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__________________________________________________________________________________ 
Abstract: In this work, the integration of the one-dimensional cutting stock problem with multiple 
cutting facilities and the transportation problem was formulated mathematically as a large-scale 
discrete optimization problem. Benders partitioning approach and the column-generation technique 
with the direct method and the proposed heuristic method for solving corresponding integer 
programming (IP) were developed into three approaches and were used to solve a set of various sizes 
test problems within a controllable computation time. The computation time and the relative-difference 
percentage between the lower and upper bounds are criterions. The results indicated that the approach 
based on the column-generation technique with the proposed heuristic method is the most efficient 
method for solving this studied large-scale problems. Hence, this approach could be used in practical 
manners; to manage both production and transportation plans simultaneously. 
 
Key words: Large-scale linear programming, column-generation technique, one-dimensional cutting 
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INTRODUCTION 

 
In order to solve large-scale problems, the big issue 

concerned is how long the computational time will 
consumed and how effective the obtained solution can 
be. Absolutely, all industries need to know how to plan 
the process to reach the goal of minimal cost and 
meeting all demand requirements. However, the 
computation to find out the solution should be also 
within a reasonable time. More than four decades ago, 
mathematicians studied intensively and developed 
techniques involved with large-scale problems. Dantzig 
and Wolfe[1] initiated the extensive work on large-scale 
mathematical programming. One of the most efficient 
technique when applied to linear programs is the 
column generation technique. It is applied for solving 
the problems with much fewer rows as compared to 
many more columns. There are wide variety of 
situations that could be solved by this approach. 
Holthaus[2] proposed the decomposition approaches 
based on the classical column-generation technique for 
solving the integer one-dimensional cutting stock 
problem with different types of standard lengths.  

Benders[3] proposed another partioning and 
decomposition technique to divide the original problem 
into subproblems with smaller sizes. This approach is 
applied in a variety of applications such as in cellular 
manufacturing system design[4]. Benders cuts are 
effective for fixed-charge capacitated network design 
problem under heavy traffic load[5]. Benders 
decomposition approach is a quick approach and an 
effective approach for modeling and solving the 
problems using resource-directive based  approaches[6].     

 An application of large-scale problem in this study 
is due to industries that have many plants and each 
plant has to ship the products to many customers both 
production plans and transportation plans must be 
produced cooperatively. In other words, the one-
dimensional cutting stock problem (1D-CSP) with 
multiple cutting facilities and the transportation 
problem (TP) are integrated. Simply optimizing the 
cutting operation may not be the best approach as it 
may result in excessive transportation costs. Therefore, 
this study considered the 1D-CSP with multiple cutting 
facilities and the TP simultaneously, which are 
intractable because of the large number of variables 
involved. Both problems are combinatorial problems, 
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which are solvable in non-polynomial time (NP-Hard) 
for the case of 1D-CSP and within a polynomial time 
for the case of linear cost TP. 

The 1D-CSP can be addressed by finding the best 
process with the minimum cost to cut stock material 
(stock) to meet the demand for smaller pieces (retail 
size) of prescribed dimensions. The column-generation 
technique is successful for handliing the large number 
of involved variables in the linear programming 
formulation of the problem[7,8]. The 1D-CSP is broadly 
applied in industries such as in the aluminum industry[9] 
and the clothing industry[10]. Originally, 
cutting/trimming stock problems implicitly assume that 
the stocks are cut and processed at a single facility. 
Holthaus[2] raised decomposition approaches based on 
the column-generation technique for solving the 1D-
CSP with different types of standard lengths or multiple 
cutting facilities. 

The classical TP is to find the minimum 
transportation cost for shipping units from suppliers to 
customers so that the demands of all the customers are 
met without exceeding each supplier capacity. Adlakha 
and Kowaski[11] demonstrated the practicality of 
identifying cases where the paradoxical situation exists 
in the transportation problems. Sharma and Sharma[12] 
proposed a heuristic based approach that runs in 
polynomial time for enhancing the dual solution of the 
TP.  

In this study, situations where there are 
multiple cutting facilities that cut stock with various 
dimension into small retail size pieces are considered. 
These pieces are shipped to various customers at 
different locations to satisfy a set of known 
determininstic demands. In general, it is not the 
optimum approach to decompose this problem by 
solving the cutting stock problem and then solve the 
resulting transportation problem for each retail size. 
Instead, an efficient procedure is required to make joint 
cutting and distribution decisions be developed to 
minimize the total cutting and shipping cost.  Therefore, 
the global objectives of this study are to develop 
heuristic approaches and to identify the most 
appropriate approach for solving integrated one-
dimensional cutting stock problem-transportation 
problem, (1D-CSP&TP). The specific supporting 
objective of this study is to generate an integrated 
mathematical model for 1D-CSP&TP as the basic 
foundation for heuristics development. 
 
Problem Formulation 

The 1D-CSP&TP can be stated as a 
distribution system in which there are I suppliers and J 

customers. Each supplier has known supply of stocks of 
length L1, L2, …, LK available. Each customer has a 
demand for small size items of length l1, l2, …, lM. The 
joint cutting stock-transportation problem is to decide 
the cutting patterns and the associated frequency to be 
used at each supplier and the number of units of each 
retail size items to ship from each supplier to each 
customer in order to minimize the total cost. Here the 
total cost includes the cost of stocks used as well as the 
transportation cost. To develop a mathematical model 
for this problem, some notations used throughout this 
paper are defined as follows: 
i =      index for suppliers (i = 1, 2, …, I),  
j =  index for customers (j = 1, 2, …, J), 
k =  index for stock lengths (k = 1, …, K), 
m =  index for retail items (m = 1, …, M), 
Lk=  the length of stock k; k = 1, …, K, 
lm=  the length of item m; m = 1, …, M, 

i
kg =  the cost of stock k at supplier i, 
i
kR =  amount of stock k available at supplier i, 

p = index for patterns, 
Pk =the number of feasible cutting patterns of stock k, 

i
mkpa = the number of strips of item m cut in pattern p 

for stock length k by supplier i, 

fulfilling k
i
mkp

M

m
m Lal ≤∑

=1
, 

Dmj = the demands of item m at customer j, 
m
ijc  = the unit cost of shipping one unit of item m from 

supplier i to customer j, 
i
kpx  = decision variables that represent the number of 

times pattern p of stock k is used at supplier i, 
m
ijy  = decision variables representing the amount of 

items m shipping from supplier i to customer j. 
Using the notations above, 1D-CSP&TP can 

be modeled as:[1D-CSP&TP]:     
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, 
1

mj

I

i

m
ij Dy =∑

=

 ∀ m, j,                                       (4) 

0≥i
kpx and integer, ∀ i, k, p,                               (5) 
m
ijy  ≥ 0, ∀ m, i, j.                                                  (6) 

The objective function (1) meets the minimum 
expenses: stock costs and shipping costs. Constraints 
(2) ensure that number of stocks cut at each facility 
does not exceed the availability of each stock type. 
Constraints (3) ensure that number of units of each item 
cut at each facility as a function of cutting decisions 
( i

kpx ) provides capacities limitation for transportation 

decisions ( m
ijy ). Constraints (4) are the usual supply 

and demand constraints for transportation decisions for 
each retail size item. Constraints (5)-(6) ensure that all 
variables are nonnegative and for all i

kpx variables are 
integers. 

From now on, [1D-CSP&TP] represents the full 
Mathematical Model of 1D-CSP&TP, and P[I,J,K,M] 
represents the instance of [1D-CSP&TP] with I 
suppliers, J customers, K stock lengths, and M retail 
lengths. The next section, three approaches are schemed 
for solving [1D-CSP&TP]. 
 
Column-Generation Technique: Consider the 
procedure to apply the column-generation technique to 
the [1D-CSP&TP] so that at least i

kpx  pieces of 
standard length Lk are furnished. First, the problem is 
relaxed all integer restrictions in order to provide the 
simplex multipliers. After that, the problem is 
decomposed to I subprblems, called [NPPi]: a new-
pattern generated subproblem at supplier i. These 
subproblems applied the column-generation technique 
to search the essential cutting patterns for the problem.   

The model (1)-(6) is rewritten in the relaxation 
form by ignoring all integer restrictions. Following the 
rules to convert from the primal problem to the dual 
problem, the DUAL model is written in the following  
(7)-(12).  

 To develop the corresponding DUAL model, the 
simplex multipliers used throughout this paper are 
defined as follows: 
eik = the simplex multipliers of supplier i and 

used stock k from constraints (2), 
rim= the simplex multipliers of supplier i and item m 

from constraints (3), and 
bmj = the simplex multipliers of item m and customer j 

from constraints (4). 

[DUAL] 
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0≥imr , ∀ i, m,                                                    (11) 
bmj unrestricted, ∀ m,j.                                           (12) 

 
The simplex multipliers of [DUAL] are used to 

search a new legitimate cutting pattern. The multi 
subproblems are decomposed by the column-generation 
technique to find out the effective cutting patterns for 
supplier i. For each possible i, the problem [NPPi] can 
be modeled as: 

Maximize Vik* = )( ****
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0** ≥pimka and integer, m = 1, ..., M, 

0≥kq and binary, k = 1,...,K 
where   eik*  =  the simplex multipliers of 

supplier i and used stock k* for 
cutting a new pattern from 
constraints (2), 

i
pmka **  =  the number of strips of item m 

cut in the new pattern p* for 
stock length k* by supplier i, 
fulfilling 

***
1

k
i

pmk

M

m
m Lal ≤∑

=
, and 

qk  =  the used stock length for stock 
k; qk ∈{0,1}, if qk = 1 then the 
stock length k is used. 
Otherwise, the stock length k is 
not used.  
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Every supplier is solved to obtain the effective patterns. 
If Vik* = max {Vik| k=1,..., K }> 0 then the new column 

i
pmka **  = ( i

pka **1 , …, i
pMka ** ) T is introduced into 

the model as a new basis column. If  
V ik* ≤ 0 for i = 1,.., I, the current columns in the model 
is proven to be globally optimal for the relaxed 
problem. For a profound description of the column-
generation procedure applied to the one-dimensional 
cutting stock problems, see Lasdon[13] (section 4.1).  
  
Benders Decomposition:  Consider the procedure to 
apply the Benders decomposition to the [1D-CSP&TP] 
so that a large-scale problem can be separated to multi 
subproblems. The relaxed integer [1D-CSP&TP] is 
decomposed into I subproblems [SPi] and a master 
problem [MP]. The [SPi], i=1,2,..,I is corresponded to 
the 1D-CSP, whereas [MP] is corresponded to the 
generalized TP. The models of them are shown as 
follows:  For [SPi]: 
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Constraints (17) correspond to the limitation of 
capacities of each standard lengths at supplier i. 
Constraints (18) correspond to the difference between 
the amount of the products and the amount of shipped 
products should greater than or equal to zero. In other 
words, the quantity of  available products should be 
greater than the quantity of the shipped products from 
the supplier i to the customer j for all required lengths.
 The simplex multipliers of constraints (17) – (18) 
are practicable in the Benders master problem ([MP]). 
The mathematical model of [MP] is defined as below. 
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         The [SPi], as known in 1D-CSP with different 
types of standard lengths and the limitation of 
capacities, is solved by the direct column-generation 
technique for exactly solving the continuous relaxation 
of the problem. The simplex multipliers of Constraints 
(17) and (18) are used to construct the optimality cut in 

(22). Basically, [SPi] finds the solution of i
kpx , given 

the fixed proportion of allocations on m
ijy . Performing 

as a coordinator, [MP] then develops its allocations 
through the subproblem dual price, added more Benders 
cuts. [MP] is known as a generalized multi-commodity 
TP. The lower bound value (LB) is obtained from the 
objective value of [MP]. The upper bound value (UB) is 

obtained from ∑∑∑
= = =
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 of [SPi].  

 To work with hybrid Benders decomposition 
and column-generation techniques, it is involved with 
doing loop between the master problem [MP] and 
subproblems [Spi]. Obviously, two loops; column-
generation loop and Benders loop, are overlapped. If 
any loop gets struck such as; sluggish convergence or 
occurred degeneracy situation, the algorithm will take 
too long computation time. Hence, some rules are 
stipulated; 1) if the different of UB and LB values 
between adjacent iterations has less than and equal to 
0.5 occurred more than 10 consecutive times, the 
program will stop. 2) the number of newly generated 
patterns by the column-generation technique is 
restricted to 6 times the number of required lengths.  

The first rule is raised for protection of the 
sluggish convergence because the [MP] of Benders 
decomposition may add the slowly convergent Benders 
cuts in (22). This rule helps to save the loss 
computation time; however, it makes the objective 
value be greater than the optimal solution. The second 
one is raised for preventing the degeneracy event. If this 
sub-procedure gets struck, Benders approach will also 
become stubborn. This stopping rule is created under 
the idea that the right hand sides obtained from Benders 
approach each iteration are modified. So some efficient 
patterns, in which the column-generation technique 
provided, may not be the efficient patterns in the next 
iteration. To reduce the computation time, this rule does 
work and not create much effect occuring in the 
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objective value in case of using 6*M limitation. 
Furthermore, the first rule as mentioned above is one of 
the stopping rules too. In summary, there are two 
stopping rules in this algorithm;  
1. If UB=LB, and 
2. If the number of iterations that UB-LB ≤ 0.5 has 

been occurred more than 10 consecutive times.  
 
The Proposed Heuristic Method for Solving IP: The 
key idea to solve 1D-CSP&TP has been outlined using 
the concept of solving [1D-CSP&TP] model as a 
continuous problem using both column generation 
techniques and Benders decomposition to control the 
number of generated variables and constraints. 
However, the solution obained by the approaches may 
violate the required integer restrictions. This heuristic 
method is proposed for solving the resulting IP at the 
end of process. The principle of round down method 
based on Holthaus[2] is developed. After solving any 
corresponding linear programming of [1D-CSP&TP] 
model, all decision variables are obtained. Consider  
each i

kpx , there are three categories of the values of 
i
kpx such as in the interval; a) greater than or equal to 1, 

b) between 0 and 1, and c) equal to zero.  Hence, three 
groups of constraints are added under three cases as 
below: 

Case1: If i
kpx ≥1 then the constraint,  

i
kpx  ≥  i

kpx , is added. 

Case2: If 0 < i
kpx <1 then the constraint,  

i
kpx  ≤ 1, is added and finally, 

Case3: If i
kpx =0 then the constraint, 

∑∑
= =

K

k

kP

p

i
kpx

1 1
 ≤ 1, is added. 

For solving IP with the proposed heuristic method, the 
constraints (28) - (30) are added with the expectation 
that the non-relaxed resulting model can be solved 
within a reasonable time as claimed in Holthaus[2]. 

Let i
kpx , i

kpx  and i
kpx  be i

kpx in Case1, Case2, and 
Case3, respectively. The mathematical model for 
solving this related IP can be written as follows: 
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0≥m
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METHODOLOGY 

 
Based on the approaches described in the previous 

section, there are 4 related algorithms: 1) Problem 
Generator, 2) A0-algorithm, 3) A1-algorithm, and 4) 
A2-algorithm, developed to test effeciency and 
effectiveness. To code and run all algorithms, the 
required materials are as follows:  
1. Borland C++ version 5.02. 
2. LINGO version 6.0.  
3. A personal computer with 1.6 GHz, Pentium IV 

processor with 512 MB RAM under Windows XP 
Professional. 
In order to solve the [1D-CSP&TP], the concept of 

this study could be divided into two phases. One, the 
relaxed [1D-CSP&TP] is solved by the column-
generation technique or the hybrid Benders 
decomposition and the column-generation technique. 
And two, the integer [1D-CSP&TP] is solved by the 
direct method and the proposed heuristic method.   

In the first phase, the idea is to reduce the number 
of variables by using the two techniques as mentioned 
previously. Instead of solving the model with all 
possible patterns, the column-generation approach and 
the hybrid Benders decomposition and the column-
generation provide only essential patterns.   

In the second phase, the idea is: if the optimal 
solution and the computation time cannot go together, 
we have to choose which one is the most important. 
This study aims at the computation time, so the 
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heuristic method is proposed to solve the final resulting 
IP. By the way, the direct method also uses to solve this 
IP for computational time and solution quality 
comparisons.  

First of all, the necessary feasible initial-
patterns are generated for forming the initial IP. 
Concerning with various lengths of stock and various 
costs of stock in each supplier, the suitable stock length 
is selected under the condition that it can be cut into all 
retail sizes and that its length has the lowest price 
compared among all suppliers. This procedure is called 
“Initial-pattern Generator” as described in the steps 
below.    
Initial-pattern Generator 
Step1:    Find the maximum length of the retail item. 
Step2:  Find the stock length, which is longer than the 

one in Step1. Ensure that its cost is the 
cheapest one from all suppliers 

Step3:  Find the maximum number of pieces that the 
selected stock length from Step2 can cut into 
each retail item. 

Step4: Generate the initial patterns by using the 
numbers from Step3. 

 
The relaxed IP is formulated by using obtained initial-
patterns. All related decision variables are nonnegative. 
Now three approaches are designed for solving this 
problem 
 A0 Approach:  The first approach is called “A0”. This 
approach applied the column-generation technique 
(CG) to generate appropriated patterns. These patterns 
are necessary to help reducing the objective value as 
much as possible. The i

kpx variables are added more 
and more until the reduced cost couldn’t decrease in the 
relaxed discrete restrictions [1D-CSP&TP]. After that, 
all patterns are gathered for solving the final resulting 
integer program (IP) by added nonnegative integer 
variable constraints. This method is called the direct 
method. In this study, all approaches are is limited the 
computational time at 6 hours. The steps of summarized 
A0 algorithm are as follows:     
A0 Algorithm 
Step0: Formulate the relaxed [1D-CSP&TP]. 
Step1: Apply CG at the model from Step0. 
Step2: Solve the resulting IP by the direct 

method. 
Step3:  Test for the stopping rule. If the 

computational time > 6 hours, stop. 
The otherwise the optimal solutions 
are found. 

A1 Approach:  The second one is called “A1”.  After 
all patterns are generated for solving the final IP. The 

proposed heuristic method is applied instead of using 
the direct method. Therefore, the steps of A1 algorithm 
can be summarized as follows: 
 
A1 Algorithm 
Step0: The same as A0. 
Step1: The same as A0. 
Step2:  Solve IP by the proposed heuristic 

method. 
Step3:     The same as A0 
 
A2 Approach: The last one is called “A2”. This 
approach applied the Hybrid Benders decomposition 
and the column-generation technique (HB&CG) to 
generate patterns and cutting plane simultaneously. 
Therefore, the new i

kpx variables and the new 
constraints are added until meeting an optimal solution.  
After that, all patterns are gathered for solving the IP by 
the proposed heuristic method. In summary, the steps of 
A2 algorithm are as follows:     
 
A2 Algorithm 
Step0: Formulate the relaxed[1D-SP&TP]. 
Step1: Apply HB&CG to the model from 
Step0. 
Step2: Solve the final IP by the proposed 

heuristic method. 
Step3: Test for the stopping rule.  
 
To compare the efficiency and effectiveness of each 
approach, the IP computation time and the relative-
different percentage are used. From the three-approach 
observations, the IP solving computation times are 
collected and analyzed. Nevertheless, only two 
approaches with the proposed heuristic method: 
A1&A2 are considered to compute the relative-different 
percentage. Let R1&R2 be the relative-different 
percentage of the approach A1&A2 respectively. The 
formulas for computing the relative-different 
percentage of each approach are as follows: 

100*11 





 −

=
LB

LBIPR , 

where IP1 represents the objective value, solved by A1 
and LB is the lower bound represented by the optimal 
objective value from Step1 of all approaches and 

100*22 





 −

=
LB

LBIPR , 

where IP2 represents the objective value, solved by A2. 
 For generating different instances of [1D-
CSP&TP], the parameters of an instance consist of the 
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number of suppliers (I), the number of customers (J), 
the number of stock lengths (K), and the number of 
retail items (M). For simply calling, the instance is 
referred as P[I,J,K,M]. The needed input data consist of 
the lengths of stock (Lk), the lengths of retail item (lm), 
the material costs ( i

kg ), the shipping costs ( m
ijc ), the 

capacity ( i
kR ), and the demands (Dmj). They have been 

randomly generated in many ways. In this study, the 
values of I ∈ {2, 3}, J ∈ {4}, K ∈ {2, 3, 4, 5} and M ∈ 
{5, 10, 15, …, 40} have been investigated. Totally, 
there are 64 instances in this study. In order to generate 
all instances, the problem generator is coded with the 
feasible linear problem guarantee. The total length of 
all suppliers is greater than 1.25 times of the total 
needed length of all demands. The assumptions of the 
problem generator are that a longer stock certainly leads 
to a higher price and adequate quantities of stocks are 
assigned for distributions. The algorithm can be shown 
as follows: 
 
Problem Generator Algorithm 
Step0:  Input a seed number, data ranges and the 

parameters I, J, K, and M. 
Step1:  Randomize K standard stock lengths (Lk). Then 

sort by descending order. 
Step2:  Randomize K costs of the standard stock 

lengths ( i
kg ), then sort by descending order, 

and match them with Lk from Step1. 
Step3:    If i ≤  I then repeat Step2. 
Step4: Randomize the retail items (lm) from 1 to the 

longest Lk. 
Step5:    Randomize Dmj ,

m
ijc , and i

kR .  
Step6:    Check the feasibility of the problem. 
6.1:  Classify lm  into K groups where the longest lm 

in each group is less than or equal to Lk.   
6.2)       If 1.1 times the total needed length of group k 

is less than the total stock length of group k, 
the capacity will be added up until the total 
stock length is greater than or equal to 1.1 
times the needed length. 

6.3)    Consider the overall, if 1.25 times the total 
needed length is longer than the longest Lk of 
the first supplier, it will be added up until the 
total stock length is greater than or equal to 
this desired value .   

    
RESULTS 

 
Of the three approaches just described, 64 

instances have been tested on [1D-CSP&TP]. All 

instances were put in the form of P[I, J, K, M] where I 
= 2,3, J = 4, K = 2,3,4,5 and M = 5, 10, 15, 20, 25, 30, 
35, 40. The raw data table is available upon requests. 
The computational performances of all instances can be 
discussed as follows. 
A0: There were 17 instances, which took the 

computation time more than 21,600 seconds (> 6 
hours). From now on, only 47 instances were 
considered. To compare with A1, we found that 
there were 34 instances, which took the 
computation times less than those of A1 with the 
maximum gap of 10 seconds, whereas the 13 
instances left took the computation times greater 
than those of A1 with the maximum gap of 18,789 
seconds. To compare with A2, we found that there 
were 43 instances, in which took the computation 
times less than those of A2 with the maximum gap 
of 7,016.76 seconds, whereas the 4 instances left 
took the computation times greater than those of 
A2 with the maximum gap of 18,689.28 seconds. 
In term of effectiveness, A0 always provides the 
best IP objective value as compared to others in all 
those 47 instances (within the controlled 
terminated time). However, the method became 
inconsistent especially when M is large. 
 

A1: 64 instances could be solved within 219.855 
seconds. The computation time of A1 were less 
than those of A2 for all instances with the 
maximum gap of 55,377.8 seconds. 

A2: 63 instances could be solved within 10,726.3 
seconds, but the left one took more than 21,600 
seconds (or > 6 hours). The computation time of 
this case, P[3-4-3-35], went up to 55,425.2 
seconds. The computation time of A2 did not 
directly change with the computation time of A0 
and A1. For example, P[2-4-3-20]: the computation 
times of A0, A1, and A2 were 11.878, 12.849, and 
291.18 seconds, respectively, whereas P[2-4-3-25]: 
the computation times of A0, A1, and A2 were 
18,802.7, 13.699, and 113.422 seconds. 
 
It is obvious that A1 could solve the [1D-CSP&TP] 

within a more reasonable time as compared to the other 
two. This approach was fast enough for the processors 
who would like to design some proficient production 
and transportation plans in real time.  

Also, from the computation results of A1, the 
maximum relative-different percentage of R1 was 
0.140256%, whereas the maximum relative-different 
percentage of R2 was 11.41063%. There were 37 
instances that the percentages of R1 were less than 
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those of R2 with the maximum gap of 11.41058%, 18 
instances that the percentages of R1&R2 were both 
equal and 9 instances that the percentages of R1 were 
greater than those of R2 with the maximum gap of 
0.05163%. In summary, the approach A1 could solve 
[1D-CSP&TP] test problems within the relative-
different gap much lower than those obtained from the 
approach A2.. For planning the production and 
transportation strategies, the processors certainly want 
the smallest relative-different percentage.  Therefore, 
with the reasonable computation time and effective 
obtained solution statistically in this study, A1 is a more 
appropriate approach to solve [1D-CSP&TP]. 
 

CONCLUSION AND EXTENSION 
 

In this study, three approaches: A0, A1, and 
A2, based on the concepts of column-generation 
techniques, Benders decomposition and heuristics for  
integer linear programming are proposed to solve the 
integrated model of one-dimensional cutting stock and 
linear muti-commodity transportation problem.. From 
the experiments, A1 is the most efficient and effective 
approach for solving this large scale problem. However, 
all three approaches can be the alternative approaches 
to solve [1DCSP&TP] since there exist some heuristics 
employed in each approach. Each of them certainly has 
its own advantages (gain) and disadvantages (loss) that 
can be discussed as follows: 

For A0: This approach frequently could not solve 
the problem in a reasonable time. As to the column-
generation technique, this technique obtained only the 
optimal LP objective value. It is not guaranteed that the 
IP objective value will also be optimal. Although the IP 
objective value of A0 is not optimal, but with the direct 
method for solving the IP, A0 obtained the best IP 
objective value. And from the experiments, 34 out of 64 
instances took the computation times less than those of 
A1. Therefore, A0 always has a chance to be the best 
approach but not on average. 

For A1: With the proposed heuristic method, this 
approach could solve the large-scale problems within a 
reasonable time. But the IP objective value of A1 is 
worse than the one obtained from A0. However, the 
experiments show that all instances could be solved 
within 219.855 seconds (or less than 4 minutes) and the 
range of the relative-difference percentage of A1 is 
quite small (less than 0.15%).  

For A2: There are one rule for the degeneracy 
protection in the column-generation technique and two 
stopping rules in this algorithm. Hence, the obtained LP 
objective value by A2 will be the best if the operation 

runs step by step without jumping with the rule for the 
degeneracy protection and stop with the first stopping 
rule (UB=LB). Otherwise, the obtained LP objective 
value by A2 will be not optimal. Furthermore, the 
column-generation technique was applied during 
Benders iteration. For example, suppose A2 obtained 
the LP objective value after 10 Benders iterations. It 
means that the column-generation technique was 
applied 10 times too. Therefore, the computations of A2 
takes more time than those of A1. However, the IP 
objective values of A2 in some instances were less than 
those of A1 implying that this approach is not all worse. 

For the further study, since the [1D-CSP&TP] 
considered is NP-hard, there is a strong need to 
continuously develop heuristic approaches to solve the 
problem efficiently and effectively. Nonato and 
Scutellà[14] proposed a linear programming algorithm 
based on hyper flows for solving the one-dimensional 
cutting stock problem but not limited the number of 
stocks. Therefore, their algorithm can be applied as 
another new alternative approach for solving the [1D-
CSP&TP] in the future study. 
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