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Abstract: In this study we consider the steady-state availability, denoted A, of a system with 

distribution-free failure and repair time. In particular, we are interested in constructing a lower 

confidence bound and a testing framework for A. We first show that the natural estimator Â  of A, 

defined as the ratio of the failure time sample mean to the sum of the failure time sample mean and the 

repair time sample mean, is strongly consistent and asymptotically normal. Then using the asymptotic 

distribution of Â , we develop a lower confidence bound and a hypothesis test for A. Finally, a 

numerical simulation study is conducted in order to illustrate the performance of Â  in applied 

inference about A. 
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INTRODUCTION 

 
 To assess the long-term performance of a 
repairable system, the steady-state availability of the 
system is often considered. Steady-state availability 
(henceforth availability) is defined as the ratio 

MTTRMTBF
MTBF

A
+

= , 

where MTBF is the mean time between failures and 

MTTR represents the mean time to repair following 

failure. Availability is a very important measure in 

evaluating the long-term performance of a system, and 

numerous studies have sought to estimate efficient 

confidence intervals for the availability of repairable 

systems assuming various specified failure and repair 

time distributions. Confidence intervals for availability 

are given in Thompson[1], Gary and Lewis[2], Masters 

and Lewis[3], Elperin and Gertsbakh[4], Mi[5], Masters et 

al.[6], Chandrasekhar et al.[7], Ananda[8], Yadavalli et 

al.[9], Ananda[10], Chandrsekhar[11] and Lim et al.[12], 

among others. But to the best of our knowledge there 

has been no research that explores statistical inference 

about availability in repairable systems with 

distribution-free failure and repair time. 

 The objective of this study was to present statistical 

inference for the availability A of a system assuming 

distribution-free failure and repair time. In section 2, we 

show that the natural estimator Â  of A is strongly 

consistent and asymptotically normal. Using this result, 

we construct a )%1(100 α−  lower confidence 

bound for A. Also, a test rule is established to test the 

null hypothesis 00 : AAH ≤ .  

Statistical inference about availability: Let X  

represent the time between system failures and Y  



J. Math. & Stat., 3 (4): 181-187, 2007 
 

 182 

denote the time to repair the system. Then the system 

availability is defined as 

YX

XA
µµ

µ
+

=  (1) 

where Xµ  is the mean time between failures and Yµ  

is the mean time to repair. 
 
Estimating availability: Assume that 

nXXX ,,, 21 �  is a random sample of failure times 

and nYYY ,,, 21 �  is a random sample of repair times. 

Let X  and Y  represent the sample means of the Xs 

and Ys, respectively. According to the strong law of 

large numbers[13], X  is a strongly consistent 

estimator of Xµ  and Y  is a strongly consistent 

estimator of Yµ . Hence a strongly consistent estimator 

of the availability is 

YX

X
A

+
=ˆ  (2) 

In practical systems, the distributions of X  and Y  

are seldom known, so the exact distribution of Â  

cannot be derived. Nevertheless, the asymptotic 

distribution of Â  is obtained as follows. 

First, according to the central limit theorem[14], we have 
 

),0()( 2
X

D
X NXn σµ →−  (3) 

and 

),0()( 2
Y

D
Y NYn σµ →−  (4) 

 
where 2

Xσ  and 2
Yσ  are the variances of X  and 

Y , respectively, and →D  denotes convergence in 

distribution. Next note that 

��
�

�
��
�

�

+
−

+
=−

YX

X

YX
X

nAAn
µµ

µ
)ˆ(  

))((
)]()([

YX
YXn

YX

YXXY

++
−−−=

µµ
µµµµ  (5) 

Therefore, we obtain 

),0()ˆ( 2σNAAn D→−  (6) 

where 
422222 )()( YXXYYX µµσµσµσ ++= . 

Now set 
422222 )()(ˆ YXSYSX XY ++=σ  (7) 

where 

�
=

−=
n

i
iX XX

n
S

1

22 )(
1  and �

=
−=

n

i
iY YY

n
S

1

22 )(
1

 . 

Then 2σ̂  is a strongly consistent estimator of 2σ . 

Applying Slutsky’s theorem[14], we deduce that 

)1,0(ˆ/)ˆ( NAAn D→− σ  (8) 

Thus Â  is a (strongly) consistent and asymptotically 

normal (CAN) estimator with approximate variance 

n2σ̂ . 

A Lower Confidence Bound:Using the CAN estimator 

Â  and its associated approximate variance n2σ̂ , 

we construct a lower confidence bound for the 

availability of a system with distribution-free failure 

and repair time. Let αz  be the upper α th quantile of 

the standard normal distribution; by the asymptotic 

distribution of σ̂)ˆ( AAn −  in expression (8), an 

approximate )%1(100 α−  lower  

confidence bound of A is obtained as 

)ˆ)ˆ((1 ασα zAAnP −≥−≈−  

)ˆ)ˆ(( ασ zAAnP ≤−=  

 
��
�

�
��
�

� ≤−= A
n

zAP
σ

α
ˆˆ . 

Consequently, an approximate )%1(100 α−  lower 

confidence bound is 

n
zALCB

σ
α

ˆˆ −=  (9) 
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A hypothesis test: In addition to the point and interval 

estimation, we are also interested in statistical testing 

about the availability for a system with distribution-free 

failure and repair time. Suppose that we want to test the 

hypothesis 
 

00 : AAH ≤  versus 0: AAH a > , 
 
where 0A  is a constant level of availability. 

If A is viewed as a population mean, then the above 

testing problem is similar to that of testing a normal 

population mean. The CAN estimator Â  leads to a 

natural test statistic in this context, and the condition for 

rejecting 
0H  is 

reject 
0H  if 

αCA >ˆ , (10) 

where α  is the pre-specified significance level of the 

test. And αC  is the critical value satisfying 

)ˆ( 0AACAP =>= αα  

�
�

�

�

�
�

�

�
=

−
>

−
= 0

00

ˆ
)(

ˆ
)ˆ(

AA
ACnAAn

P
σσ
α .                  

Since )1,0(ˆ/)ˆ( 0 NAAn D→− σ , αC  can be 

determined by σα ˆ/)( 0ACn −  αz= , that is 

n
zAC

σ
αα

ˆ
0 +=  (11) 

Using the above rejection rule (10), the power function 

is, for 0A A≥ , given by 

)ˆ()( ACAPAn αβ >=  

�
�

�

�

�
�

�

� −
>−= A

ACnAAn
P

σσ
α

ˆ
)(

ˆ
)ˆ( 0  

�
�

�

�
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�

�

� −
−>−= A

AAn
z

AAn
P

σσ α ˆ
)(

ˆ
)ˆ( 0  (12) 

Based upon result (8), )(Anβ  can be estimated by  

�
�

�

�

�
�

�

� −
−Φ−=

σ
β α ˆ

)(
1)(ˆ 0AAn

zAn

 (13) 

where Φ  is the cumulative standard normal 

distribution function. 

 In summary, we use the asymptotic distribution of 

Â  described in (8) to determine the rejection rule and 

the approximate power of the test. 
 
Simulation study: In order to explore the performance 

of Â , we conduct a three-part simulation study. First, 

the accuracy of the lower confidence bound LCB of A is 

evaluated using its coverage percentage. Second, the 

type I error rate (i.e., the significance level of the test) is 

simulated with three different failure time distributions. 

Third, the power functions of the test under different 

levels of n are generated and compared. For 

concreteness, we consider a Weibull failure time 

distribution with shape and scale parameters b and a,  

respectively. Note that the failure-rate parameter of 

Weibull distribution is increasing (IFR) for 1>b , 

decreasing (DFR) for 10 << b  and constant (CFR) 

for 1=b [15]. For convenience, the repair time 

distribution is assumed to be exponential with unit 

mean. 
 
Simulating the lower confidence bound: We simulate 

nzALCB σα ˆˆ −=  as follows. The values of b are set 

to 0.5, 1, and 2 so that the failure rate is decreasing 

(DFR), constant (CFR), and increasing (IFR), 

respectively. For a given value of b, the value of a is 

chosen in such a way that 10110 ==YX µµ  so 

that 9091.0)( =+= YXXA µµµ . 
  
 For each combination of b and a, random samples 

of failure times ),,,( 21 nxxx �  and repair times 

),,,( 21 nyyy �  are drawn from X  and ,Y  
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respectively. Then the estimate Â  and its associated 

variance n2σ̂  are computed. The 95% LCB of A = 

0.9091 is given as 
 

nAnzALCB σσ ˆ645.1ˆˆˆ
05.0 −=−=  (14) 

  
The simulation is replicated N = 1000 times and we 

record the fraction of times that the 95% LCB is smaller 

than the true availability A = 0.9091, which is called the 

coverage percentage. This process is repeated for 

,1000 ,20 ,10 �=n . All simulations are performed 

on a PC Pentium IV using the software MATLAB® 

7.0.4. 

 Since the number of LCBs less than the true 

availability A = 0.9091 follows a binomial distribution 

with N = 1000 and p = 0.95, the 99% confidence 

interval for the coverage percentage itself is 

 
0178.095.01000/)95.01(95.0576.295.0 ±=−±  (15) 

 
or (0.9322, 0.9678). The simulation results for the 

performance of Â  in terms of the LCB are presented 

in Fig. 1. For each kind of failure rate (DFR, CFR, and 

IFR), the corresponding 95% LCB coverage 

percentages are plotted versus n from 10 to 1000. All 

three curves almost appear in the 99% confidence 

interval (0.9322, 0.9678) and fluctuate along the 

nominated 95% level provided that n reaches large 

enough ( 100≥n ). Evaluating the chance of the three 

curves once inside the 99% confidence interval, it 

appears that ordering these curves by their relative 

performance on coverage fraction produces 

DFR>CFR>IFR. 
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Figure 1. Coverage fraction of 95% lower confidence bound for different values of n and 
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Fig. 1: Coverage fraction of 95% lower confidence 

bound for different values of n and b 

 

Simulating the hypothesis test: In this subsection, we 

explore the performance of the rejection rule given in 

(10) corresponding to the competing hypotheses 
 

00 : AAH ≤  versus 0: AAH a > . 
 
As before, the values of b are set to 0.5, 1, and 2 so that 

the failure rates are decreasing, constant, and increasing, 

respectively. For a given value of b, the value of a is 

selected such that 90.00 == AA . We again set the 

significance level of the test to be 05.0=α . For each 

combination of b and a, a sequence of estimates and 

variances are generated and denoted ),ˆ,ˆ( 2
11 nA σ  

),ˆ,ˆ( 2
22 nA σ ).ˆ,ˆ(, 2

10001000 nA σ�  Define jI  as the 

indicator of the rejection event 

}ˆ)ˆ({ 05.00 zAAn jj >− σ  for ,1000. ,2 ,1 �=j  

Then �
=

=
1000

1
1000ˆ

j
jn Iα  is a simulated value of the 

predetermined type I error rate 05.0=α . We 

calculate nα̂  for 1000,,20 ,10 �=n  by repeating  
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this process. The simulation results for the type I error 

rate are illustrated in Fig. 2. 

Like the LCB, a 99% confidence interval for the type I 

error rate is constructed as 
 

0178.005.01000)05.01(05.0576.205.0 ±=−±  (16) 

 The goodness of performance for the simulated 

type I error rate scrutinized by the chance of three 

curves once inside the 99% confidence interval (0.0322, 

0.0678) is summarized in Fig. 2. We find that all the 

three curves are almost contained within the 99% 

confidence interval and fluctuate along the nominal 

level 5% when n reaches sufficiently large )100( ≥n . 

Based on this criterion, one can see that the DFR curve 

performs best, and the CFR curve outperforms the IFR 

curve. 

 In addition to using Â  to construct the LCB of A 

and compute the type I error rate of the hypothesis test, 

we also use simulations to scrutinize its performance in 

terms of the power function of the hypothesis test. 

According to formula (13), we compute 
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Fig. 2: Simulated type 1 error rate for different values 

aof n and b (Ao =0.90) 
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� −
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β

ˆ
)(

645.1(1)(ˆ 0  (17)  

for ,1000. ,2 ,1 �=j  Then �=
=

1000

1
1000)(ˆ)(

~
j

njn AA ββ  

is a simulated power function at significance level 

05.0=α . We construct the simulated power function 

nβ~  at 100 ,50 ,30 ,10=n . It follows that for each 

kind of failure time distribution there are four simulated 

power curves. Simulation results for the power function 

are shown in Fig. 3, 4 and 5 corresponding to b = 0.5 

(DFR), b = 1.0 (CFR), and b = 2.0 (IFR), respectively. 

We find that )(
~

)(
~

)(
~

)(
~

103050100 AAAA ββββ >>>   

for 0AA ≥ , all curves approach 1 as n large enough. 

Figures 6 and 7 indicate that 

)(
~

)(
~

)(
~

DFRCFRIFR nnn βββ >>  for each fixed n. 

In other words, the results suggest that 
21

~~
nn ββ >  for 

21 nn > , and the power increases  
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Fig. 3: Simulated curves of power function for 

different values of n (Ao=0.90) 
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Fig. 4: Simulated curves of power function for 

different values of n (Ao=0.90) 
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Fig. 5: Simulated curves of power function for 

different values of n (Ao=0.90) 
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Fig. 6: Simulated curves of power function for 

different values of b (n=30 and A0-0.90) 
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Fig. 7: Simulated curves of power function for 

different values of b (n=100 and A0-0.90) 
 
with the failure rate (shape parameter b). It is not 
surprising that when all parameters are given, nβ~  
quickly approaches maximum power as n increases. 
Based on these numerical investigations, we conclude 
that Â  and its estimated variance n2σ̂  appear to 
perform well in power calculations provided n or the 
shape parameter (b) is sufficiently large. 
 

DISCUSSION AND CONCLUSION 
 
 This study provides a statistical inference for the 
availability A of a repairable system with 
distribution-free failure and repair time. We show that 
the natural estimator Â  is strongly consistent and 
asymptotically normal with approximate variance 

n2σ̂ . Using the asymptotic results, we construct a 
lower confidence bound (LCB) and develop a 
hypothesis test framework for A. Through the numerical 
simulation study, we find the CAN estimator appears to 
perform well on interval estimation and hypothesis 
testing. Specifically, considering three types of failure 
rates—decreasing (DFR), constant (CFR), and 
increasing (IFR)—we conclude the following. 
 
* The LCB of A , nZA σα ˆˆ − , performs well if n 

large enough )100( ≥n .  
* The LCB corresponding to DFR outperforms that 

corresponding to IFR, based on coverage fraction. 
* The type I error rate of the test 00 : AAH ≤  

versus 0: AAH a >  is close to the nominal level 
when n is sufficiently large )100( ≥n . 
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* The type I error rate corresponding to DFR 
outperforms that corresponding to IFR, based on 
the chance of the corresponding curve once inside 
its 99% confidence interval. 

* The power of the test 
00 : AAH ≤  versus 

0: AAH a >  increases with n. 
* The rejection region }ˆ{ αCA >  is unbiased (i.e., 

)()( 0AA nn ββ >  for 0AA > ).  
* The power quickly reaches the maximum 1 when n 

increases. 
* For a fixed sample size n, the power function 

corresponding to IFR exceeds that corresponding 
to DFR. That is, the greater the shape parameter (b), 
the better the power function performs. 

  
We strongly believe that the statistical inference 
technique proposed by this paper can be successfully, 
efficiently, and easily applied to real systems. Future 
research may consider generalizing the asymptotic 
estimator to a parallel system or comparing availability 
in two repairable systems. 
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