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Abstract: The major handicap of permutation test is the logical and computational requirement 
necessary to develop and implement the exact permutation scheme. This study provides an algorithm 
that systematically enumerates all the distinct permutations of the paired observations in an experiment 
without the possibility of repeating any of the permutations. The permutation algorithm presented 
completely breaks down the permutation problem for ease of implementation and analysis. The 
algorithm was illustratively implemented in Intel Visual Fortran to recreate Fisher’s manual 
compilation of 32,768 permutations of Charles Darwin’s data on heights of cross-fertilized and self-
fertilized plants. The algorithm provides exact p-values for any experiment involving paired 
observations and exposes the danger in using asymptotic or parametric distributions such as the t-test 
to analyze small data sets when the exact functional form of the distribution is not explicitly known. 
This becomes more obvious especially when the experiment leads to a p-value close to the threshold 
level of significance. The exact distribution and the graphical presentation provided in this study give 
credence to the use of the permutation test. 
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INTRODUCTION 

 
 In hypothesis testing, paired t-test is the procedure 
used when the independent variable is within subjects 
in nature and compares two levels of the independent 
variable assigned to the same group of subjects at 
different points in time. As is true for all t-tests, the 
standard error is not known and is estimated from 
sample data. 
 Fisher[1] proposed that randomization should be the 
basis for experimental design and statistical inference. 
The premise behind experiments involving paired 
observations is that a sample of experimental units, 
however acquired, is divided randomly into two or 
more groups. These are then exposed to different 
treatments. The null hypothesis is that the treatments 
have no differential effects on the groups with respect 
to a selected statistic. If there is no requirement that the 
test statistic should conform to a mathematically 
definable frequency distribution, then the exact 
sampling distribution of the test statistic can be 
compiled by permutation. Scheffe[2] demonstrates that 
for a general class of problems, the permutation 
approach is the only possible method of constructing 
exact tests of significance. 
 Theoretical frequency distribution of a test statistic 
for many nonparametric tests is estimated by either 

using the small sample test statistic or using the large 
sample asymptotic distribution of the test statistic. For 
small sample size, the exact probability of obtaining the 
calculated value of the test statistic or any less likely 
value has to be determined. The use of the asymptotic 
test with small sample sizes may yield an incorrect p-
value and therefore leads to a false acceptance or 
rejection of the null hypothesis. In an attempt to ensure 
that the probability of a type I error is exactly α, an 
algorithm for obtaining exact permutation distribution 
of paired observations is presented in this work. 
 The permutation approach is computationally 
demanding viz; space and time complexities. Several 
approaches, which are computationally less demanding 
as the permutation approach, have been suggested as 
alternatives. Efron and Tibshirani[3], Hall and Tajvidi[4], 
Opdyke[5] presented Monte Carlo approaches. Other 
approaches like the Bayesian and the likelihood have 
also been found useful in obtaining approximate 
permutation distribution, see Bayarri and Berger[6], 
Spiegelhalter[7]. 
 StatXact is nonparametric software that provides 
the distribution of various test statistics by adopting a 
network approach but chiefly addresses rank based 
statistics. Opdyke[5] observes that available permutation 
procedures can sample from the permutation sample 
space rather than carrying out complete enumeration of 
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all possible distinct rearrangements. These available 
procedures can perform Monte Carlo sampling without 
replacement within a sample, but none can avoid the 
possibility of drawing the same sample more than once, 
thereby reducing the power of the permutation test. 
 The purpose of this study was to provide a simple 
but systematic way of obtaining exact permutation 
distribution of paired observations by ensuring that a 
complete enumeration of all the distinct permutations of 
the actual observations is achieved. This leads to the 
recreation of the Fisher's manual compilation of the 
32,768 permutation of Charles Darwin's data on heights 
of cross-fertilized and self-fertilized plants (Darwin[8]), 
see Ludbrook and Dudley[9]. 
 
Permutation test: Pairing involves repeated 
measurements on the same set of experimental units, 
while paired permutation involves the compilation of 
all possible interchanges of the values attached to each 
experimental unit. The null hypothesis is that there is no 
differential effect of experimental conditions on the 
statistic of interest. The probability attached to the null 
hypothesis is therefore 

outcomespossibleofnumberTotal
observedthatasoutcomesextrememoreorsametheofNumberPH =

0

  

Ludbrook and Dudley[9]. Clear descriptions of how 
permutation tests are conducted for categorical data can 
be found in Siegel and Castellan[10]. One of the practical 
difficulties with exact permutation tests is realizing all 
the possible distinct arrangement of the variates in an 
experiment. 
 For k repeated measurements on the same group of 
size n, the general formula is kn. For example, for two 
(k = 2) repeated measurements made on a group of size 
n = 15, as in the case of Charles Darwin’s data on 
heights of cross-fertilized and self-fertilized plants, the 
number of possible distinct permutations is 215 = 
32,768. Even with a fast microcomputer, compilation of 
the exact permutation distribution may take too long.
 Computational time for a permutation test is highly 
prohibitive. R. A. Fisher compiled by hand 32,768 
permutations of Charles Darwin's data on the height of 
cross-fertilized and self-fertilized Zea mays plants as 
reported in Ludbrook and Dudley[9]. It is believed that 
the challenge inherent in the task of manually 
compiling permutations is what possibly discouraged 
Fisher from further research into exact permutation 
tests. It is also believed that the nonparametric test 
whose theoretical basis is the permutation of 
differences between mean ranks invented by Wilcoxon 
in 1945 is an attempt to overcome the computational 
difficulties of permuting differences between means, 
see Ludbrook and Dudley[9]. 

MATERIALS AND METHODS 
 
 In this study, consideration is given to the 
permutation distribution of paired observations, see 
Agresti[11] for conditional permutation; Odiase and 
Ogbonmwan[12] for an algorithm for generating 
unconditional exact permutation distribution for a two-
sample (independent samples) experiment. In Good[13], 
a consideration was given to the tails of permutation 
distribution in order to arrive at p-values. This approach 
has no precise model for the tail of the distribution from 
which data are drawn, see Hall and Weissman[4]. 
 The difficulty in permutation test lies in obtaining 
all the distinct arrangements of the variates in a given 
experiment. For example, a paired two-sample 
experiment with 20 variates in each sample requires 220 
or 1,048,576 permutations. A frequency distribution is 
subsequently arrived at for all the distinct occurrences 
of the test statistic from which the probability 
distribution of the test statistic is computed. A paired 
two-sample experiment with n pairs has 2n possible 
permutations of the variates with each permutation 
occurring with probability 2-n. 
 Given two paired samples X = (x1, x2, …, xn) and Y 
= (y1, y2, …, yn), suppose a sample of n units from the 
population distribution FX is paired with a sample of n 
units from the population distribution FY and are 
simultaneously tested in an experiment with T as the 
test statistic. Let 
 YX FFH =:0  against YX FFH ≠:1  or 

YX FFH <:1  or YX FFH >:1  
 For k distinct values of the test statistic T, the 
probability distribution of the test statistic T = (T1, T2, 
…, Tk) under the null hypothesis YX FFH =:0  is 
given by 

P(Tj= t0 | H0) = 
∑ 







=

−jf

i
n

1
2  = ( )n

jf −2 , 

where fj is the number of occurrences of Tj. For 
specified value of n and the level of significance α, the 
critical value c corresponds to a level closest to α. 
Ordering all the distinct occurrences of T in ascending 
order of magnitude, and if g is the position of the 
observed value of T, then the following significance 
level for the left tail of the distribution of the test 
statistic is 

α = P(Tg ≤ c | H0) = ∑
=

∑
=






 −g

j

jf

i
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2  

and for the right tail, 
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  α = P(Tg ≥ c | H0) = ( )∑
=

−
k

gj
j

n f2 . 

For a two-tailed test, the left and right tails are summed 
up. Clearly, when the distribution of the test statistic is 

symmetric, ∑
=

g

j
jf

1

 = ∑
+−=

k

gkj
jf

1

. 

 Let 1π , 2π , …, nπ  be a set of all distinct 

permutations of the data set such that iπ  is the ith 
permutation. The permutation test procedure is defined 
as follows: 
1. Compute the Test Statistic T1 for the original 
arrangement 1π  

2. Obtain a distinct permutation iπ  

3. Compute the Test Statistic for permutation iπ , Ti 

= T( iπ ) 
4. Repeat Steps 2 and 3 for i = 2, 3, …, 2n; n = sample 
size 
5. Construct an empirical cumulative distribution 

0p  = ( ) ( )∑
=

−=≤
n

i
ini TTTTp

2

1
12

1 θ  

 where θ is a step-function, that is, θ = 1, if T1 ≥ Ti, 
and θ = 0 otherwise. 
6. Under the empirical distribution p̂  if α≤0p , 
reject the null hypothesis. 
 The procedure computes the cumulative 
distribution of the Test Statistic, T, under the null 
hypothesis. 
 
Implementation: A discussion of a systematic way of 
obtaining all the possible permutations of the N variates 
now follows. Given a balanced two-sample layout as 


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




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



nn yx
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22

11

, where xi ∈  X and yj ∈  Y. Let n = 4, an 

illustrative implementation of paired permutation 
algorithm now follows: 
 
Original arrangement of paired observations 
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Exchange of one pair of observations 
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Exchange of two pairs of observations 










j

i

x
x

 ↔ 








j

i

y
y

; i ≠ j yields 







2
n  permutations, that 

is: 



















44

33

22

11

xy
xy
yx
yx

, 



















44

33

22

11

xy
yx
xy
yx

, 



















44

33

22

11

xy
yx
yx
xy

, 



















44

33

22

11

yx
xy
xy
yx

, 



















44

33

22

11

yx
xy
yx
xy

, 



















44

33

22

11

yx
yx
xy
xy

 or 








2
4  permutations. 

 
Exchange of three pairs of observations 
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Exchange of four pairs of observations 
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This process is continued until the desired sample size 
is attained. 
Total (for 4-paired observations) = 
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Clearly, for a two-sample problem, the number of 
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 The test statistic is computed for each permutation 
in the complete enumeration of the distinct 
permutations. The distribution of the test statistic is 
obtained by tabulating the distinct values of the statistic 
against their probabilities of occurrence in the complete 
enumeration, bearing in mind that all the permutations 
are equally likely. 
 
Paired permutation algorithm: The algorithm Paired-
Permutation presented in this study can carry out a 
complete enumeration of all the possible distinct n-
paired permutations by making the necessary 
adjustments to the algorithm to reflect the number of 
pairs. The algorithm is illustrated for ¯ve pairs of 
observations. Let xij represent the paired observations in 
an experiment, for i = 1(1)5; j = 1; 2. 
 
Algorithm (Paired-Permutation) 
1: for 1i  ← 1, 2 do 

2:      1T  ← 
1,1 iX  

3:      if 1i  ← 1 then 

4:        1S  ← 2,1X  
5:      else 

6:        1S  ← 1,1X  
7:      end if 
8:      for 2i  ← 1, 2 do 

9:           2T  ← 
2,2 iX  

10:         if 2i  ← 1 then 

11:           2S  ← 2,2X  
12:         else 
13:           2S  ← 1,2X  
14:         end if 
15:           for 3i  ← 1, 2 do 

16:                3T  ← 
3,3 iX  

17:                if 3i  ← 1 then 

18:                  3S  ← 2,3X  
19:                else 
20:                  3S  ← 1,3X  
21:                end if 
22:                for 4i  ← 1, 2 do 

23:                     4T  ← 
4,4 iX  

24:                     if 4i  ← 1 then 

25:                       4S  ← 2,4X  
26:                     else 
27:                       4S  ← 1,4X  
28:                     end if 
29:                     for 5i  ← 1, 2 do 

30:                          5T  ← 
5,5 iX  

31:                          if 5i  ← 1 then 

32:                            5S  ← 2,5X  
33:                          else 
34:                            5S  ← 1,5X  
35:                          end if 
36:                           

37:                          for 15i  ← 1, 2 do 

38:                               15T  ← 
15,15 iX  

39:                               if 15i  ← 1 then 

40:                                 15S  ← 2,15X  
41:                               else 
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42:                                 15S  ← 1,15X  
43:                               end if 
44:                               Compute Test Statistic 
45:                          end for 
46:                     end for 
47:                end for 
48:           end for 
49:      end for 
50:       
51: end for 
 

RESULTS 
 
 The Algorithm (Paired-Permutation) was 
implemented in Intel Visual FORTRAN to obtain the 
permutation distribution of the 15 pairs of values on 
heights of cross-fertilized and self-fertilized plants. 
Looking through the Appendix, (863 + 863) 
permutations are equal or more extreme than the 
observed difference of means (2.61667). The one-sided 
p-value is simply 02634.032768863 =  and the two-sided 
p-value is ( ) 05267.032768863863 =+ . The following 
results were obtained (Table 1). 
 The exact permutation distribution of the 
difference of means for paired observations along with 
their p-values is in the Appendix, while the graphical 
display is shown in Fig. 1. 
 
Table 1: P-values for height of cross and self fertilized plants 

 
Test 
Statistic 

P(T ≤ t) one-
tailed p-
value 

P(T ≤ t) two-tailed 
p-value 

t-test 2.14799 0.02485 0.04970 
Paired 
Permutation 2.61667* 0.02634 

0.05267 

* Actual difference of means 
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Fig. 1: Exact permutation distribution of height of 

cross and self fertilized plants 
 
 
 
 

DISCUSSION 
 

 R. A. Fisher compiled by hand 32,768 
permutations of Charles Darwin’s data. It is believed 
that the enormity of this task possibly discouraged 
Fisher from further research into exact permutation 
tests, see Ludbrook and Dudley[9]. Clearly, our results 
agree with the results Fisher manually obtained as the 
number of permutations that were equal or more 
extreme than the observed difference of means. 
Observe that at 5% level of significance, the null 
hypothesis of no significant difference is rejected under 
the exact permutation distribution while the null 
hypothesis is accepted under the paired t-distribution. 
Permutation test can therefore serve as an independent 
check on the classical methods in common use, which 
agrees with the observation of Fisher[1]. 
 The problem with permutation tests has been high 
computational demands, viz; space and time 
complexities. Available permutation procedures can 
sample from the permutation sample space rather than 
carrying out complete enumeration of all possible 
distinct permutations. These available procedures 
cannot avoid the possibility of drawing the same sample 
more than once, thereby reducing the power of the 
permutation test, see Opdyke[5]. 
 This study formulates and implements a sure way 
of obtaining exact permutation distribution of paired 
observations by ensuring that a complete enumeration 
of all the distinct permutations is achieved. This 
produces exact p-values and ensures that the probability 
of a type I error is exactly α. The algorithm can be 
extended to any sample size, depending on the 
processor speed and memory space of the computer 
being used to implement the algorithm. 
 

CONCLUSION 
 
 The p-value obtained through the permutation 
approach is exact, see Agresti[11] and Good[13]. 
Obtaining exact p-values through exact permutation has 
remained difficult because it is computationally 
intensive. For small sample sizes, the exact permutation 
distribution of a test statistic and its asymptotic 
equivalent can be quite discrepant. 
 A straight forward approach has been adopted in 
obtaining   exact  distribution of the paired observations  
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in an experiment through a careful enumeration of 
distinct permutations of the observations. The 
permutation algorithm presented in this study beats the 
limitations and difficulties inherent in the exact 
permutation approach that probably led to the 
introduction of other approximate methods, which do 
not truly provide the exact distribution of a test statistic. 
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