Measures on the Quotient Spaces of the Integers

Norris Sookoo and Peter Chami
${ }^{1}$ Department of Mathematics and Computer Science, University of the West Indies, St. Augustine, Trinidad, W.I.

Abstract

SK-partitions were introduced by Sharma and Kaushik, who defined distances (metrics) between vectors in terms of partitions of the alphabet set F_{q}, the set of the ring of integers modulo q . These distances were applied in Coding Theory. The research examined algebraic and topological aspects of SK-partitions and related sets of measures. A lattice of SK-partitions was introduced and shown to have distributive sub lattices. Generator sets of the lattice were obtained and the structure of its ideals and filters examined. Corresponding results for lattices of measures were presented.

Keywords: Measure, Lattice, Metric, Ideal, Generator set

INTRODUCTION

Measures on the quotient spaces of the integers were studied by Niederreiter and Sookoo ${ }^{[9]}$ in connection with the uniform distribution of sequences. Systems of measures were studied by Maharan ${ }^{[8]}$, who considered a family of measures with orthogonality properties and also by Schmidt ${ }^{[10]}$, who proved that a certain ordered Banach space of vector measures is a Banach lattice. We examined the algebraic aspects of systems of measures defined on quotient spaces of the integers modulo q for different natural numbers q. These measures were defined in terms of SK-partitions of the ring of integers modulo q. Studies in Coding Theory involving SK-Partitions were carried out by Kaushik ${ }^{[2,3,4,5,5,7]}$, Sharma and Dial ${ }^{[11]}$ and Sharma and Kaushik ${ }^{[12,13,14]}$. From results obtained we deduced comparable results for systems of measures.

DEFINITIONS AND NOTATIONS

Notation: Let_F ${ }_{q}=\{0,1, \ldots, q-1\}$ be the ring of integers modulo $q, q \in\{2,3, \ldots\}$.

Definition: Given $\mathrm{F}_{q}, q \geq 2$, a partition P $=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\}$ of F_{q} is called an SK-partition if

1. $B_{0}=\{0\}$, and $q-a \in B_{i}$ if $a \in B_{i}, \mathrm{i}=1,2$,, m-1
2. If $a \in B_{i}$ and $b \in B_{j} ; \mathrm{i}, \mathrm{j}=0,1, \ldots, \mathrm{~m}-1$, and if j precedes i in the order of the partition P, written as $i>j$, then $\min \{a, q-a\}>\min \{b, q-b\}$.
3. If $\mathrm{i}>\mathrm{j}(i, j \in\{0,1, \ldots, m-1\})$ and $\mathrm{i} \neq m-1$, then

$$
\left|B_{i}\right| \geq\left|B_{j}\right| \text { and }\left|B_{m-1}\right| \geq \frac{1}{2}\left|B_{m-2}\right|
$$

where $\left|B_{i}\right|$ stands for the size of the set B_{i}.
Notation: \mathfrak{J}_{P} is the set of all SK-partitions.
The concepts of a generator set, an ideal and a filter are well known in lattice theory, Birkhoff ${ }^{[1]}$.

Definition: G is said to be a generator set of a lattice L if every element of L is the upper bound of elements of G.

Definition: Let (L, \leq) be a lattice. A subset A of L is called an ideal, if

$$
\text { 1. } \quad a, b \in A \Rightarrow a \vee b \in A
$$

2. $a \in A$ and $c \in L \ni c \leq a \Rightarrow c \in A$

Definition: Let (L, \leq) be a lattice. A subset H of L is called a filter if

1. $a, b \in H \Rightarrow a \wedge b \in H$
2. $a \in H$ and $c \in L \ni c \geq a \Rightarrow c \in H$.

Notation: For an SK-partition P of $F_{q},\|P\|$ denotes the number of classes of P , and $[P]_{i}$ denotes the (i+1)th class, for $i=0,1, \ldots, \quad\|P\|-1$. Also if $P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\}, \quad$ then $\quad B_{i}{ }^{1} \quad$ denotes $\left\{x \in B_{i} \left\lvert\, x<\frac{q}{2}\right.\right\}$ and $B_{i}{ }^{2}$ denotes $\left\{x \in B_{i} \left\lvert\, x>\frac{q}{2}\right.\right\}$, $\mathrm{i}=1,2, \ldots, \mathrm{~m}-1$.

Notation: $Z / q Z$ is the quotient group of integers modulo q with the discrete topology.

Definition: Given a partition P of F_{q}, we define a measure μ_{P} on $Z / q Z$ as follows:
$\mu_{P}(i+q Z)=j$, if $i \in B_{j}, i=0,1, \ldots, q-1$.

THE CLASS-SIZE ORDERING

Definition: Let P and Q be elements of \mathfrak{J}_{P} such that
$P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\}$ and
$Q=\left\{C_{0}, C_{1}, \ldots, C_{m^{\prime}-1}\right\} ; m, m^{\prime} \in\{2,3,4, \ldots\}$
where P is an SK-partition of F_{q} and Q is an SKpartition of $F_{q^{\prime}}$;
$q, q^{\prime} \in\{2,3, \ldots\}$.
$P \leq_{s} Q \Leftrightarrow m \leq m^{\prime}$ and the number of elements of F_{q} of weight ω with respect to $P \leq$ the number of elements of $F_{q^{\prime}}$ of weights ω with respect to Q , $\omega=0,1, \ldots, m-1$.

Definition: Let μ_{P} be a measure on $Z / q Z$ and μ_{Q} be a measure on $Z / q^{\prime} Z$, where
$P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\}$ is an SK-partition of F_{q}, and
$Q=\left\{C_{0}, C_{1}, \ldots, C_{m^{\prime}}-1\right\}$ is an SK-partition of $F_{q^{\prime}}$. Also, let $M_{P}=\left\{\mu_{P} \mid P \in \mathfrak{J}\right\}$. We define an ordering on M_{P} as: For $\mu_{P}, \mu_{Q} \in M_{P}$,
$\mu_{P} \leq_{\mu} \mu_{Q} \Leftrightarrow$ number of elements of $Z / q Z$
of measure $j \leq$ number of elements of $Z / q^{\prime} Z$ of measure j $j=0,1, \ldots, m-1$.

Note: Clearly $\mu_{P} \leq \mu_{Q} \Leftrightarrow P \leq_{S} Q$
Remark: Clearly, from the above definition $P \leq_{S} Q \Leftrightarrow\left|B_{i}\right| \leq\left|C_{i}\right|, \mathrm{i}=0,1, \ldots, \mathrm{~m}-1$.

Theorem 3.1: \leq_{s} is a partial ordering on \mathfrak{I}_{p}.
Proof: Let $\mathrm{P}, Q \in \mathfrak{J}_{p} \ni P \leq_{s} Q$ and $Q \leq_{s} P$.
Then $m \leq m^{\prime}$ and $m^{\prime} \leq m$.

$$
\therefore m=m^{\prime}
$$

(I) Also, $q \leq q^{\prime}$ and $q^{\prime} \leq q$

$$
q=q^{\prime}
$$

(II) We also have

$$
\begin{aligned}
& \left|B_{i}\right| \leq\left|C_{i}\right| \text { and }\left|C_{i}\right| \leq\left|B_{i}\right| ; i=0,1, \ldots, m-1 \\
& \therefore\left|B_{i}\right|=\left|C_{i}\right| ; i=0,1, \ldots, m-1
\end{aligned}
$$

(III) From (I), (II) and (III), it follows that $\mathrm{P}=\mathrm{Q}$. Hence \leq_{S} is antisymmetric. Also, \leq_{S} is reflexive and transitive. gsdf

Corollary 3.2: \leq_{μ} is a partial ordering on M_{P}.
The following example showed that \leq_{S} is not linear.
Example. Let $P=\left\{B_{0}, B_{1}, B_{2}, B_{3}\right\}$
where $\quad B_{0}=\{0\}$
$B_{1}=\{1,2,21,22\}$
$B_{2}=\{3,4,5,6,17,18,19,20\}$
$B_{3}=\{7,8,9,10,11,12,13,14,15,16\}$
and let $\quad Q=\left\{C_{0}, C_{1}, C_{2}, C_{3}, C_{4}\right\}$
where $\quad C_{0}=\{0\}$
$C_{1}=\{1,2,3,26,27,28\}$
$C_{2}=\{4,5,6,23,24,25\}$
$C_{3}=\{7,8,9,10,19,20,21,22\}$
$C_{4}=\{11,12,13,14,15,16,17,18\}$
$\left|B_{1}\right|=4<6=\left|C_{1}\right|$

$$
\therefore Q \mathbb{K}_{S} P
$$

also $\left|B_{3}\right|=10>8=\left|C_{3}\right|$
$\therefore P \leq_{S} Q$.
We devised a more convenient notation for an SKpartition which was expressed in terms of its class-
sizes, and which would also uniquely determine the SK-partition.

Theorem 3.3: $a_{1}, a_{2}, a_{3}, \ldots, a_{m-1}$ are positive, even integers_satisfying $a_{1} \leq a_{2} \leq \ldots \leq a_{m-1}$
\Leftrightarrow there exists a unique SK-partition
$P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\}$
$\mathfrak{J}_{p} \ni\left|B_{i}\right|=a_{i} ; i=1,2, \ldots, m-1$.

Proof: Suppose that $a_{1}, a_{2}, \ldots, a_{m-1}$ are positive, even integers such that $a_{1} \leq a_{2} \leq \ldots \leq a_{m-1}$
and that $q=1+\sum_{i=1}^{m-1} a_{i}$
Any class of an SK-partition of F_{q} is of the form

Also, from condition (2) of an SK-partition, B_{i} and B_{i+1} can only be classes of an SK-partition
$P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\} \quad$ of F_{q} if the elements of B_{i} less than $\frac{q}{2}$ are all less than the elements of
B_{i+1} less than $\frac{q}{2},(i=1,2, \ldots, m-2)$.
The only partition $P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\}$ of F_{q} satisfying conditions (1) and (2) of an SK-partition must satisfy and following:
$B_{0}=\{0\}$
$B_{1}{ }^{1}=\left\{x \in F_{q} \left\lvert\, 1 \leq x \leq \frac{a_{1}}{2}\right.\right\}$
$B_{i}{ }^{1}=\left\{x \in F_{q} \left\lvert\, 1+\sum_{j=1}^{i-1} \frac{a_{j}}{2} \leq x \leq \sum_{j=1}^{i} \frac{a_{j}}{2}\right.\right\}$
$i=2,3, \ldots, m-1$.
P also satisfies condition (3) of an SK-partition since $\left|B_{i}\right|=a_{i} \quad(i=1,2, \ldots, m-1) \quad$ and \quad so $\left|B_{i}\right| \leq\left|B_{2}\right| \leq \ldots \ldots \leq\left|B_{m-1}\right|$.

Hence P satisfies the three conditions of an SKpartition. Since $\left|B_{i}\right|$ is even for $i \in\{1,2, \ldots, m-1\}$ and $\left|B_{1}\right| \leq\left|B_{2}\right| \leq \ldots \leq\left|B_{m-1}\right|, P \in \mathfrak{J}_{p}$.
Conversely, suppose that $P \in \mathfrak{J}_{p} \ni P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\} \quad$ and
$\left|B_{i}\right|=a_{i}(i=1,2, \ldots, m-1)$.
Since $P \in \mathfrak{I}_{p}$, then $a_{i}{ }^{\prime} s$ are positive and even for $i=1,2, \ldots, m-1$ and also $a_{1} \leq a_{2} \leq \ldots \leq a_{m-1}$
Remark: From the previous theorem, any SK-partition in \mathfrak{J}_{p} was determined by the sizes of its classes, so w the notation given below was used.

Notation: If $P \in \mathfrak{J}_{p} \ni P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\}$ and

THE LATTICES $\left(\mathfrak{I}_{P}, \leq_{s}\right)$ and $\left(M_{P}, \leq_{\mu}\right)$

We presented the l.u.b and g.l.b of any two elements in $\left(\mathfrak{I}_{p}, \leq_{s}\right)$ and then established that it is a lattice.

Lemma 4.1: Let $P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\} \quad$ and $Q=\left\{C_{0}, C_{1}, \ldots, C_{m^{\prime}-1}\right\},\left(m \leq m^{\prime}\right)$ be any two elements of the poset $\left(\mathfrak{J}_{p}, \leq_{s}\right)$.
The l.u.b of P and Q is G where $G=\left\{G_{0}, G_{1}, \ldots, G_{m^{\prime}-1}\right\}$,
$\left|G_{i}\right|=\max \left\{\left|B_{i}\right|,\left|C_{i}\right|\right\}, i=0,1, \ldots, m-1$, and
$\left|G_{i}\right|=\max \left\{\left|B_{m-1}\right|,\left|C_{i}\right|\right\}, i=m, m+1, \ldots, m^{\prime}-1$.
Also $G \in \mathfrak{I}_{p}$.
Proof: $-\left|G_{i}\right|=\max \left\{\left|B_{i}\right|,\left|C_{i}\right|\right\} \leq \max \left\{\left|B_{i+1}\right|,\left|C_{i+1}\right|\right\}=\left|G_{i+1}\right|$
for $i=1,2, \ldots, m-2$.
Also, for $i=m-1, m, m+1, m+2, \ldots, m^{\prime}-2$
$\left|G_{i}\right|=\max \left\{\left|B_{m-1}\right|,\left|C_{i}\right|\right\} \leq \max \left\{\left|B_{m-1}\right|,\left|C_{i+1}\right|\right\}=\left|G_{i+1}\right|$
From Theorem 3.3, G is an SK-partition.
G is an upper bound of P and Q since
$\|P\|=m \leq m^{\prime}=\|G\|$
$\|Q\|=m^{\prime}=\|G\|$
$\left|B_{i}\right| \leq\left|G_{i}\right| ; i=0,1, \ldots, m-1$.
$\left|C_{i}\right| \leq\left|G_{i}\right| ; i=0,1, \ldots, m^{\prime}-1$.
If K is another upper bound of P and Q, then $G \leq_{s} K$, since $\left|G_{i}\right|$ is the smallest number satisfying $\left|B_{i}\right| \leq\left|G_{i}\right| ; i=0,1, \ldots, m-1$
and
$\left|C_{j}\right| \leq\left|G_{j}\right| ; j=0,1, \ldots, m^{\prime}-1$.
G is the l.u.b of P and Q.
$\left|G_{i}\right| \quad$ is even for $\left(i=1,2, \ldots, m^{\prime}-1\right) \quad$ and $\left|G_{i}\right| \leq\left|G_{i+1}\right|$ for $i=1,2, \ldots, m^{\prime}-2 . G \in \mathfrak{I}_{p}$.

Lemma 4.2: Let P and Q and $\left(\mathfrak{I}_{p}, \leq_{s}\right)$ be as in
Lemma 4.1. The g.l.b of P and Q is H, where
$H=\left\{H_{0}, H_{1}, \ldots, H_{m-1}\right\}$ and
$\left|H_{i}\right|=\min \left\{\left|B_{i}\right|,\left|C_{i}\right|\right\}, i=0,1, \ldots, m-1$.
Also $H \in \mathfrak{J}_{p}$.
Proof:
$\left|H_{i}\right|=\min \left\{\left|B_{i}\right|,\left|C_{i}\right|\right\} \leq \min \left\{\left|B_{i+1}\right|,\left|C_{i+1}\right|\right\}=\left|H_{i+1}\right|$
$, i=0,1, \ldots, m-2$.
H is an SK-partition from Theorem 3.3. H is a lower bound of P and Q.
If L is another lower bound of P and Q, then $L \leq_{s} H$, since $\left|H_{i}\right|$ is the largest number satisfying $\left|H_{i}\right| \leq\left|B_{i}\right| ; i=0,1, \ldots, m-1$, and
$\left|H_{j}\right| \leq\left|C_{j}\right| ; j=0,1, \ldots m-1$.
Hence H is the g.l.b of P and Q. Clearly $\left|H_{i}\right|$ is even for $\quad i=1,2, \ldots, m-1$ and $\quad\left|G_{i}\right| \leq\left|G_{i+1}\right|$ for $i=1,2, \ldots, m-2$. Hence $H \in \mathfrak{I}_{p}$.
From the foregoing the following result was obvious.
Theorem 4.3: $\left(\mathfrak{J}_{p}, \leq_{s}\right)$ is a lattice.
Corollary 4.4: $\left(M_{P}, \leq_{\mu}\right)$ is a lattice.
$\left(\mathfrak{I}_{p}, \leq_{s}\right)$ is not distributive, as shown:

Example: Let P, Q and R be elements of \mathfrak{J}_{p} such that $P=((1,2,2,6,6,8,8,10,14))$,
$Q=((1,2,4,4,4,6,6,10))$ and $R=((1,2,8,10))$.
Now, $Q \vee R=((1,2,8,10,10,10,10,10))$
$P \wedge(Q \vee R)=((1,2,2,6,6,8,8,10))$
$P \wedge Q=((1,2,2,4,4,6,6,10))$
$P \wedge R=((1,2,2,6))$
$(P \wedge Q) \vee(P \wedge R)=((1,2,2,6,6,6,6,10))$
$\therefore P \wedge(Q \vee R) \neq(P \wedge Q) \vee(P \wedge R)$
$\left(\mathfrak{I}_{p}, \leq_{s}\right)$ is not distributive.
Also, the following example showed that $\left(\mathfrak{I}_{p}, \leq_{s}\right)$ is not modular.

Example:Let $P=((1,2,4,4,6,8,10,12)), Q=((1,6,8,10))$ and $R=((1,2,2,4,6,6))$.
We have, $P \geq_{s} R$
$Q \vee R=((1,6,8,10,10,10))$
$P \wedge(Q \vee R)=((1,2,4,4,6,6,8))$
$P \wedge Q=((1,2,4,4))$
$(P \wedge Q) \vee R=((1,2,4,4,6,6))$
Hence $P \wedge(Q \vee R) \neq(P \wedge Q) \vee R$ and so $\left(\mathfrak{I}_{P}, \leq_{s}\right)$ is not modular.

THE SUBLATTICES $\left(\mathfrak{I}_{P, m}, \leq_{s}\right)$ and $\left(M_{P, m}, \leq_{\mu}\right)$

Notation: For a fixed integer $m \in\{2,3, \ldots\}$, let $\mathfrak{J}_{P, m}=\left\{P \in \mathfrak{J}_{p} \mid P\right.$ has m classes $\}$ and let $M_{P, m}=\left\{\mu_{P} \in M_{P} \mid P\right.$ has m classes $\}$
The following result was deduced.
Theorem 5.1: $\left(\mathfrak{I}_{P, m}, \leq_{s}\right)$ is a sub lattice of $\left(\mathfrak{I}_{P}, \leq_{s}\right)$ for each $m \in\{2,3, \ldots$.$\} .$

Remark: For any natural number n all codes over $\left(F_{P}\right)^{n}$ had the same maximum weight with respect to any element to any element of $\mathfrak{J}_{P, m}$. All codes have the same maximum distance with respect to any element of $\mathfrak{I}_{P, m}$.

Theorem 5.2: $\left(\mathfrak{I}_{P, m}, \leq_{s}\right)$ is a distributive lattice.

Proof: Let P, Q and R be fixed, arbitrary elements of $\mathfrak{J}_{P, m}$.
We show that $P \wedge(Q \vee R)=(P \wedge Q) \vee(P \wedge R)$.
$\|P \wedge(Q \vee R)\|=\|(P \wedge Q) \vee(P \wedge R)\|$.
$\left|[P \wedge(Q \vee R)]_{i}\right|=\left|[(P \wedge Q) \vee(P \wedge R)]_{i}\right|$,
$i=0,1, \ldots, m-1$.
Let:
$H_{i}=\left|[P \wedge(Q \vee R)]_{i}\right|=$
$\min \left\{\begin{array}{l}\left|[P]_{i}\right|, \\ \max \left\{\left|[Q]_{i}\right|,\left|[R]_{i}\right|\right\}\end{array}\right\}, i=0,1, \ldots, m-1$.
$K_{i}=\left|[(P \wedge Q) \vee(P \wedge R)]_{i}\right|=$
$\max \left\{\begin{array}{l}\min \left\{\left|[P]_{i}\right|,\left|[Q]_{i}\right|\right\}, \\ \min \left\{\left|[P]_{i}\right|,\left|[R]_{i}\right|\right\}\end{array}\right\}, i=0,1, \ldots, m-1$.
$H_{i}=K_{i} ; i=0,1,2, \ldots, m-1$.
If $\left|[P]_{i}\right| \geq\left|[Q]_{i}\right| \geq\left|[R]_{i}\right|$, then
$H_{i}=\min \left\{\left[[P]_{i}\left|,\left|[Q]_{i}\right|\right\}=\left|[Q]_{i}\right|\right.\right.$
$K_{i}=\max \left\{[Q]_{i}\left|,\left|[R]_{i}\right|\right\}=\left|[Q]_{i}\right|=H_{i}\right.$
For other relative sizes of $[P]_{i},[Q]_{i}$ and $[R]_{i}$, similarly $H_{i}=K_{i}(i=0,1, \ldots, m-1)$.
Hence $P \wedge(Q \vee R)=(P \wedge Q) \vee(P \wedge R)$.
Corollary 5.3: $\left(M_{P, m}, \leq_{\mu}\right)$ is a distributive lattice

$$
\text { GENERATOR SETS OF }\left(\mathfrak{I}_{P, m}, \leq_{s}\right) \text { AND }
$$

$$
\left(M_{P, m}, \leq \mu\right)
$$

Notation: Let $G_{P, m, 1}=\left\{\begin{array}{l}\left(\left(1,2,2, \ldots, 2, \alpha_{m-1}\right)\right) \\ \in \mathfrak{J}_{P, m} \mid \alpha_{m-1}=2,4,6, \ldots\end{array}\right\}$,
$G_{P, m, i}=\left\{\begin{array}{l}\left(\left(1,2,2, \ldots, 2, \alpha_{m-i}, \alpha_{m-i+1}, \ldots, \alpha_{m-1}\right)\right) \\ \in \mathfrak{J}_{P, m} \mid \alpha_{m-i}=\alpha_{m-i+1}=\ldots=\alpha_{m-1}=4,6,8, \ldots\end{array}\right\}$ for $i \in\{2,3, \ldots, m-1\}$
and $G_{P, m}=\bigcup_{i=1}^{m-1} G_{P, m, i}$
Lemma6.1 $\quad G_{P, m}$ is a generator set of $\left(\mathfrak{I}_{P, m}, \leq_{s}\right)$ where $(m=2,3, \ldots)$

Proof: We showed that any element of $\mathfrak{I}_{P, m}$ is the upper bound of elements of $G_{P, m}$.
Let $\left(\left(1, a_{1}, a_{2}, \ldots, a_{m-1}\right)\right)\binom{a_{i} \in\{2,4,6, \ldots\} ;}{i=1,2, \ldots, m-1}$
be fixed, arbitrary elements of $\mathfrak{J}_{P, m}$.
each SK-partition on the R.H.S is in $G_{P, m}$.
In view of the above, we infered the following result:
Theorem 6.2: G_{P} is a generator set for $\left(\mathfrak{I}_{P}, \leq_{s}\right)$, where $G_{P}=\bigcup_{m=2}^{\infty} G_{P, m}$.
Notation: Let $G_{\mu, P, m}=\left\{\mu_{P} \in M_{P} \mid P \in G_{P, m}\right\}$ and $G_{\mu, P}=\left\{\mu_{P} \mid P \in G_{P}\right\}$

Corollary 6.3: $G_{\mu, P}$ is a generator set for $\left(M_{P}, \leq_{\mu}\right)$.
Notation: Let K be infinite, increasing sequence of positive, even numbers, namely, k_{1}, k_{2}, \ldots
Also let $H_{P, m, k, i}=\left\{\begin{array}{l}\left(\left(1,2,2, \ldots, 2, a_{m-i}, a_{m-i+1}, \ldots, a_{m-1}\right)\right) \mathfrak{I}_{P, m} \\ \text { where } a_{m-i}=a_{m-i+1}=\ldots=a_{m-1}\end{array}\right\}$ for $i \in\{1,2, \ldots, m-2\}$,
$H_{P, m, K, m-1}=\left\{\begin{array}{l}\left(\left(1, a_{1}, a_{2}, \ldots, a_{m-1}\right)\right) \\ \in \mathfrak{I}_{P, m} \left\lvert\, \begin{array}{l}a_{1}=a_{2} \\ =\ldots=a_{m-1}=2,4,6, \ldots\end{array}\right.\end{array}\right\}$
and

$$
H_{P, m, K}=\bigcup_{i=1}^{m-1} H_{P, m, K, i}
$$

Theorem 6.4: $G_{P, m}, H_{P, m, K_{1}}, H_{P, m, K_{2}}, \ldots$ form an infinite chain of generators for $\left(\mathfrak{J}_{P, m}, \leq_{s}\right)$, where K_{h} is an infinite, increasing sequence of positive, even
numbers and K_{h+1} is an infinite subsequence of $K_{h},(h=1,2, \ldots)$.

Proof: Let j be a fixed, arbitrary element of $\{1,2, \ldots\}$. We showed that $H_{P, m, K_{j}}$ is a generator of $\left(\mathfrak{I}_{P, m}, \leq_{s}\right)$ by proving that any element of $G_{P, m}$ was obtained by performing lattice operations on elements of $H_{P, m, K_{j}}$.
Let $K_{j}=k_{j 1}, k_{j 2}, \ldots$ be an increasing sequence of positive, even numbers and let
$A=((1,2,2, \ldots, 2, a, a, \ldots, a))$ be an arbitrary element of $G_{P, m}$ for some fixed, positive integer such that $A \notin G_{P, m, m-1}$. Then $A \in G_{P, m, i}$ for some $i \in\{1,2, \ldots, m-2\}$.
$\therefore A=((1,2,2, \ldots, 2, a, a, \ldots, a))$

$$
\begin{aligned}
& (m-1-i) \text { times } \quad(\text { itimes }) \\
& \quad=((1,2,2, \ldots, 2, b, b,, \ldots, b)) \wedge((1, a, a, \ldots, a))
\end{aligned}
$$

$\leftarrow(\mathrm{m}-1-\mathrm{i})$ twos $\rightarrow \leftarrow \mathrm{ib}$'s $\rightarrow \leqslant(\mathrm{m}-1)$ a's \rightarrow where $b \in\left\{k_{j 1}, k_{j 2}, \ldots\right\} \ni b \geq a$.
$((1,2,2, \ldots . ., 2, b, b, \ldots b)) \in H_{P, m, k_{j}, i}$
$\leftarrow(\mathrm{m}-1-\mathrm{i})$ twos \rightarrow <ib's \rightarrow
and $((1, a, a, \ldots \ldots, a)) \in H_{P, m, K_{j}, m-1}$
$\leftarrow(\mathrm{m}-1)$ times \rightarrow
We have shown that A is the g.l.b of elements of $H_{P, m, K_{j}}$.
If $B \in G_{P, m, m-1}$, then $B \in H_{P, m, K_{j}}$.
Any element of $G_{P, m}$ either already was an element of $H_{P, m, K_{j}}$ or could be obtained by taking the g.l.b. of two elements of $H_{P, m, K_{j}}$.
Notation: Let $H_{\mu, P, m, k}=\left\{\mu_{P} \in M_{P} \mid P \in H_{P, m, k}\right\}$.
Corollary 6.5: $\quad G_{\mu, P, m}, H_{\mu, P, m, k_{1}}, H_{\mu, P, m, k_{2}}, \ldots$ form an infinite chain of generators for $\left(M_{P, m}, \leq_{\mu}\right)$.

IDEALS AND FILTERS OF

 $\left(\mathfrak{I}_{p}, \leq_{s}\right)$ and $\left(M_{P}, \leq_{\mu}\right)$We next considered SK-partitions with bounded class sizes. In the next theorem, we showed that some sets of such zpartitions are ideals of $\left(\mathfrak{I}, \leq_{s}\right)$.

Theorem 7.1:_Every ideal H of $\left(\mathfrak{I}_{P}, \leq_{s}\right)$ has one of the forms:
(i) $H=\mathfrak{I}_{P}$.
$(i i) H=\left\{\begin{array}{l}P \in \mathfrak{I}_{P} \left\lvert\, \begin{array}{l}P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\}, m \leq d, \\ \text { and either (1) }\end{array}\right. \\ \left|B_{i}\right| \leq b_{i}(i=1,2, \ldots, h), \text { if } h \leq m-1 \\ \text { or }(2)\left|B_{i}\right| \leq b_{i}(i=1,2, \ldots, m-1), \text { if } h>m-1\end{array}\right\}$
where h and d are fixed, arbitrary, positive integers such that $h \leq d-1$ and $b_{1}, b_{2}, \ldots, b_{h}$ are fixed, arbitrary, positive, even integers satisfying $b_{1} \leq b_{2} \leq \ldots \leq b_{h}$.
(iii) H has the same form as in (ii), except m is not bounded.
Proof: Let H be an ideal of $\left(\mathfrak{I}_{P}, \leq_{s}\right), d=\max \left\{m \mid P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\} \in H\right\}$
and $h=\max \left\{\begin{array}{l}\left\lvert\, \begin{array}{l}P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\} \in H, \text { and either } \\ (1)\left|B_{1}\right|,\left|B_{2}\right|, \ldots,\left|B_{r}\right|\end{array}\right. \\ r \begin{array}{l}\text { are bounded above if } r \leq m-1 \\ \text { or } \\ (2)\left|B_{1}\right|,\left|B_{2}\right|, \ldots,\left|B_{m-1}\right| \\ \text { are bounded above if } r>m-1\end{array}\end{array}\right\}$
H takes different forms, depending on whether h exists and d exists.
(i) If h does not exist, then d does not exist and $H=\mathfrak{I}_{P}$.
$(i i)$ (a) If $\quad h$ and $\quad d$ exist, and $\quad h<d-1$, let
$b_{i}=\max \left\{\begin{array}{l}\left|B_{i}\right| P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\} \\ \in H, i=1,2, \ldots, h\end{array}\right\}$
From the definition of
$b_{i}(i=1,2, \ldots, h), \exists Q_{i} \in H \ni Q_{i}=$
$\left\{Q_{i 0}, Q_{i 1}, Q_{i 2}, \ldots ., Q_{i\left(m_{i}-1\right)}\right\}, m_{i}-1 \geq i$
and $\left|Q_{i i}\right|=b_{i}(i=1,2, \ldots, h)$.

Let $D=Q_{1} \vee Q_{2} \vee \ldots \vee Q_{h}$
From property (1) of an ideal, $D \in H$. Clearly $D=\left\{D_{0}, D_{1}, D_{2}, \ldots, D_{n_{1}-1}\right\}$, for some integer $n_{1} \ni h \leq n_{1}-1$, and $\left|D_{i}\right|=b_{i}(i=1,2,3, \ldots, h)$.
$\therefore b_{1} \leq b_{2} \leq \ldots \leq b_{n}$.
Let
$K=\left\{P \in \mathfrak{S}_{P} \left\lvert\, \begin{array}{c}P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\}, m \leq d, \text { and either } \\ (1)\left|B_{i}\right| \leq b_{i}(i=1,2, \ldots, h) \text {, if } h \leq m-1, \\ \text { or (2) }\left|B_{i}\right| \leq b_{i}(i=1,2, \ldots, m-1 \text { if } h>m-1\end{array}\right.\right\}$,
We proved that $H=K$.
Let $L=\left\{L_{0}, L_{1}, \ldots, L_{n_{2}-1}\right\}$ be an arbitrary element of
H, for some positive integer n_{2}.
Then either $(1)\left|L_{i}\right| \leq b_{i}(i=1,2, \ldots, h)$ if $h \leq n_{2}-1$
or $(2)\left|L_{i}\right| \leq b_{i}\left(i=1,2, \ldots, n_{2}-1\right)$, if $h>n_{2}-1$
from the definition of $b_{i}(i=1,2, \ldots, h)$.
$\therefore L \in H \Rightarrow L \in K$,
$\therefore H \subseteq K$
Let M be an arbitrary element of $K \ni\|M\| \leq h$.
Then $M \leq{ }_{s} D$.
Since $D \in H$, from property (ii) of an ideal
$M \in H$.
Now, let $N=\left\{N_{0}, N_{1}, \ldots, N_{n_{3}-1}\right\}$ (where n_{3} is a positive integer) be an arbitrary element of $K \ni\|N\|>h$.
Since only the first $(h+1)$ classes of elements of H are bounded (for those elements of H having $h+1$ or more classes),
$\exists T=\left\{T_{0}, T_{1}, \ldots, T_{n_{4}-1}\right\}$
$\in H,\left(n_{3} \leq n_{4}\right), \ni\left|N_{n_{3}-1}\right| \leq\left|T_{h+1}\right|$.
Also, $\exists U=\left\{U_{0}, U_{1}, \ldots, U_{n_{5}-1}\right\} \in H$ э $n_{3} \leq n_{5}$,
from the definition of d.
Let $V=D \vee T \vee U$.
From property (i) of an ideal, $V \in H$.
Since $N \leq_{s} V$, from property (ii) of an ideal, $N \in H$.
$\therefore N \in K \Rightarrow N \in H$
$\therefore K \subseteq H$.
(II)

From (I) and (II)

$$
H=K
$$

(b) If $H=d-1$, the proof is similar .

If h exists and d does not exist, the proof is also similar to the proof in (ii).
Corollary 7.2: If $H_{\mu_{p}}=\left\{\mu_{P} \in M_{P} \mid P \in H\right\}$ where H is an ideal of $\left(\mathfrak{I}_{P}, \leq_{s}\right)$, then $H_{\mu_{P P}}$ is an ideal of $\left(M_{P}, \leq_{\mu}\right)$.
The next result was expressed in terms of filters of $\left(\mathfrak{I}_{P}, \leq_{S}\right)$.

Theorem 7.3: Every filter H of $\left\{\left(\mathfrak{I}_{P}, \leq_{s}\right)\right\}$ has the form: $H=\left\{P \in \mathfrak{I}_{P} \mid P \geq D\right\}$ for some fixed element D of \mathfrak{J}_{P}.
Proof: Let H be a filter of $\left(\mathfrak{I}_{p}, \leq_{s}\right)$, and let $h+1=\min \left\{m \in N \mid P=\left\{B_{0}, B_{1}, \ldots ., B_{m-1}\right\} \in H\right\}$.
Also let $b_{i}=\min \left\{\left|B_{i}\right| \in N \mid P=\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\} \in H\right\}$,

$$
i=1,2, \ldots, h .
$$

From the definition of $h+1, \exists$ some element $C=\left\{C_{0}, C_{1}, \ldots, C_{h}\right\} \in H$, and from the definition of
$b_{i}(i=1,2, \ldots, h), \exists Q_{i} \in H$ э
$Q_{i}=\left\{Q_{i 0}, Q_{i 1}, Q_{i 2}, \ldots . ., Q_{i\left(m_{i}-1\right)}\right\}$,
$\left|Q_{i i}\right|=b_{i}(i=1,2, \ldots, h)$, and $h \leq m_{i}-1$.
Let $D=C \wedge Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{h}$.
From property (i) of a filter $D \in H$.
$D=\left\{D_{0}, D_{1}, D_{2}, \ldots, D_{h}\right\}$,
where $\left|D_{i}\right|=b_{i}(i=1,2, \ldots, h)$ and $H=\left\{P \in \mathfrak{I}_{P} \mid P \geq D\right\}$
Corollary 7.4: Every filter K of $\left(M_{P}, \leq_{\mu}\right)$ has the form $K=\left\{\mu_{P} \in M_{P} \mid P \geq D\right\}$, where D is a fixed element of \mathfrak{I}_{P}.

REFERENCES

1. Birkhoff G, 1948, Lattice Theory, American Mathematical Society; Rhode Island.
2. Kaushik ML, 1978, Burst-error-correcting codes with weight constraints under a new metric. J. Cybernetics, 8, 183-202.
3. Kaushik ML, 1979a, Single error and burst error correcting codes through a new metric. J. Cybernetics, 8, 1-15.
4. Kaushik ML, 1979b, Necessary and sufficient number of parity-checks correcting random errors and burst with weight constraints under a new metric. J. Cybernetics, 9, 81-90
5. Kaushik ML, 1979c, Random error detecting and burst error correcting codes under a new metric. Indian J. Pure and Appl. Math., 10, 1460-1468.
6. Kaushik ML, 1979d, A new metric in the study of error correcting codes. Ph. D. thesis, University of Delhi.
7. Kaushik ML, 1981, Channels and bounds for classmetric codes. Rev. Roum. Math. Pures et Appl., 26, 1345-1350.
8. Maharan D, 1982, Orthogonality measures: an example. Annals of Probability, Vol. 10, No. 3, 879-880.
9. Niederreiter H and Sookoo N, 2000, Partial densities on the group of integers. Arch. Math. (Brno) Tomus 36, 17-24.
10. Schmidt KD, 1986, Decompositions of vector measures in Riesz spaces and Banach lattices, Proc. Edinburgh Math. Soc. (2) 29, 23-39.
11. Sharma BD and Dial G, 1987, Some tighter bounds on code size with Sharma-Kaushik metrics. Presented at the Intern. Conf. on Math., Mao, Menorca, June 15-17.
12. Sharma BD and Kaushik ML, 1977, Error correcting codes through a new metric. $41^{\text {st }}$ Annual Conf. of Inter. Stat. Inst., New Delhi.
13. Sharma BD and Kaushik ML, 1979, Limited intensity random and burst error codes with classweight considerations. Electronische Infor. und Kyber., 15, 315-321.
14. Sharma BD and Kaushik ML, 1986, Algebra of Sharma and Kaushik's metric inducing partitions of Z_{q}. J. Comb. Infor. And Sys. Sci., 11, 19-32.
