= =

1

1 1

1

22
1

i

j

i

j

jj
qi

a
x

a
FxB  

.1,...,3,2 −= mi  
P also satisfies condition (3) of an SK-partition since 

ii aB =  ( )1,...,2,1 −= mi  and so 

......... 12 −≤≤≤ mi BBB  

Hence P satisfies the three conditions of an SK-

partition. Since iB is even for { }1,,...,2,1 −∈ mi  

and ,.... 121 −≤≤≤ mBBB  pP ℑ∈ . 

Conversely, suppose that 
{ }110 ,...,, −=∋ℑ∈ mp BBBPP  and 

( ).1,...,2,1 −== miaB ii  

Since ,pP ℑ∈  then sai '  are positive and even for 

1,...,2,1 −= mi and also  121 .... −≤≤≤ maaa  
Remark: From the previous theorem, any SK-partition 
in pℑ was determined by the sizes of its classes, so w 

the notation given below was used.  
 
Notation: If { }110 ,...,, −=∋ℑ∈ mp BBBPP  and 

ii aB =  ( )1,...,2,1 −= mi , we shall denote P  by 

( )( ),,...,,,1 121 −maaa  when it is convenient.  
 
 THE LATTICES ( ) ( )µ≤≤ℑ , and , PsP M  
 
We presented the l.u.b and g.l.b of any two elements in 
( )sp ≤ℑ ,  and then established that it is a lattice.  

 
Lemma 4.1: Let { }110 ,...,, −= mBBBP  and 

{ } ( )mmCCCQ m ′≤= −′ ,,...,, 110  be any two 

elements of the poset ( )., sp ≤ℑ   

The l.u.b of P  and Q  is G  where 

{ },,...,, 110 −′= mGGGG  

{ } ,1,...,1,0;,max −== miCBG iii  and  

{ } .1,...,1,;,max 1 −′+== − mmmiCBG imi  

Also .pG ℑ∈  
 
Proof:  { } { } 111 ,max,max +++ =≤= iiiiii GCBCBG   

for .2,...,2,1 −= mi  

Also, for 2,...,2,1,,1 −′++−= mmmmmi  

{ } { } 1111 ,max,max ++−− =≤= iimimi GCBCBG  

From Theorem 3.3, G  is an SK-partition.  
G is an upper bound of P  and Q  since 
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GmmP =′≤=  

GmQ =′=  

.1,...,1,0; −=≤ miGB ii  

.1,...,1,0; −′=≤ miGC ii  

If K is another upper bound of P and Q , then 

,KG s≤  since iG  is the smallest number satisfying 

1,...,1,0; −=≤ miGB ii  

and 
.1,...,1,0; −′=≤ mjGC jj
 

G is the l.u.b of P  and Q . 

iG  is even for ( )1,...,2,1 −′= mi  and 

1+≤ ii GG for .2,...,2,1 −′= mi  pG ℑ∈ . 

 
Lemma 4.2: Let P and Q and ( )sp ≤ℑ ,  be as in 

Lemma 4.1. The g.l.b of P and Q is ,H  where  

{ }110 ,...,, −= mHHHH and 

{ } .1,...,1,0;,min −== miCBH iii
 

Also .pH ℑ∈  
 
Proof:

{ } { } 111 ,min,min +++ =≤= iiiiii HCBCBH  

, .2,...,1,0 −= mi  

H is an SK-partition from Theorem 3.3.  H is a lower 
bound of P and Q . 

If L is another lower bound of P and Q , then 

,HL s≤ since iH is the largest number satisfying  

,1,...,1,0; −=≤ miBH ii and 

.1,...1,0; −=≤ mjCH jj
 

Hence H is the g.l.b of P and Q . Clearly iH is even 

for 1,...,2,1 −= mi and 1+≤ ii GG for 

.2,...,2,1 −= mi Hence .pH ℑ∈  

  From the foregoing the following result was obvious.  
 
Theorem 4.3: ( )sp ≤ℑ , is a lattice. 
 
Corollary 4.4:  ( )µ≤,PM  is a lattice. 

  ( )sp ≤ℑ ,  is not distributive, as shown:  

Example: Let QP, and R be elements of pℑ such 

that  
( )( )14,10,8,8,6,6,2,2,1=P , 

( )( )10,6,6,4,4,4,2,1=Q  and ( )( )10,8,2,1=R . 

Now, ( )( )10,10,10,10,10,8,2,1=∨ RQ  

( ) ( )( )10,8,8,6,6,2,2,1=∨∧ RQP  

( )( )10,6,6,4,4,2,2,1=∧ QP  

( )( )6,2,2,1=∧ RP  

( ) ( ) ( )( )10,6,6,6,6,2,2,1=∧∨∧ RPQP  

( ) ( ) ( )RPQPRQP ∧∨∧≠∨∧∴  

( )sp ≤ℑ , is not distributive.  

Also, the following example showed that ( )sp ≤ℑ , is 

not modular.  
 
Example:Let ( )( )12,10,8,6,4,4,2,1=P , ( )( )10,8,6,1=Q  

and ( )( )6,6,4,2,2,1=R . 

We have, RP s≥  

( )( )10,10,10,8,6,1=∨ RQ  

( ) ( )( )8,6,6,4,4,2,1=∨∧ RQP  

( )( )4,4,2,1=∧ QP  

( ) ( )( )6,6,4,4,2,1=∨∧ RQP  

Hence ( ) ( ) RQPRQP ∨∧≠∨∧ and so ( )sP ≤ℑ , is 
not modular. 
  
THE SUBLATTICES ( ) ( )µ≤≤ℑ , and , ,, mPsmP M  

Notation: For a fixed integer { },...3,2∈m , let 

{ }classes  has , mPP pmP ℑ∈=ℑ  and  

let { }classes  has , mPMM PPmP ∈= µ   

The following  result was deduced.  
 
Theorem 5.1: ( )smP ≤ℑ ,,  is a sub lattice of ( )sP ≤ℑ ,  

for each { },....3,2∈m . 
 
Remark: For any natural number n all codes over 

( )n
PF had the same maximum weight with respect to 

any element to any element of .,mPℑ  All codes have 

the same maximum distance with respect to any 
element of .,mPℑ  
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Theorem 5.2:  ( )smP ≤ℑ ,,  is a distributive lattice.  

 
Proof: Let P , Q and R be fixed, arbitrary elements of 

.,mPℑ  

We show that ( ) ( ) ( ).RPQPRQP ∧∨∧=∨∧  

( ) ( ) ( ) .RPQPRQP ∧∨∧=∨∧  

( )[ ] ( )[ ]ii RPQPRQP ∧∨∧=∨∧ )( , 

.1,...,1,0 −= mi  
Let: 

( )
[ ]

[ ] [ ]{ }
,

min , 0,1, ..., 1.
max ,

i i

i

i i

H P Q R

P
i m

Q R

= ∧ ∨ =
 �� 

� �
	 	 = −� �
	 	� �

 

( ) ( )

[ ] [ ]{ }
[ ] [ ]{ }

min , ,
max , 0,1,..., 1.

min ,

i i

i i

i i

K P Q P R

P Q
i m

P R

= ∧ ∨ ∧ =
 �� 

� �
	 	 = −� �
	 	� �

 

.1,...,2,1,0; −== miKH ii  

If [ ] [ ] [ ] ,iii RQP ≥≥ then 

[ ] [ ]{ } [ ]iiii QQPH == ,min  

[ ] [ ]{ } [ ] iiiii HQRQK === ,max  

For other relative sizes of [ ] [ ]ii QP , and 

[ ] ,iR similarly ( ).1,...,1,0 −== miKH ii  

Hence ( ) ( ) ( )RPQPRQP ∧∨∧=∨∧ .� 
 
Corollary 5.3:  ( )µ≤,,mPM   is a distributive lattice 

 
GENERATOR SETS OF ( smP ≤ℑ ,, ) AND 

( )µ≤,,mPM  

Notation: Let 
( )( )1

, ,1

, 1

1, 2,2,..., 2,
,

2,4,6,...
m

P m

P m m

G
α

α
−

−

� �	 	= � �
∈ ℑ =	 	� �

 

( )( )

{ }

1 1
, ,

, 1 1

1,2,2,..., 2, , ,...,
 

... 4,6,8,...

for 2,3,..., 1

m i m i m
P m i

P m m i m i m

G

i m

α α α

α α α
− − + −

− − + −

� �	 	= � �
∈ ℑ = = = =	 	� �

∈ −

 

and �
1

1
,,,

−

=

=
m

i
imPmP GG  

Lemma6.1 mPG , is a generator set of 

( ) ( ),...3,2  where,, =≤ℑ msmP  

 
Proof: We showed that any element of mP ,ℑ is the 

upper bound of elements of .,mPG  

Let ( )( ) { }
1 2 1

2, 4,6,... ;
1, , ,...,

1, 2,..., 1
i

m

a
a a a

i m
−

� ∈ �
� �

= −� �
  

be fixed, arbitrary elements of .,mPℑ  

each SK-partition on the R.H.S is in .,mPG  

In view of the above, we infered the following result: 
Theorem 6.2: PG is a generator set for 

( ),, sP ≤ℑ where �
∞

=

=
2

,
m

mPP GG . 

Notation:  Let { }mPPPmP GPMG ,,, ∈∈= µµ  and 

{ }PPP GPG ∈= µµ ,  

 
Corollary 6.3: PG ,µ  is a generator set for ( )µ≤,PM . 

 
Notation: Let K be infinite, increasing sequence of 
positive, even numbers, namely, ,..., 21 kk  
Also let 

( )( )1 1 ,
, , ,

1 1

1, 2,2,..., 2, , ,...,  

where ...
m i m i m P m

P m k i

m i m i m

a a a
H

a a a
− − + −

− − + −

� �ℑ	 	= � �
= = =	 	� �

 for 

{ }2,...,2,1 −∈ mi , 

( )( )1 2 1

, , , 1 1 2
,

1

1, , ,...,

... 2, 4,6,...

m

P m K m

P m
m

a a a

H a a

a

−

−

−

� �
	 	

= =� �
∈ ℑ	 	= = =� �

 

and  

�
1

1
,,,,,

−

=

=
m

i
iKmPKmP HH  

 
Theorem 6.4: ,....,,

21 ,,,,, KmPKmPmP HHG  form an 

infinite chain of generators for ( )smP ≤ℑ ,, , where 

hK is an infinite, increasing sequence of positive, even 
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numbers and 1+hK  is an infinite subsequence of 

( ).,...2,1, =hK h  
 
Proof: Let j be a fixed, arbitrary element of 
{ }.,...2,1 We showed that 

jKmPH ,, is a generator of 

),( , smP ≤ℑ by proving that any element of mPG ,  was 

obtained by performing lattice operations on elements 
of 

jKmPH ,, . 

Let ,..., 21 jjj kkK =  be an increasing sequence of 

positive, even numbers and let  
( )( )aaaA ,...,,,2,...,2,2,1=  be an arbitrary element 

of mPG ,  for some fixed, positive integer such that 

.1,, −∉ mmPGA  Then imPGA ,,∈ for some 

{ }2,...,2,1 −∈ mi . 

( )( )aaaA ,...,,,2,...,2,2,1=∴  
               �------��-------� 
   ( )timesim −−1    ( timesi ) 

        ( )( ) ( )( )aaabbb ,...,,,1,...,,,,2,...,2,2,1 ∧=      
�(m-1-i) twos �  � i b’s  �    �(m-1) a’s  �     
where { } .,..., 21 abkkb jj ≥∋∈  

( )( ) ikmP j
Hbbb ,,,,...,,2,.....,2,2,1 ∈  

�(m-1-i) twos�  �i b’s�  
and ( )( ) 1,,,,......,,,1 −∈ mKmP j

Haaa  

        �(m-1) times� 
We have shown that A is the g.l.b of elements of 

.,, jKmPH  

If ,1,, −∈ mmPGB  then .,, jKmPHB ∈  

Any element of mPG ,  either already was an element of 

jKmPH ,, or could be obtained by taking the g.l.b. of 

two elements of .,, jKmPH  
 
Notation:  Let { }kmPPPkmP HPMH ,,,,, ∈∈= µµ . 
 
Corollary 6.5:  ,...,,

21 ,,,,,,,, kmPkmPmP HHG µµµ  form 

an infinite chain of generators for ( ).,, µ≤mPM  
 

IDEALS AND FILTERS OF 
( ) ( )µ≤≤ℑ , and , Psp M  

We next considered SK-partitions with bounded class 
sizes.  In the next theorem, we showed that some sets of 

such zpartitions are ideals of ( )., s≤ℑ  

Theorem 7.1: Every ideal H of ( )sP ≤ℑ , has one of 
the forms: 
( )

( )

{ }
( )

( )

( ) ( )

0 1 1

.

, ,..., , ,

and either 1

1,2,..., , if 1

                                                                  

 or 2 1, 2,..., 1 ,if 1

P

m
P

i i

i i

i H

P B B B m d
P

ii H B b i h h m

B b i m h m

−

= ℑ

� �= ≤
∈ ℑ	 	

	 	
	 	= ≤ = ≤ −� �
	 	
	 	
	 	≤ = − > −� �

 

where h and d are fixed, arbitrary, positive integers 
such that 1−≤ dh and hbbb ,....,, 21 are fixed, 
arbitrary, positive, even integers satisfying 

.....21 hbbb ≤≤≤  

( )iii H has the same form as in ( )ii , except m is not 
bounded.   
Proof: Let H be an ideal of 

( ) { }{ }HBBBPmd msP ∈==≤ℑ −110 ,...,,max,,  

and 

{ }
( )

( )

0 1 1

1 2

1 2 1

, ,...., ,  and either 

1 , ,...,  

are bounded above if 1
max

or

2 , ,....,  

are bounded above if 1

m

r

m

P B B B H

B B B

r m
h r

B B B

r m

−

−

� �= ∈
	 	
	 	
	 	≤ −	 	= � �
	 	
	 	
	 	
	 	> −� �

 

H takes different forms, depending on whether 
h exists and d exists. 
( )i  If h does not exist, then d does not exist and 

.PH ℑ=  

( )ii (a) If h and d exist, and ,1−< dh let 

{ }0 1 1, ,....,
max

, 1,2,...,
i m

i

B P B B B
b

H i h
−� = �	 	= � �

∈ =	 	� �
 

 
 From the definition of  

( ){ }0 1 2 1

( 1,2,...., ),

, , ,...., , 1
i

i i i

i i i ii m

b i h Q H Q

Q Q Q Q m i−

= ∃ ∈ ∋ =

− ≥
 

and  ( )hibQ iii ,...,2,1== . 
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Let hQQQD ∨∨∨= ...21  

From property (1) of an ideal, HD ∈ . 
Clearly { }1210 1

,...,,, −= nDDDDD , for some integer 

,111 −≤∋ nhn  and ( ).,...,3,2,1 hibD ii ==  

.....21 nbbb ≤≤≤∴  
Let  

{ }
( ) ( )

0 1 1, ,..., , ,  and either 

       1 1,2,...., ,  if 1, ,

  or  (2) ( 1,2,..., 1 if 1

m

P i i

i i

P B B B m d

K P B b i h h m

B b i m h m

−� �= ≤
	 		 	= ∈ ℑ ≤ = ≤ −� �
	 	≤ = − > −	 	� �

 

We proved that .KH =  
Let { }110 2

,...,, −= nLLLL be an arbitrary element of 

,H  for some positive integer .2n  

Then either  ( ) ( ) 1 if,...,2,11 2 −≤=≤ nhhibL ii  

   or  ( ) ( ) 1 if ,1,...,2,12 22 −>−=≤ nhnibL ii  

from the definition of ( ).,...,2,1 hibi =  

( )IKH
KLHL

⊆∴
∈�∈∴ ,

 

Let M be an arbitrary element of .hMK ≤∋  

Then .DM s≤  

Since ,HD ∈ from property (ii) of an ideal  
.HM ∈  

Now, let { }110 3
,...,, −= nNNNN ( where 3n is a 

positive integer) be an arbitrary element of 

.hNK >∋  

Since only the first ( )1+h classes of elements of 

H are bounded ( for those elements of H having 
1+h or more classes ),  

{ }
( )

4

3

0 1 1

3 4 1 1

, ,...,

, , .

n

n h

T T T T

H n n N T

−

− +

∃ =

∈ ≤ ∋ ≤
 

Also, { } 53110 5
,...,, nnHUUUU n ≤∋∈=∃ − , 

from the definition of .d  
Let .UTDV ∨∨=  
From property (i) of an ideal, .HV ∈  
Since ,VN s≤  from property (ii) of an ideal, 

.HN ∈  
HNKN ∈�∈∴  

HK ⊆∴ .                                                                                                            
(II) 
From (I) and (II)  
                KH =  
(b) If ,1−= dH the proof is similar . 

      If h exists and d does not exist, the proof is also 
similar to the proof in (ii). 
Corollary 7.2:  If { }HPMH PPP

∈∈= µµ  where H is 

an ideal of ( )sP ≤ℑ , , then 
PP

H µ  is an ideal of  

( )µ≤,PM . 

The next result was expressed in terms of filters of 
( )SP ≤ℑ , . 
 
Theorem 7.3:  Every filter H of ( ){ }sP ≤ℑ , has the 

form: { }DPPH P ≥ℑ∈=  for some fixed element 

D of .Pℑ  

Proof: Let H be a filter of ( ),, sp ≤ℑ and let 

{ }{ }.,....,,min1 110 HBBBPNmh m ∈=∈=+ −  

Also let { }{ }0 1 1min , ,..., ,

1,2,..., .

i i mb B N P B B B H

i h

−= ∈ = ∈

=
 

From the definition of ∃+ ,1h  some element 

{ } HCCCC h ∈= ,...,, 10 , and from the definition of 

( ) ∋∈∃= HQhib ii ,,....,2,1  

( ){ },,.....,,, 1210 −=
imiiiii QQQQQ                                                                        

( ),,...,2,1 hibQ iii == and .1−≤ imh  

Let ....21 hQQQCD ∧∧∧∧=  

From property (i) of a filter .HD ∈  
{ }

( ) { }
0 1 2, , ,..., ,

where 1,2,...,  and 
h

i i P

D D D D D

D b i h H P P D

=

= = = ∈ ℑ ≥
 

Corollary 7.4:  Every filter K  of ( )µ≤,PM  has the 

form { }DPMK PP ≥∈= µ , where D  

is a fixed element of Pℑ . 
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